PROFILE OF FTUI
AND DEPARTMENTS
1. PROFILE OF FTUI AND DEPARTMENTS

1.1. HISTORY OF FTUI

The history of the Faculty of Engineering, Universitas Indonesia (FTUI) began with an offer made from young engineers belonging to the Society of Engineers Indonesia (PII), to the first President of the Republic Indonesia, Bung Karno, for the renovations of the heavily damaged main streets of Jakarta. At that time Jakarta was preparing for the International Sports Event, the GANEFO. This bid was welcomed by President Soekarno. The young engineers were granted permission to start the renovations under the condition that all work must be completed within two weeks period. Headed by Ir. Bratanata, Ir. Roosseno, Ir. Sutami, and Ir. A.R. Soehoed, the project was completed on time.

After successful accomplishment of the street renovation project, these young engineers with their iron will felt that there was more that they could do to serve our country. But what? Then they thought of a brilliant idea: “Why not establish an engineering faculty in Jakarta as an alternative to the one in Bandung? This way those residing in the country’s capital would not need to travel far to Bandung for an engineering education”.

During the ceremonial event of Lenso dancing at the Pembangunan Building (formerly known as Pola Building) to welcome the GANEFO guests of honor, the young engineers brought their idea to President Soekarno to which he responded by inviting them to the Presidential Palace the next day. During the meeting in the Presidential Palace, the President wholeheartedly approved of the idea and even directly appointed Prof. Ir. Rooseno as the first Dean of the Faculty of Engineering. The President also instructed that the new Faculty of Engineering would be part of the University of Indonesia under the leadership of its Rector, dr. Syarief Thayeb.

The Establishment of Faculty of Engineering UI

Once dr. Syarief Thayeb served as the Minister of Higher Education and Science, he issued Decree No. 76 dated July 17, 1964 regarding the establishment of the Faculty of Engineering. Faculty of Engineering was officially established in Jakarta without any official ceremony or celebration, under the banner of the University of Indonesia as youngest faculty. And so the history of the Faculty of Engineering Universitas Indonesia began with the first three Study Programs with their respective Head of Study Programs: Ir. Sutami as Head of Civil Engineering Study Program, Ir. Ahmad Sayuti as Head of Mechanical Engineering Study Program and Ir. K. Hadinoto as Head of Electrical Engineering Study Program.

The Metallurgy and Architecture Study Programs were opened the following year with their respective Head of Study Programs: Dr.Ing. Purnomosidhi H. and Ir. Sunaryo S.. Ir. Rooseno as Dean was assisted by Ir. Sutami as Vice Dean for Academic Affairs, Ir. Slamet Bratanata as Vice Dean for Administration and Finance and Dr. Ing Purnomosidhi H. as Vice Dean for Student Affairs and Alumni. In its early activities in 1964, Faculty of Engineering UI was supported by 30 lecturers and 11 non-academic employees offering a 32 course subject curriculum. The first class of Faculty of Engineering UI consisted of 199 students. In five and a half years, 18 of them had successfully completed their study and graduated as certified Engineers.

In 1985, the study program Gas Engineering (originally under the Metallurgy Study Program) joined the study program Chemical Engineering (originally under the Mechanical Study Program) and formed the Gas and Petrochemical Engineering Study Program with its first Head of Study Program, Dr. Ir. H. Rachmantio. The Industrial Engineering Study Program, the youngest Study Program in Faculty of Engineering UI, was opened in 1999 with its first Head of Study Program, Ir. M. Dachyar, M.Sc. The term Study Program was later changed to Department and is still used today.
1.2. VISION AND MISSION OF FTUI

FTUI Vision

FTUI as a leading engineering education institution with the ability to compete in the international world.

FTUI Mission:

- Preparing its graduates to become lifelong learners, to be able to adapt to the working environment, and to acquire decent personalities and leadership qualities.
- To be center of excellence for education and research activities, to serve stakeholders’ needs through facilitation of conducive academic environment.
- To be a leading institution with the initiatives that responds to local, national and global societal needs.

1.3. UI and FTUI Administration

UI

Rector:

Prof. Dr. Ir. Muhammad Anis. M. Met.

Deputy Rector for Academic and Student Affairs:

Prof. Dr. Bambang Wibawarta, S.S., M.A.

Deputy Rector for Finance, Logistic and Facilities:

Prof. Dr. Adi Zakaria Afiff

Deputy Rector for Research, and Innovation

Prof. Dr. rer. nat Rosari Saleh

Deputy Rector for Human Resources, Development and Cooperation

Dr. Hamid Chalid, S.H., LL.M

FTUI

Dean of Engineering:

Prof. Dr. Ir. Dedi Priadi, DEA

Vice Dean I:

Dr. Ir. Muhamad Asvial, M.Eng

Vice Dean II:

Dr. Ir. Hendri DS Budiono, M.Eng

Associate Dean for Academic and Head of Faculty Administration Center:

Dr. Ir. Wiwik Rahayu, DEA

Associate Dean for Research & Community Service

Prof. Dr. Ir. Akhmad Herman Yuwono, M.Phil.Eng

Associate Dean for Cooperation, Students Affairs, Alumni & Venture:

Dr. Badrul Munir, ST., M.Eng.Sc

Associate Dean for General Affairs & Facilities

Jos Istiyanto, S.T., M.T., Ph.D

Head of Academic Quality Assurance Unit

Prof. Ir. Mahmud Sudibandriyo, M.Sc., Ph.D

Head of Management System Assurance Development Unit

Dr. Ir. Rahmat Nurcahyo, M.Eng. Sc.
Departments
The following are list of Head of Department, and Vice Head of Department:

Civil Engineering:
- Prof. Ir. Widjojo A. Prakoso, M.Sc., Ph.D
- Mulia Orientilize, S.T., M.Eng

Mechanical Engineering:
- Dr.-Ing. Ir. Nasruddin, M.Eng
- Dr. Ario Sunar Baskoro, ST., MT., M.Eng

Electrical Engineering:
- Ir. Gunawan Wibisono, M.Sc., Ph.D
- Dr. Eng. Arief Udhiarto, S.T., M.T, IPM

Metallurgy & Materials Engineering:
- Dr. Ir. Sri Harjanto
- Dr. Deni Ferdian, ST, M.Sc

Architecture:
- Prof. Yandi Andri Yatmo, S.T., M.Arch., Ph.D
- Rini Suryantini, S.T., M.Sc

Chemical Engineering:
- Prof. Ir. Sutrasno Kartohardjono, M.Sc., Ph.D
- Dr. Ir. Nelson Saksono, M.T.

Industrial Engineering:
- Dr. Akhmad Hidayatno, S.T., MBT.
- Dr.-Ing. Amalia Suzianti, ST., M.Sc.

BOARD OF PROFESSORS
- Prof. Dr. Ir. Budi Susilo Soepandji
- Prof. Dr. Ir. Sutanto Soehodo, M. Eng
- Prof. Dr. Ir. Tommy Ilyas, M.Eng
- Prof. Dr. Ir. Irwan Katili, DEA
- Prof. Dr. Ir. I Made Kartika, Dipl. Ing.
- Prof. Dr. Ir. Raldi Artono Koestoeer
- Prof. Dr. Ir. Bambang Sugiarito, M.Eng
- Prof. Dr. Ir. Yanuar, M.Eng
- Prof. Dr. Ir. Tresna P. Soemardi
- Prof. Dr. Ir. Budiarsa, M.Eng
- Prof. Dr. Ir. Yulianto S. Nugroho, M.Sc
- Prof. Dr.-Ing. Nandy Putra
- Prof. Dr. Ir. Djoko Hartanto, M.Sc
- Prof. Dr. Ir. Dadang Gunawan, M.Eng
- Prof. Dr. Ir. Bagio Budiardjo, M.Sc
- Prof. Dr. Ir. Eko Tjipto Rahardjo, M.Sc
- Prof. Dr. Ir. Harry Sudibyo
- Prof. Ir. Rinaldy Dalimi, M.Sc., Ph.D
- Prof. Dr. Ir. Rudy Setiabudy, DEA
- Prof. Dr. Ir. Iwa Garniwa, MK., MT
- Prof. Dr. Ir. Muhammad Idrus Alhamid
- Prof. Dr.-Ing. Ir. Bambang Suharno
- Prof. Dr. Ir. Bondan T. Sofyan, M.Si
- Prof. Ir. Triatno Yudo Harjoko, M.Sc., Ph.D
- Prof. Dr. Ir. Abimanyu Takdir Alamsyah, MS
- Prof. Dr. Ir. Widodo Wahyu P, DEA
- Prof. Dr. Ir. M. Nasikin, M.Eng
- Prof. Dr. Ir. Anondho W., M.Eng
- Prof. Dr. Ir. Settjo Bismo, DEA
- Prof. Dr. Ir. Slamet, M.T
- Prof. Dr. Ir. T. Yuri M. Zagloel, M.Eng.Sc
- Prof. Dr. Ir. Yusuf Latief, MT
- Prof. Dr. Ir. Dedi Priadi, DEA
- Prof. Dr. Ir. Harinaldi, M.Eng
- Prof. Dr. Ir. Djoko M Hartono, SE., M.Eng
- Prof. Dr. Ir. Muhammad Anis, M.Met
- Prof. Dr. Ir. Isti Surjandari Prajitno, MT., MA., Ph.D
- Prof. Dr. Ir. Danardono Agus S, DEA
- Prof. Dr. Ir. Nji Raden Poespawati,MT
- Prof. Dr. Ir. A. Herman Yuwono, M.Phil.Eng
- Prof. Dr. Kemas Ridwan Kurniawan, ST., M.Sc
INTERNATIONAL ADJUNCT PROFESSOR

Prof. Dr. Fumihiko Nishio, fnishio@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Snow and Ice), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.

Prof. Dr. Josaphat Tetuko Sri Sumantyo, jtetukoiss@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Microwave Remote Sensing), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.

Prof. Dr. James-Holm Kennedy, jhk@pixi.com (Electronic & optical beam management devices, micromechanical sensors, chemical & biochemical sensors, novel electronic devices, force sensors, gas sensors, magnetic sensors, optical sensors.), University of Hawaii, USA.

Prof. Dr. Ing. Axel Hunger, axel.hunger@uni-due.de (Adaptive e-Learning, adaptive instructional systems, e-course and its applications, pedagogical analyses of on-line course), University of Duisburg Essen, Germany.

Prof. Dr. Koichi Ito (Printed Antenna, Small Antenna, Medical Application of Antenna, Evaluation of Mutual Influence between Human Body and Electromagnetic Radiations), Chiba University, Japan.

Prof. Masaaki Nagatsu, tmnagat@ipc.shizuoka.ac.jp, (Plasma Science and Technology) Research Institute of Electronics, Shizuoka University

Prof. Michiharu Tabe, tabe.michiharu@shizuoka.ac.jp, (Nano Devices) Research Institute of Electronics, Shizuoka University

Prof. Hiroshi Inokawa, inokawa06@rie.shizuoka.ac.jp, (Nano Devices), Research Institute of Electronics, Shizuoka University

Prof. Hidenori Mimura, mimura.hidenori@shizuoka.ac.jp, (Vacuum Electron Devices) Research Institute of Electronics, Shizuoka University

Prof. Chit Chiow (Andy) Tan, School of Mechanical, Manufacturing and Medical Engineering, Queensland University of Technology, Australia, Mechanical Engineering

Prof. Kozo Obara, Dept. of Nanostructure and Advanced Materials, Kagoshima University, Japan, Nanomaterial dan Energi

Prof. Freddy Y.C. Boey, Nanyang Technological University, Singapore, Nanomaterial dan Biomedical Engineering

Prof. Kyoo-Ho Kim, Dr.Eng, School of Material Science and Engineering, Yeungnam University, Korea, Nanomaterial dan Energi

Prof. Bernard Cambou, Ecole Centrale de Lyon, France, INRETS (French National Institute for Transport and Safety Engineering), Transport and Safety

Prof. Chia-Fen Chi, Dept. of Industrial Engineering, National Taiwan University Science and Technology, Industrial Management

Prof. Dr. Katsuhiko Takahashi, Dept. of Artificial Complex Systems Engineering, Hiroshima University, Japan, Artificial Complex System Engineering

Prof. Martin Betts, Faculty of Built Environment and Engineering, Queensland University of Technology, Australia.

Prof. L. P. Lighart (Emeritus), Delft University of Technology, Dutch

Prof. Dr. Uwe Lahl
1.4. Academic Programs at FTUI

FTUI consists of seven Departments and twelve Undergraduate Study Programs:

(1) Civil Engineering (7) Metallurgy & Materials Engineering
(2) Environmental Engineering (8) Architecture
(3) Mechanical Engineering (9) Interior Architecture
(4) Marine Engineering (10) Chemical Engineering
(5) Electrical Engineering (11) Bioprocess Engineering
(6) Computer Engineering (12) Industrial Engineering

Seven Master Programs:

(1) Civil Engineering (5) Architecture
(2) Mechanical Engineering (6) Chemical Engineering
(3) Electrical Engineering (7) Industrial Engineering
(4) Metallurgy and Material Engineering

And seven Doctoral Programs:

(1) Civil Engineering (5) Architecture
(2) Mechanical Engineering (6) Chemical Engineering
(3) Electrical Engineering (7) Industrial Engineering
(4) Metallurgy and Material Engineering

And one Professional Program for Architect

Accreditation of FTUI Academic Programs

The National Board of Accreditation for Higher Education (BAN-PT) has awarded the following accreditation level for all study program in the Faculty of Engineering:

For Bachelor Programs:

Civil Engineering : A Industrial Engineering : A
Mechanical Engineering : A Naval Architecture & Marine Engineering : A
Electrical Engineering : A Computer Engineering : A
Metallurgy & Material Engineering : A Environmental Engineering : A
Architecture : A Architecture Interior : A
Chemical Engineering : A Bioprocess Engineering : A

Accreditation for Master Program is as follows:

Civil Engineering : A Architecture : A
Mechanical Engineering : A Chemical Engineering : A
Electrical Engineering : A Industrial Engineering : B
Metallurgy and Materials Engineering : A

Accreditation for Doctoral Program is as follows:
Civil Engineering : A
Electrical Engineering : A
Metallurgy and Materials Engineering : A

In 2008 & 2010, the Departments of Mechanical Engineering, Civil Engineering, Electrical Engineering, Metallurgy and Materials Engineering, Architecture and Chemical Engineering have been accredited by the Asean University Network (AUN); and also In 2013 Departments of Industrial Engineering have been accredited by the ASEAN University Network (AUN).

International Undergraduate Program (Double-Degree & Single Degree)

Since 1999, Faculty of Engineering has established an international undergraduate program in engineering (double-degree program) with the following renowned Australian higher education institutions: Queensland University of Technology (QUT), Monash University, Curtin University of Technology, The University of Queensland and The University of Sydney. Graduates from this international undergraduate program will be awarded a Bachelor of Engineering degree from our Australian University partner and a Sarjana Teknik degree from Faculty of Engineering UI when they return to FTUI and fulfill certain requirements. The double degree cooperation with QUT involves the study programs Civil Engineering, Mechanical Engineering, Electrical Engineering and Architecture. The double degree cooperation with Monash University involves the study programs Metallurgy & Material Engineering and Chemical Engineering. The double degree cooperation with Curtin University involves the study programs Chemical Engineering, Architecture, Metallurgy & Material Engineering and Electrical Engineering, with other study programs to follow. The double degree cooperation with the University of Queensland involves the study programs Mechanical Engineering, Chemical Engineering and Metallurgy & Material Engineering. This international undergraduate program provides high quality engineering education in the international level. Since 2011, students will also have a choice to continue their final two years at FTUI as part of the newly opened Single Degree International Program.

Since 2011, students will also have a choice to continue their final two years at FTUI as part of the newly opened Single Degree International Program. The undergraduate international single degree program was launched in 2011 as a result of an increasing demand to provide an international quality education locally. Students in this program are not obligated to continue their last four semester of study at one of our partner universities like their classmates who wishes to pursue a double degree. However, students of single degree program are required to do Study Abroad for a period between one to four semesters at an overseas university. The aims are to widen the international perspective of the students, to have experience to study in an overseas university, to enhance language capability, to enhance cross-cultural adaptability. Study Abroad can be conducted during regular semesters.

Undergraduate Parallel Class Program (Diploma Track) (Extension Program)

The Undergraduate Extension Program in FTUI was initiated in 1993. At the beginning the program was held for only four Study Programs (Civil, Mechanical, Electrical and Metallurgy Engineering). In 1995 the program was also opened for the Chemical Engineering Study Program (Gas and Petrochemical Engineering) followed by Industrial Engineering in 2002. Starting in 2011, the Undergraduate Extension Program of FTUI was cancelled. However, the faculty still give the opportunity for future FTUI students that are graduates from Diploma Program who wishes to continue their study into the FTUI Undergraduate Program. Students are now able to apply through the Undergraduate Parallel Program (Diploma Track) by using the Credit Transferred System. The number of credits acknowledge will be decided by their respective Departments.

The Undergraduate Parallel Program is a full time program where students are expected to be a full time students in campus. This is due to the schedule set for the program which started from the morning period and well into the afternoon. Currently there are six Study Programs available to choose from: Civil Engineering, Mechanical Engineering, Electrical Engineering, Metallurgy & Material Engineering, Chemical Engineering, Industrial Engineering.
1.5. DEPARTMENT OF ELECTRICAL ENGINEERING

GENERAL
The Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia was established at the same time with the establishment of Faculty of Engineering on July 17th, 1964. Even though the classes had been started since October 17th, 1964. At the beginning of the establishment, the Department of Electrical Engineering was named as “Jurusan Listrik” consisted of two fields of studies: Electrical Power and Electronics & Telecommunication. Since 1984, “Jurusan Listrik” has been changed to “Jurusan Elektro”, which has been named again as The Department of Electrical Engineering in 2004. Initially there are five streams available in this department, namely: (1) Electrical Power Engineering, (2) Electronics Engineering, (3) Telecommunication Engineering, (4) Control Engineering, (5) Computer Engineering. Since 2006, computer engineering stream became a new study program: Computer Engineering Study Program (CESP) in the Department. In 2016, a new stream namely Biomedical Engineering is officially established.

THE OBJECTIVE OF EDUCATION
The objective of the Electrical Engineering education is to produce graduate who is able to propose solutions to electrical engineering related problems based on professional ethics.

VISION AND MISSION
The department has the vision to become a high standard of excellence in education and research in the field of electrical engineering. In order to achieve such vision, the department has defined its mission to produce Electrical Engineering graduates who are able to compete beyond the national labor market. The graduates will be capable to respond to the vast growing engineering technology development though the support of excellent educational process, excellent management and organization, international standard of competence of the teaching staff and international reputation in specific research activities.

THE TARGETS
Bachelor of Electrical Engineering
1. Able to design hardware.
2. Able to design software.
3. Able to handle general issues and specific in electrical engineering.
4. Able to apply the basic principles of mathematics, physics, and statistics in solving electrical engineering.
5. Capable of critical thinking, creative, and innovative and have the intellectual curiosity to solve problems at the level of the individual and the group.
6. Able to identify varieties of entrepreneurial efforts that are characterized by innovation and self-reliance based on ethics.
7. Able to use the language both spoken and written in the Bahasa Indonesia and English for academic or non-academic activities.
8. Able to provide alternative solutions to problems that arise in the environment, society, nation, and country.
9. Able to utilize information communication technology (ICT).

Bachelor of Computer Engineering
1. Able to design system, component, and process based on needs in a variety of areas of life.
2. Able to design information networks.
3. Able to design a computer-based system.
4. Able to make algorithm and implement it into programming.
5. Able to apply the basic principles of mathematics, physics, and statistics in solving computer engineering.
6. Able to use the language both spoken and written in the Bahasa Indonesia and English for academic or non-academic activities.
7. Have integrity and are capable of critical thinking, creative, and innovative and have the intellectual curiosity to solve problems at the level of the individual and the group.
8. Able to utilize information technology communication.
9. Able to provide alternative solutions to problems that arise in the environment, society, nation, and country.
10. Able to identify varieties of entrepreneurial efforts that are characterized by innovation and self-reliance based on ethics.

Master of Electrical Engineering

1. Able to model electrical engineering system into mathematical equations
2. Able to formulate the problem solving in electrical engineering with the proper research methods
3. Able to produce innovative independent scientific work
4. Able to apply concepts of professional management in the field of electrical engineering

ELECTRICAL ENGINEERING STAFFS

Head of Department:
 Ir. Gunawan Wibisono, M.Sc., Ph.D
Head of Electrical Engineering Study Program
 Ir. Gunawan Wibisono, M.Sc., Ph.D
Head of Computer Engineering Study Program
 Dr. Muhammad Salman, ST., MIT.
Vice Head of Department:
 Dr.Eng. Arief Udhiarto, S.T., M.T., IPM

HEAD OF LABORATORY
Head of High Voltage and Electrical Measurement Laboratory:
 Ir. Amien Rahardjo, MT.
Head of Electrical Power Conversion Laboratory:
 Ir. I Made Ardita, MT.
Head of Electrical Power System Laboratory:
 Prof. Dr. Ir. Iwa Garniwa M. K., M.T.
Head of Electronics Laboratory:
 Dr. Agus Santoso Tamsir, MT
Head of Control Laboratory:
 Dr. Ir. Feri Yusivar, M.Eng.
Head of Digital Laboratory:
 Prima Dewi Purnamasari, ST., MT., M.Sc.
Head of Telecommunication Laboratory:
 Dr. Fitri Yuli Zulkifli, M.Sc, IPM
Head of Optoelectronics Laboratory:
 Dr. Ir. Retno Wigajatri Purnamaningsih, MT.
Head of Computer Networks Laboratory:
 Dr. Muhammad Salman, ST., MIT.
MAILING ADDRESS
Departemen Teknik Elektro FTUI
Kampus Baru UI, Depok 16424.
Tel. (021) 7270078
Fax. (021) 7270077
e-mail: elektro@ee.ui.ac.id
http://www.ee.ui.ac.id

BOARD OF PROFESSORS
Prof. Dr. Ir. Harry Sudibyo S, DEA., harisudi@ee.ui.ac.id (Ir., Universitas Indonesia, 1979; DEA., Univ. Paris VI, 1984; Dr. Ing., Univ. Paris VI, France, 1987; Prof., UI, 2007) Microelectronics & VLSI design.

Prof. Ir. Rinaldy Dalimi, M.Sc, Ph.D., rinaldy@ee.ui.ac.id (Ir., Universitas Indonesia, 1980; M.Sc., Michigan State Univ., USA, 1989; Ph.D., Virginia Tech., USA, 1992; Prof., UI, 2007) Electrical power system analysis, energy management.

Prof. Dr. Ir. Eko Tjipto Rahardjo, M.Sc., eko@ee.ui.ac.id (Ir., Universitas Indonesia, 1981; M.Sc., University of Hawaii, USA, 1989; Ph.D, Saitama University, Japan, 1996; Prof., UI, 2005) Electromagnetic, antenna and wave propagation, microwave.

Prof. Dr. Drs. Benyamin Kusumoputro, M.Eng. kusumo@ee.ui.ac.id (Drs., Fisika ITB, 1981; M.Eng., Tokyo Inst. Tech., Japan, 1984; Dr., Tokyo Inst. Tech., Japan, 1993; Prof., UI, 2004) Computation intelligence, robotics.

Prof. Dr. Ir. Rudy Setiabudy, DEA, rudy@ee.ui.ac.id (Ir., Universitas Indonesia, 1982; DEA, INPG Grenoble, France, 1987; Dr., Montpellier II USTL, France, 1991; Prof., UI, 2008) Electrical material technology, electrical measurement.

Prof. Dr. Ir. Dadang Gunawan, M.Eng, guna@ee.ui.ac.id (Ir., Universitas Indonesia, 1983; M.Eng., Keio University, Japan, 1989; Ph.D., Tasmania University, Australia, 1995; Prof., UI, 2004) Signal processing and compression, multimedia communication.

Prof. Dr. Ir. NR. Poespawati, MT.,IPM pupu@ee.ui.ac.id (Ir., Universitas Indonesia, 1985, MT., Universitas Indonesia, 1997, Dr., Elektro FTUI, 2004; Prof., UI, 2008) Solar cell devices, laser.

Prof. Dr. Ir. Iwa Garniwa, MK., MT., iwa@ee.ui.ac.id (Ir., Universitas Indonesia, 1987; MT., Universitas Indonesia, 1998; Dr., Elektro FTUI, 2003; Prof. , UI, 2009) High voltage and current, electrical materials.

Prof. Dr.-Ing. Ir. Kalamullah Ramli, M.Eng., k.ramli@ee.ui.ac.id (Ir., Universitas Indonesia, 1993; M.Eng., Univ. of Wollongong, Australia, 1997; Dr.-Ing, Univ. Duisburg-Essen, Germany, 2003, Prof., UI, 2009) Embedded systems.

INTERNATIONAL ADJUNCT PROFESSORS
Prof. Dr. Fumihiko Nishio, fnishio@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Snow and Ice), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.

Prof. Josaphat Tetuko Sri Sumantyo, Ph.D, jtetukoss@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Microwave Remote Sensing), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.

Prof. Dr. James-Holm Kennedy, jhk@pixi.com (Electronic & optical beam management devices, micromechanical sensors, chemical & biochemical sensors, novel electronic devices, force sensors, gas sensors, magnetic sensors, optical sensors.), University of Hawaii, USA.

Prof. Dr.-Ing. Axel Hunger, axel.hunger@uni-due.de (Adaptive e-Learning, adaptive instructional systems, e-course and its applications, pedagogical analyses of on-line course), University of
Duisburg Essen, Germany.

Prof. Dr. Koichi Ito (Printed Antenna, Small Antenna, Medical Application of Antenna, Evaluation of Mutual Influence between Human Body and Electromagnetic Radiations), Chiba University, Japan.

Prof. Masaaki Nagatsu, tmnagat@ipc.shizuoka.ac.jp, (Plasma Science and Technology) Research Institute of Electronics, Shizuoka University

Prof. Michiharu Tabe, tabe.michiharu@shizuoka.ac.jp, (Nano Devices) Research Institute of Electronics, Shizuoka University

Prof. Hiroshi Inokawa, inokawa06@rie.shizuoka.ac.jp, (Nano Devices), Research Institute of Electronics, Shizuoka University

Prof. Hidenori Mimura, mimura.hidenori@shizuoka.ac.jp, (Vacuum Electron Devices) Research Institute of Electronics, Shizuoka University

FULL-TIME FACULTY

Abdul Halim, ahalim@ee.ui.ac.id (Bachelor, Keio Univ., Japan, 1995; M.Eng., Keio University, Japan, 1997; D.Eng., Tokyo Institute of Technology, Japan, 2000) Control system engineering, power system engineering, computer simulation, intelligent engineering, applied mathematics.

Abdul Muis, muis@ee.ui.ac.id (ST., Universitas Indonesia, 1998; M.Eng., Keio Univ., 2005; Dr., Keio Univ., Japan, 2007) Robotics, control software engineering.

Agus Rustamadji Utomo (Ir., Universitas Indonesia, 1985; MT., Universitas Indonesia, 2000) Electrical power & energy system.

Agus Santoso Tamsir, tamsir@ee.ui.ac.id (Ir., Universitas Indonesia, 1987; MT., Universitas Indonesia, 1996; Dr., UKM, Malaysia 2008) Optical communication, III-V compound devices, MEMS.

Aji Nur Widyanto, aji.n.widyanto@gmail.com (ST., Universitas Indonesia, 2004; MT., Universitas Indonesia, 2009) Electrical power measurement.

Ajib Setyo Arifin, ajib@ee.ui.ac.id (ST., Universitas Indonesia, 2009; MT., Universitas Indonesia, 2011) Telecommunication, information theory, wireless sensor network.

Amien Rahardjo, amien@ee.ui.ac.id (Ir., Universitas Indonesia, 1984; MT., Universitas Indonesia, 2004) Electromagnetic, electric power energy conversion.

Anak Agung Putri Ratna, ratna@eng.ui.ac.id (Ir., Universitas Indonesia, 1986; M.Eng., Waseda University, Japan, 1990; Dr., FTUI, 2006) Computer network, web-based information system.

Arief Udhiarto, arief@ee.ui.ac.id (ST., Universitas Indonesia, 2001; MT., Universitas Indonesia, 2004; Dr.Eng, Shizuoka University Japan) Nanoelectronics Devices, Organic Electronic Devices

Aries Subiantoro, biantoro@ee.ui.ac.id (ST., Universitas Indonesia, 1995; M.Sc. Univ. Karlsruhe, Germany, 2001; Dr. UI, 2013) Expert control system, system identification.

Basari, basyarie@ee.ui.ac.id (ST., Universitas Indonesia, 2002; M.Eng., Chiba University, 2008; D.Eng., Chiba Univ., Japan, 2011) Antenna for Biomedical applications (Communications, Imaging Treatment), Microwave Engineering, Mobile Satellite Communications.

Budi Sudiarjo, budi@ee.ui.ac.id (ST., Universitas Indonesia, 2001; MT., Universitas Indonesia, 2005; Dr, UDE Germany, 2017) High voltage and current, electrical measurement)

Catur Apriono, catur@eng.ui.ac.id (ST., Universitas Indonesia, 2009; MT., Universitas Indonesia, 2011, Ph.D., Shizuoka University, Japan, 2015, Dr.,Universitas Indonesia, 2016) Antenna, microwave, terahertz technology.

Chairul Hudaya, c hudaya@eng.ui.ac.id (ST., Universitas Indonesia, 2006; M.Eng., Seoul National University, 2009; Ph.D., Korea Institute of Science and Technology - University of Science and Technology, Korea, 2016; IPM, 2016) Electric materials, electrical power systems, energy storage and conversion, energy management.

Dodi Sudiana, dodi.sudiana@ui.ac.id (Ir., Universitas Indonesia, 1990; M.Eng., Keio University, Japan, 1996; D.Eng., Chiba Univ., Japan, 2005) Image processing, remote sensing.

Eko Adhi Setiawan, ekoas@ee.ui.ac.id (Ir., Elektro Trisakti University; MT, Universitas Indonesia, 2000; Dr.-Ing., Universität Kassel, Germany, 2007) Virtual power plant, electrical power supply, electrical energy conversion.

F. Astha Ekadyanto, faasthae@yahoo.com (ST., Universitas Indonesia, 1995; M.Sc., Univ. Duisburg Essen, Germany, 2005) Distributed Peer-to-Peer Systems, Content/Data Centric Network, Cyber Physical Systems.

Feri Yusivar, yusivar@ee.ui.ac.id (Ir., Universitas Indonesia, 1992; M.Eng. Waseda University, Japan, 2000; D.Eng., Waseda University, Japan, 2003) Control systems, motor control.
Fitri Yuli Zulkifli, yuli@eng.ui.ac.id (ST., Universitas Indonesia, 1997; M.Sc., Univ. Karlsruhe, Germany, 2002, Dr., Universitas Indonesia, 2008) Antenna and microwave communications.

Gunawan Wibisono, gunawan@ee.ui.ac.id (Ir., Universitas Indonesia, 1990; M.Eng., Keio Univ., Ph.D. Keio Univ., Japan, 1995) Coding & wireless communications, optical communications, telecommunication regulation.

I Gde Dharma Nugraha, i.gde@eng.ui.ac.id (ST., Universitas Indonesia, 2008; MT., Universitas Indonesia, 2009) Embedded Systems Web Application Technology, Database optimization

I Made Ardita, made@eng.ui.ac.id (Ir., Universitas Indonesia, 1985; MT., Universitas Indonesia, 2000) Electro-mechanical conversion, power system planning.

Mia Rizkinia, mia@ee.ui.ac.id (ST., Universitas Indonesia, 2008; MT., Universitas Indonesia, 2011) Image processing, remote sensing.

Muhammad Suryanegara, suryanegara@gmail.com, m.suryanegara@ui.ac.id (ST., Universitas Indonesia, 2003; M.Sc., UCL, UK, 2004; Dr., Tokyo Institute of Technology, Japan, 2011; IPM, 2016) Telecommunication, Mobile Wireless, Technological Innovation and Policy.

Muhammad Asvial, asvial@ee.ui.ac.id (Ir., Universitas Indonesia, 1993; M.Eng., Keio Univ., Japan, 1998; Ph.D., Surrey Univ. UK, 2003) Spread spectrum, mobile communication, multimedia system, satellite communication.

Muhammad Salman, salman@ee.ui.ac.id (ST., Universitas Indonesia, 1995; M.Info Tech, Monash University, Australia, 2002; Dr. Universitas Indonesia, 2015) Computer networks, multimedia.

Prima Dewi Purnamasari, prima.dp@ui.ac.id (ST., Universitas Indonesia, 2006; MT., Universitas Indonesia, 2009; M.Sc., Univ. Duisburg Essen, Germany, 2008; Dr., Universitas Indonesia, 2017) Distributed system, computer supported collaborative work, EEG Pattern Recognition

Purnomo Sidi Priambodo, pspriambodo@ee.ui.ac.id (Ir., Elektro UGM, 1987; M.Sc., Oklahoma State Univ., 1996; Dr., Texas-Arlington, USA, 2003) Semiconductor laser, photonic, physics.

Retno Wigajatri Purnamaningsih, retno@ee.ui.ac.id (Ir., ITB, 1985; MT., Opto PPSUI, 1992; Dr., Universitas Indonesia, 2006) Photonic devices, Optoelectronic Sensor System

Taufiq Alif Kurniawan, taufiq.alif@ui.ac.id (ST., Universitas Indonesia 2009; M.Sc.Eng, NTUST, Taiwan, 2011) Radio frequency integrated circuit, analog integrated circuit and VLSI.

Tomy Abuzaeri, tomy@ee.ui.ac.id (ST., Universitas Indonesia 2009; M.Sc., NTUST, Taiwan, 2012; Ph.D., Shizuoka University, 2016) Thin film nano-technology, optoelectronic device, biotechnology device.

Wahidin Wahab, wahidin@ee.ui.ac.id (Ir., Universitas Indonesia, 1978; M.Sc., UMIST, 1983; PhD, UMIST, UK, 1985) Control engineering, robotics & automation.

Yan Maraden Sinaga, maradens@eng.ui.ac.id (ST., Universitas Indonesia, 2004; MT., Universitas Indonesia, 2009; M.Sc., Univ. Duisburg Essen, Germany, 2009) Computer Networks and Protocols, Artificial Intelligence, Computer Vision

BOARD OF EMIRITUS FACULTY

Prof. Dr. Ir. Djoko Hartanto, M.Sc., djoko@ee.ui.ac.id (Ir., Universitas Indonesia, 1971; M.Sc., University of Hawaii, USA, 1989; Dr., Elektro FTUI, 1993; Prof., UI, 1996) Microelectronic devices, sensor devices.

Prof. Dr. Ir. Bagjo Budiarjo, M.Sc., bbdui@ee.ui.ac.id (Ir., Universitas Indonesia, 1972; M.Sc., Ohio State Univ., USA, 1980; Dr., Elektro FTUI, 2002; Prof., UI, 2005) Computer architecture, protocol engineering, pervasive computation.

Prof. Dr. Ir. Djamhari Sirat, M.Sc., djsirat@ee.ui.ac.id (Ir., Universitas Indonesia, 1972; M.Sc., UMIST; PhD, UMIST, UK, 1985) Telecommunication regulation.

Dr. Ir. Ridwan Gunawan, M.T., ridwan@eng.ui.ac.id (Ir., Universitas Indonesia, 1978; MT., Universitas Indonesia, 1994; Dr., Universitas Indonesia, 2006) Electrical power transmission and reliability.

Dr. Uno Bintang Sudibyo, DEA uno@ee.ui.ac.id (Ir., Universitas Indonesia, 1972; DEA, INPG Grenoble, France, 1987; Dr., Univ. Montpellier II USTL, France, 1991) Electrical power conversion.

Ir. Endang Sriningsih, MT
PART-TIME FACULTY
Boma Anantasatya Adhi, S.T., M.T. (S.T., Universitas Indonesia, 2010; MT, Universitas Indonesia, 2013)

Faiz Husnayain, S.T., M.T., M.Sc. (S.T., Universitas Indonesia, 2010; MT, Universitas Indonesia, 2013; M.Sc. NTUST, 2013)

Filbert Hilman Juwono, filbert@ee.ui.ac.id (S.T., Universitas Indonesia, 2007; M.T., Universitas Indonesia, 2009) Wireless communication and signal processing for communication

Muhammad Firdaus Syawalludin Lubis, S.T., M.T. (S.T., Universitas Indonesia, 2010; M.T., Universitas Indonesia, 2013)

Ruki Harwahyu, S.T., M.T., M.Sc. (S.T., Universitas Indonesia, 2011; M.T., Universitas Indonesia, 2013; NTUST, 2013)

Victor Widiputra, S.T., M.T. (S.T., Universitas Indonesia, 2014; M.T., Universitas Indonesia, 2015)

Power System

Diyana

Alfan
2. ACADEMIC SYSTEM AND REGULATION

The educational system in the Faculty of Engineering, Universitas Indonesia refers to the prevailing system of education at Universitas Indonesia.

2.1. GENERAL

Teaching and Learning Activities
One semester is the time of the activity consisting of 16-18 weeks of lectures or other scheduled activities, including various additional activities such as 2-3 weeks of assessment activities. These teaching and learning activities are in form of lecture, lab, studio, exams, quizzes, assignments, presentations, seminars, research, practical work, industrial visits, and a thesis.

Semester Credits Units (SKS)
Education in the Faculty of Engineering, Universitas Indonesia is held in a variety of ways such as lectures, assignments (ex: calculation tasks, planning, design), practical work, seminars, lab, studio, and research for thesis writing. All educational activities that must be undertaken by each student to earn a bachelor’s degree are contained within the academic loads and measured in units of semester credit (SKS).

Semester Credit is a measurement on the learning experiences obtained by students on each semester.

One Semester Credit in lecture, responses and tutorials, includes: face to face study time for 50 (fifty) minutes per week per semester; structured learning activities with structured assignments for 60 (sixty) minutes per week per semester; and independent study session for 60 (sixty) minutes per week per semester.

One Semester Credit in seminar or other similar subjects, includes: face to face study time for 100 (one hundred) minutes per week per semester, independent study session of 70 (seventy) minutes per week per semester.

One Semester Credit in practical training, studio, workshop, on the field training, research and community services, and /or other similar subjects for 170 (one hundred and seventy) minutes per week per semester.

Activities for one semester consist of 16-18 weeks of lectures or other scheduled activities and its additional activities. Also included in the schedule are two weeks of midterm examination and another two weeks for final examination.

All educational activities must be performed by each student to earn a bachelor’s degree is an academic load of 144-145 credits divided into 8 (eight) semesters. Undergraduate students with an average study load of about 18-20 credits per semester are expected to undergo a week of minimal 18-20 hours of scheduled interaction with a lecturer, 18-20 hours of structured activities, and 18-20 hours of independent learning activities.

Subjects
Subjects in the FTUI's undergraduate curriculum are grouped into University General Subjects (12,5%), Basic Engineering Subjects (15-20%), Basic Skills Subjects (30-35%), Core Subjects (35-40%). Subjects can be categorized as compulsory subjects and electives. They can be taken across departments or across faculties.

Grade Point Average
Grade Point Average or GPA is used to evaluate students’ performance either for a particular semester in term of Indeks Prestasi Semester (IPS) or Semester Performance Index, or, cumulatively for all of the semester up to the most recent one in term of Indeks Prestasi Kumulatif (IPK) or GPA. The formula used to calculate either IPS or IPK is as follows:
The summation made by multiplying the weight of credits with a letter grade for each course, divided by the number of credits.

Semester Performance Index / Indeks Prestasi Semester (IPS)
The Semester Performance Index is calculated from all subjects taken in each semester, except for subjects with letter grade of BS, I, and TK. Achievement Index that takes into account all of the subjects for a certain semester is called the Semester Performance Index (IPS) and used to determine the maximum academic load that the student may take in the upcoming semesters.

Grade Point Average (GPA/IPK)
If the calculation involves the entire grade point value of subjects taken during the educational program period, the result of the summation is a Grade Point Average (GPA) that is used as a basis for study evaluation. Courses taken into account are the ones listed in the Study Plan Form (FRS). GPA is obtained from the summation of all subjects having a grade of C or higher from the first semester until the last semester, with the exception of subjects with letter grade of BS, I, and TK.

Academic Performance Evaluation
Assessment of academic ability is performed on an ongoing basis by assigning tasks, homework, quizzes, or exams which are given throughout the semester. For each subject, there are at least two components of assessment which may include a midterm exam (UTS) and a final exam (UAS). A student will be assessed on his academic ability if he meets the following requirements:
- The courses taken have been registered and verified by Academic Advisor during the academic registration period.
- The student has fulfilled all of the administrative and academic requirements for the ongoing semester.
- The student has completed all of the required academic assignments.

Grades
At the end of each semester, students may download Semester Grade Record as a report on their academic performance from SIAK NG. Assessment of study efficacy is carried out using letters and academic load in accordance with Table 2.1.

Table 2.1. Grade Value and Points

<table>
<thead>
<tr>
<th>Grade Value</th>
<th>Marks</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>85 - 100</td>
<td>4,00</td>
</tr>
<tr>
<td>A-</td>
<td>80 - < 85</td>
<td>3,70</td>
</tr>
<tr>
<td>B+</td>
<td>75 - < 80</td>
<td>3,30</td>
</tr>
<tr>
<td>B</td>
<td>70 - < 75</td>
<td>3,00</td>
</tr>
<tr>
<td>B-</td>
<td>65 - < 70</td>
<td>2,70</td>
</tr>
<tr>
<td>C+</td>
<td>60 - < 65</td>
<td>2,30</td>
</tr>
<tr>
<td>C</td>
<td>55 - < 60</td>
<td>2,00</td>
</tr>
<tr>
<td>D</td>
<td>40 - < 55</td>
<td>1,00</td>
</tr>
<tr>
<td>E</td>
<td>0 - < 40</td>
<td>0,00</td>
</tr>
</tbody>
</table>
The highest grade is A with grade point of 4.00 and the minimum passing grade of a course is C with grade point of 2.00. The instructor may assign the 'Incomplete' (I) grade if the student has not made a reasonable attempt to complete major session assignments, laboratory projects and the lecturer has made a reasonable effort to inform the student as early as possible that an important part of session work is incomplete. The 'I' mark should be changed to other grade within 1 month, otherwise, it will be automatically changed to 'E' grade. The "I" mark is given for no attendance in exam. The "BS" mark is given for Special Lecture (such as Internship, Seminar & Final Project) that has not been completed. These BS courses are not taken into account in the calculation of Semester Study Unit, IPS and GPA.

Length of Study and Academic Load

Undergraduate Program
The academic load a student can take is determined by the Academic Counselor based on the previous Semester Performance Index (IPS) as stated in the Study Plan Form (FRS). Students must take the entire allocated credits of the entire courses in the first and second semester. Academic Load for Undergraduate Program is 144 (one hundred and forty four) credits including final assignment and maximum academic load is 160 (one hundred and sixty) credits including final assignment and can be completed in minimum 7 (seven) semesters and maximum of 12 (twelve) semesters.

As for the second semester, these following rules apply:

- For students obtaining an IPS of 2.00 or less, they must take all credits load allocated for the second semester according to the structure of the applicable curriculum.
- For students obtaining an IPS of 2.00 or more, the maximum credits that can be taken follow that of the provisions in the Maximum Credit Load Table.
- From the 3rd semester onwards, the maximum credit loads that may be taken is determined by IPS of the previous semester and follow provisions in Maximum Credit Load as shown in Table 2.2 with respect to course prerequisites (if any). If necessary, Academic Counselor (PA) can add a maximum of 2 credits more than the provision in the Table through the approval of the Vice Dean.

Table 2.2. Maximum study load in a semester for undergraduate program

<table>
<thead>
<tr>
<th>IPS</th>
<th>Maximum SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2,00</td>
<td>12</td>
</tr>
<tr>
<td>2,00 - 2,49</td>
<td>15</td>
</tr>
<tr>
<td>2,50 - 2,99</td>
<td>18</td>
</tr>
<tr>
<td>3,00 - 3,49</td>
<td>21</td>
</tr>
<tr>
<td>3,50 - 4,00</td>
<td>24</td>
</tr>
</tbody>
</table>

Master Program
Academic load in the FTUI’s Master Program curriculum is 40-44 credits after finishing the undergraduate program with the following study period:

a. For Regular Master Program, the length of study is scheduled for 4 (four) semesters and can be completed in at least 2 (two) semesters and a maximum of 6 (six) semesters.

b. For Non-Regular Master Program, the length of study is scheduled for 5 (five) semesters and can be completed in at least 3 (three) semesters and a maximum of 7 (seven) semesters.

Academic Load for each semester is set by the Academic counselor (PA) based on the IPS of the last semester as stated in the Semester Grade list (DNS). Provisions on the academic load are as follows:

- A semester’s academic load is registered by a student as he carries out online registration according to the pre-determined schedule. Students are required to take all subjects as allocated in the first semester curriculum.
- For students with less than a 2,5 IPS, a provision stating that the number of credits taken for the following semester does not exceed 9 credits is applicable.
- The maximum number of credits that can be taken on Master Program is 16 (sixteen) credits (for Regular Master Program) and 12 (twelve credits (for Non Regular Master Program) per semester.

Exemption from the provisions of academic load should be with the permission of the Vice Dean.
Matriculation for Master

The Matriculation Program is aimed to synchronize the students’ ability to achieve the minimum requirements to continue in the Master Program in the Faculty of Engineering Universitas Indonesia. Matriculation is done by taking classes of subjects required by each Faculty/Study Program within the Curriculum of Undergraduate Program. The allowed credit load for this Matriculation program is 12 (twelve) credits that can be completed in 1 (one) or 2 (two) semesters. Students are allowed to continue their study in the Master Program only if they passed all Matriculation subjects within the maximum of 2 (two) semesters allowed with a Matriculation GPA of 3.00 (three point zero).

Doctoral Program

Academic load in the FTUI’s Doctoral Program curriculum is 48-52 credits after finishing the Master Program, including 40 credits of research activities. A semester’s academic load is registered by the student through online academic registration during a pre-determined schedule. New students are required to take all subjects as allocated in the curriculum for the first and second semesters. Students must re-take research courses with a BS grade from previous semesters. Student’s Academic Load for each semester is established by the Academic Advisor (PA) or the doctorate Promoter based on a discussion with the student from the doctoral program.

The length of doctoral program for all scheduled courses is 6 (six) semesters and in its implementation can be completed in at least 4 (four) semesters and maximum of 10 (ten) semesters. Students in the Doctoral Program may be granted an extension of study period up to a maximum of 2 (two) semesters if their study time have never been extended before, have achieved a minimum grade of B for Research Result Examination, and obtained a recommendation from their promoter and a guarantee that they will complete their study within the granted extended study period. The proposal for such extension is regulated through a Rector’s decree based on proposal from the Dean/ Director of School.

Undergraduate Thesis / Final Project

Undergraduate Thesis is mandatory course for undergraduate students of Faculty of Engineering UI. The course is the application of science that has been obtained in accordance with the basic scientific disciplines that the student has studied, in the form of scientific paper, engineering design, assembly or models and accessories. Undergraduate thesis is mandatory to complete the requirements in order to earn a degree in the field of engineering. Undergraduate Thesis status is equivalent to other skill courses is tailored in accordance with the scope of each study program. Undergraduate Thesis must meet certain requirements, both academic and administrative requirements. Students are allowed to start composing undergraduate thesis if:

- The Undergraduate Thesis has been registered in the Study Plan Form [FRS]
- Students have obtained a minimum of 114 credits with a minimum of grade of C and have passed all mandatory courses both in the faculty and university level.
- Students have fulfilled all prerequisites set by the Study Program.

Undergraduate Thesis can be taken in both odd and even semester in the running academic year. On SIAK NG system, student must fill out the name of his thesis supervisor and the title of thesis which will be verified by the Vice Head of the Department. At the end of the semester, the Undergraduate Thesis supervisor will submit the student’s thesis's grade to SIAK NG and change the title of undergraduated thesis (if necessary). The completed undergraduated thesis must be submitted in the form of hard-covered book and CD within the pre-determined time limit. The undergraduate thesis must first be assessed in an undergraduated thesis examination by the supervisor and examiners assigned by the Head of the Department.

Thesis (Master Program)

Thesis is a report of the results of research activities in the form of scientific writing. The thesis topic should be a summary of the subject matter that can be scientifically studied on the basis of the theory and use of certain methods. Thesis should be written in Bahasa with an English abstract. For Master program students who are given the opportunity to conduct research and thesis preparation abroad, they are allowed to write thesis in English with abstracts in the Bahasa, while still following the appropriate format stated in the Final Project Writing Guideline of Universitas Indonesia. Exemption of this rule applies only to study programs that hold a joint collaboration with university’s abroad as stated in the charter of cooperation.
Requirements to start making Thesis are:

- Thesis has been registered in Study Plan Form [FRS] in every semester
- Students have passed courses with a load of 20 credits with a GPA ≥ 3.00
- Head of the study program has set lecturer's name as a thesis supervisor.

Students are responsible for all thesis research costs. Students can actively meet with any of their lecturers as a potential supervisor, to request a thesis topic. In addition, in middle of the second semester, Head of the Study Program can start announcing thesis topics from which the students of the Master program could chose from to prepare the thesis proposal in the form of seminars. The Head of the Study Program announces a list of thesis supervisor who are assigned to guide the students in writing and finishing the approved topic. Thesis examination committee consists of Head of the committee, a minimum 3 or a maximum 5 examiners including the thesis supervisor. Responsible for the implementation of the thesis is the thesis coordinator in each department. Thesis counseling should be carried out with maximum of two people, Supervisor I and Supervisor II. Supervisor I should have a PhD or Master degree with a minimum of 5 years teaching experience and have expertise relevant to the student's thesis. Supervisor II should at least have a minimal master degree & have expertise relevant to the student’s thesis.

Thesis can be submitted for a thesis examination when the thesis has met the following academic requirements:

- Thesis has been registered in Study Plan Form [FRS] in said semester
- The thesis has been declared eligible for examination by the Thesis Advisor
- Students have passed seminar examination and have met the requirements for thesis examination set by the study program.
- The thesis has been declared eligible for examination must be submitted to the Department to be listed in the examination schedule determined by the Head of the Study Program.
- Uploading of Summary of Undergraduate Thesis/Thesis/Dissertation

Dissertation

Dissertation preparation are done under the guidance and evaluation of Promoter with the following qualification: Full Time University Lecture; a Professor or Doctor with an academic title of Associate Professor; Have a relevant expertise with the Dissertation Topic; within the last 5 (five) years have written at least 1 (one) scientific paper published in an accredited national journal or a reputable international journal or 1 (one) other similar scientific work acknowledge by a team of expert appointed by the Academic Senate of Universitas Indonesia. Promoter may be assisted by a maximum of 2 (tow) co-promoters from within the university, partner universities, or other institutions in cooperation with the promoter team. Co-promoter must have the following qualification: a full time or a part time lecture or an expert from other institution; hold a minimum title of Doctor/Ph.D with an academic title of a minimum Senior Lecture; Have a relevant expertise with the Dissertation Topic.

Internship

Internship is an out-of-campus activity to apply the scientific knowledge in a real work situation. Requirements for Internship is set up by each department and is part of the total 144 SKS. Students must find the place to carry out their internship themselves and departments will help by issuing a formal letter requesting the on-the-job training position.

For the undergraduate double degree program, students are required to complete internship when they are in the partner universities. For example in Australia internship is one of the requirements set by the Institute of Engineers Australia (IEAust) to obtain accredited B.E. (Bachelor of Engineering) degree. Internship is a good opportunity for students to apply their skills and build networks in the industry. It is strongly suggested that students should do their Internship in partner universities. However, if they cannot do so it in partner universities, they are allowed to do it in Indonesia with prior permission from partner university.

Supplementary Exam

Students are allowed to take a Supplementary Examination for Mid Term and Final Examination the following condition: Sick, Grievance; or representing Universitas Indonesia in a Competition. Students with Sickness excuse are obliged to submit the application for Supplementary Exam signed by their parents/guardian and a Medical Certificate from Doctor or Hospital where they was treated; Students with Grievance or death in the family (death to Father, Mother, Older or Younger Siblings) are obliged to submit the application for Supplementary Exam signed by their parents/guardian; Students representing...
Universitas Indonesia in a Competition are obliged to submit a Letter of Assignments/ Letter of Reference stating the Competition which they represented UI in. The Supplementary Exam can only be done by a written consent from the Vice Dean for Academic, Research, and Student Affairs of Faculty of Engineering Universitas Indonesia.

Credit Transfer
Credit Transfer is a recognition process of a number of credits a student may obtained from a university after an evaluation process by a Credit Transfer Team on each Faculty /School in a University. Students who have registered and study at an undergraduate study program or other equivalent education programs, both within the Universitas Indonesia or in any other universities or through a Student Exchange or Study Abroad program, may apply for a Credit transfer, provided that: (i) the transferred credits contain the same material with the courses listed in the curriculum for undergraduate program in FTUI, (ii) the academic record must be dated not more than a maximum of 5 years from the credit transfer application date, (iii) if the academic record are obtained from other universities outside of the Universitas Indonesia, the university should have at least a “B” accreditation from the National Accreditation Board for Higher Education or other international accrediting agencies. The maximum academic load that can be transferred in an Undergraduate Program is a maximum of 50 (fifty) percents of the total academic load that a student is required to complete in accordance to the curriculum of the study program he/she is currently studying. The courses transferred will be indicated with “TK” mark in the academic transcript.

Credit Transfer procedure are as follows: (i) Student submit a letter requesting Credit Transfer to the Head of the designated department, (ii) The Head of the Department will form a team to recommend which courses the student has previously taken can be transferred, (iii) Recommendation will be sent to the Dean of FTUI, (iv) FTUI Dean issues the Credit Transfer Decree, (v) The Faculty’s Center of Administration assigned “TK” marks for all relevant courses in the student’s SIAK NG account.

Credit Transfer for Parallel Class Students of Diploma Graduates
Starting in 2011, all extension programs in FTUI were merged into Parallel Classes in the Undergraduate Program. Diploma graduates who are registered as a student in these parallel classes, credits obtained from the previous diploma program will be transferred in blocks of 36-41 credits. Students begin their study in the third semester by taking all academic load according to package provided for the third semester. Afterward, they can take credits in accordance with their IPS in the following semester.

Study Abroad
There are many opportunities available for undergraduate students, both from Regular and Parallel programs to participate in Student Exchange program abroad, such as in Japan, Korea, Taiwan, Singapore, and many other countries. Student exchange programs generally last for 1-2 semesters and is supported with a full scholarship. Information on Student Exchange program can be obtained from the Universitas Indonesia’s International Office, PAU Building 1st floor. Courses taken during the study exchange program are transferrable when they return to Universitas Indonesia. Thus, students are still able to graduate on time.

In addition, Undergraduate students can participate in Double Degree 2+2 International Undergraduate program with FTUI’s partner universities. Students participating in this program will spend the last two years studying at the partner university abroad and he will earn two degrees once he graduates. However, this Double Degree program offers no scholarships. Thus, participating students should ensure their availability of funds. Student participating in classes outside of the university (in the form of Student Exchange, International Undergraduate Dual Degree Program, Sandwich Program, Joint Degree Program, or other university acknowledge program) for at least one semester will be given an “overseas” or study outside of the university status. Before leaving to continue their study overseas, students must ensure that their status in SIAK NG has been change to “overseas”, and they are obliged to make payment to Universitas Indonesia in the amount stated in the applied Rector’s Decree of “overseas” academic fee. Period of study abroad, either on the Student Exchange program and the Double Degree, is counted as part of the whole study period. The result or grades obtained from this program will not be calculated in determining their GPA and will be given a letter grade of TK in their transcript.

Fast Track
FT UI students, Regular, Parallel or International Undergraduate Program, with brilliant academic achievements can participate in the Fast Track program. In this program, FTUI's undergraduate students in semesters 7 & 8 are allowed to take several Master program courses. Courses that can be taken and
other requirements are specified by the Study Program in a way that the students can directly pursue Master program in FTUI and complete the program in 1 year. Thus, the total time needed to complete both undergraduate and master programs is 5 years or 10 (ten) semesters.

The Academic load for the Fast Track Program curriculum is as follow:

a. For the undergraduate program is 144 (one hundred and forty four) credits including 16-22 credits of elective subjects taken from the main competence subjects of the Master Program.
b. For the Master Program is 40-44 credits including the 16-22 credits from subjects mentioned in point a above and are acknowledge through credit transfer.

If student is unable to complete his/her Undergraduate Program in 8 (eight) semesters, then the student will be deemed as unable to complete the Fast Track program, making all the subjects of the Master Program he/she has taken will be considered as an elective subjects in their completion of the Undergraduate Program and cannot be acknowledge as part of their credit towards continuing to the Master Program.

Requirements and Procedure for Fast Track Registration
Undergraduate students who are interested in participating in the Fast Track Program must fulfill the following requirements:

Having a minimum GPA of 3.50
Having a minimum Institutional TOEFL/EPT score of 500 (students may use the score from the EPT test they took as new student in FTUI)
Having a high motivation for research

Procedure for Fast Track Program:
Fast Track Program is open for all FTUI undergraduate study programs which have the same specialization with the Master programs (for undergraduate study programs that have specialization).

Students who are interested in participating in the Fast Track Program are required to fill out the Registration Form downloadable through the http://www.eng.ui.ac.id/index.php/ft/downloadindeks (titled: (FormulirPendaftaran Fast Track Magister FTUI).

Students registering for the BeasiswaUnggulan from the Ministry of Education and Culture selection are required to fill out the BeasiswaUnggulan registration form downloadable from the same web page.

The Fast Track Registration Forms will be evaluated by a team headed by the Head of Department.

If the student’s application to participate in the Fast Track scheme is approved, they are required to counsel with his/her academic advisor for the finalization of his/her Undergraduate (S1) and Master (S2) Study Plan. The student’s study plan for semester 7 and 8, especially for the undergraduate Elective Course selection must be in accordance with the Compulsory and Elective Courses in their respective Master study program in line with their specialization.

Undergraduate thesis and thesis of the student are expected to be of continuous research to maximize knowledge, experience and quality research result.

The funds for the Fast Track Program will be borne entirely by the student.

Registration Form for the Fast Track Program for each running Academic Year may be submitted to each Department Secretariat on March each year at the latest.

2.2. ADMINISTRATIVE AND ACADEMIC REGISTRATION

Academic Calendar

Administrative and academic schedules in FTUI are set in accordance with the administrative and academic schedules in Universitas Indonesia as follows:

Term 1 2017/2018 *)

Administrative registration in Universitas Indonesia
July - August 2017

Academic registration in Universitas Indonesia
January - February 2017

Course period
August - December 2017
Mid-semester examination
October 2017

End of Semester Examination
December 2017

Deadline for grade assignment in SIAK-NG
January 2018

Departmental Judicium
1st, November 2017
2nd, January 2018

Faculty Yudicium
1st, November 2017
2nd, January 2018

Graduation
February 2018

Term 2 *)

Administrative registration in FTUI
January - February 2018

Academic registration in FTUI
January - February 2018

Course Period and examination
February - May 2018

Mid-semester examination
March - April 2018

End of Semester Examination
May 2018

Graduation
August 2018

Short Semester *)

Administrative Registration
June 2018

Academic Registration
May - June 2018

Course period
June - August 2018

Mid-semester Examination
July 2018

End of Semester Examination
August 2018

Note:
*) Schedules are subject to change
Note:
- Short Semester course period is held for 8 weeks, including mid-semester and final semester examinations.
- 2 credit courses consist of twice 2-hour contact per week, 3 credit courses consist of three times 2-hour contact per week, 4 credit subject consist of four times 2-hour contact per week.
- For regular undergraduate program: Faculty Basic Courses (Physics, Mathematics and Chemistry) are only available for students who wish to retake the course and have attended required lab activities.
- A student can take up to a maximum of 12 credits during the short semester.
Courses offered are determined by the Department.
- If the number of students registered for a certain course in the Short Semester does not meet the minimum requirement, then the course will be canceled.
- Short Semester’s tuition fee is not included in the normal tuition fee (BOP) and is calculated by the number of credits taken during the short term. Tuition fee for each credit is determined by FTUI.
- Payment for short semester courses must be made before the payment period is closed. Otherwise, the student’s name will be automatically removed and the student is no longer considered as a participant in the short semester.

Registration and Course Guidelines

Before administrative registration takes place, FTUI publishes an academic calendar for one semester listing schedules for courses, mid-term, final-term examinations and other academic activities. The academic calendar and course schedule could be accessed at http://www.eng.ui.ac.id, and SIAK NG.

Administrative Registration

Administrative Registration includes payments of tuition fee and admission fee. Students are responsible for paying fees by the payment deadline. Students who do not complete the registration process by the payment deadline will not be registered at that particular semester will be included toward student’s allowed length of study. Administrative registration are done by paying the tuition fee through the host-to-host system by the ATM (Automated Teller Machine) or bank teller of banks in cooperation with the Universitas Indonesia.

Academic Registration

Students should do online academic registration; consult with his/her Academic Advisor for approval and signing the Course Plan Form or FormulirRencanaStudi (FRS) during the academic registration period. The main duties of Academic Advisor are:

• Helping and directing students in their study plan particularly in selecting courses and in solving their academic problems
• Monitoring and evaluating student’s academic performance during their period of study.

Students should logon to https://academic.ui.ac.id using username and password provided by the Office of PengembanganPelayananSistemInformasi (PPSI) UI. Students could get their username and password at PPMT (PusatPelayananMahasiswaTerpadu) building. Students could also download course schedules and academic calendar from the website.

After completing the online FRS, students should print the form (3 copies) and meet their PA to discuss, verify and validate the courses taken. Students have to check their FRS after registration period to ensure that the courses taken are correct. Fines will be levied to students for late administrative and academic registration, as per the university or the faculty regulation.

Sanctions

1. Students who do not carry out the administrative registration will receive inactive status as a student in the current semester, which is included as their length of study.
2. Students who do not carry out academic registration cannot follow the academic activities in the current semester, which is included as their length of study.
3. Students who are not active as referred to in points (1) are not charged with tuition payments.
4. Students who do not carry out the registration and administration of academic registration 2 (two) consecutive semesters, expressed as a university student resigned without notice from the university.
5. Active students who do not complete the payment in accordance with the agreement until the end of the semester goes imposed the fine of 50% of the unpaid amount.
6. Payment of fines referred to in points (5) shall be paid at the following semester Academic Registration

Exception Administrative Registration

When non-active students, with all reason intend to maintain their status as active students, they have to follow the procedure of administrative registration:
• Obtain the approval from FTUI by filling out a form available at PAF (Pusat Administrasi Fakultas / Faculty Administrative Center).

• The students must come to the Directorate of Finance UI to obtain the approval for paying the tuition fee after paying the penalty 50% from the tuition fee on the current semester.

• The approval will be used by the students for paying the tuition fee manually.

• Students must give the copy of the payment record to the Directorate of Finance UI for verification.

Prerequisite Courses
These courses can only be taken if a student is currently taking or has previously taken and passed the prerequisite course with sufficient grade [not T].

Requirements for Transfer to Partner Universities in Australia for Double Degree Program
Minimum requirement of GPA and English before transferring to Partner University is listed in Table 2.3. Eligible students can continue their study to partner universities in Australia if they fulfill the following requirements:

1. Achieve minimum GPA as required at the end fourth semester for the 2+2 program;
2. Passed all required subjects as listed in the Study Program curriculum with minimum C with a total of passed credits consistent with the total number of credits listed in the Study Program curriculum for semester 1-4.
3. Achieve minimum IELTS or TOEFL scores as required.
4. If GPA less than required, the students must stay at UI and repeat some subjects to improve their GPA, while administratively and academically registered at FTUI.
5. If GPA meets minimum requirement, but IELTS or TOEFL scores less than minimum requirement, they are suggested to improve their IELTS or TOEFL score in Indonesia and maintain administrative registration at FTUI. Other choice is to take English for Academic Purposes (EAP) at the partner university. Information on duration and schedule of EAP can be found at the partner university’s website.

Table 2.3. Minimum requirement of GPA and IELTS or TOEFL for transfer to the Partner Universities

<table>
<thead>
<tr>
<th>Partner University</th>
<th>Minimum GPA</th>
<th>Minimum IELTS / TOEFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUT</td>
<td>3.0</td>
<td>IELTS min. 6.5 with no band lower than 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOEFL min 90 with no band lower than 22</td>
</tr>
<tr>
<td>Curtin</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>UQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uni Sydney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monash</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

English Language Requirements for Undergraduate International Program Single Degree
Students of the Undergraduate International Program Single Degree (class of 2012 and after) are obligated to obtain an English certificate in IELTS (International English Language Testing System) or TOEFL iBT (Test of English as a Foreign Language - internet Based Test) with the following minimum score:

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Overall Minimum Score</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>IELTS</td>
<td>6.5</td>
<td>No bands lower than 6.0</td>
</tr>
<tr>
<td>TOEFL iBT</td>
<td>80</td>
<td>No bands lower than 20</td>
</tr>
</tbody>
</table>

This English Language Certificate is one of the requirements before they may proceed to have their Undergraduate Thesis/ Final Project Exam. The date of said English Language Certificate is taken at least during their third semester of study.
Procedure for Study Abroad/ Student Exchange to Partner University for Undergraduate International Program Single Degree

1. Student choose a Partner University
 • Find out list of UI’s Partner Universities
 • Information on Study Abroad/ Student Exchange Information from International Office UI through http://international.ui.ac.id

2. Student contacted the selected partner University for Information on:
 • List of subjects offered and course description
 • List of requirements/documents needed.
 • Application and Tuition Fees.
 • Other Documents needed.

3. Student consulted their Academic Guidance Counselor or the Vice Head of Department to determine the subjects they will take in Partner University that can be credit transferred upon their return.

4. The Head of Department issued a Letter addressed to the Vice Dean stating:
 • Name and Student ID of student participating in the Study Abroad/Student Exchange Program
 • Name of Partner University and length of study of said program
 • List of subjects that the students will take at Partner University.

5. The Vice Dean will assigned the Associate Dean for Academic and Head of PAF to process the student’s status to “overseas” or “student exchange and issued a Reference Letter and Academic Transcript for the student.

6. Student prepare the documents needed for their Study Abroad/ Student Exchange:
 • Application Form
 • IELTS/TOEFL iBT
 • Other language requirement
 • Reference Letter and Academic Transcript from the Faculty.

7. Student sends their application documents to Partnery University.

9. Student makes payment and signed the Letter of Offer

10. Student applies for Student Visa to the Country where the Partner University is located.

11. Departure to Partner University

2.3. GRADUATE PREDICATE

Students are considered to have passed the undergraduate program and earned a Bachelor Degree (S.T or S.Ars) if they are: registered as an active student in Universitas Indonesia during said semester both administratively and academically; have passed all the mandatory courses and acquired a minimum of 144 credits in accordance with the applicable curriculum with “C” as the lowest grade and completed all 8 semesters scheduled academic load within 8-12 semesters; completed all administrative obligation including the return of all borrowed library and laboratory collection; and complete all obligation of their study period and/or all assignments given in accordance to the curriculum of the Study Program (including revised Final Project) with a GPA ≥ 2,00 (two point zero). Honor predicate for graduates are determined by the student’s final GPA as follow: Cum Laude (3.51 - 4.00), Very Satisfactory (3.01 - 3.51), and Satisfactory (2.76 - 3.00). For an undergraduate student to earn the Cum Laude degree, he must finished his study within 8 (eight) semesters time without retaking any courses.

Students are considered to have passed the Master program and earned a Master of Engineering or Master of Architecture Degree if they have passed all the required 40 - 42 credits, a ≥ 3.00 GPA
with “C” as the lowest grade and do not exceed study period and have met all administrative requirements. Honor predicate for graduates are determined by the student’s final GPA as follow: Cum Laude (3.71 - 4.00), Very Satisfactory (3.41 - 3.70), and Satisfactory (3.00 - 3.40). For a Master program student to earn the Cum Laude degree, his length of study must not exceed 4 (four) semesters time without retaking any courses.

Students are considered to have passed the Doctoral program and earned a Doctor Degree if they have passed all the required 48 - 50 credits, a minimum GPA of 3.00 with a minimum “C” for in-class courses and a minimum “B” for research courses, do not exceed study period and have met all administrative requirements. Honor predicate for graduates are determined by the student’s final GPA as follow: Cum Laude (3.71 - 4.00), Very Satisfactory (3.41 - 3.70), and Satisfactory (3.00 - 3.40). For a Doctoral program student to earn the Cum Laude degree, his length of study must not exceed 6 (six) semesters time without retaking any courses. The mark “BS” is not counted as course repetition. If a student’s final GPA is within the 3.71 - 4.00 range but he fail to meet the other requirements, he will be awarded the “Very Satisfactory” predicate.

2.4. ACADEMIC PERFORMANCE EVALUATION AND DROPOUT CRITERIA

Undergraduate Program
The university also requires that students maintain satisfactory academic performance during their study at FTUI and meet the following evaluation criteria to be able to continue their studies:

- Attain at least 24 credits with a minimum of C at the end of their second semester;
- Attain at least 48 credits with a minimum of C at the end of their fourth semester;
- Attain at least 72 credits with a minimum of C at the end of their sixth semester;
- Attain at least 96 credits with a minimum of C at the end of their eight semester;
- Attain all required credit with a minimum of C at the end of their twelfth semester;

Or:

- Have the following problem: have an inactive status (empty) for two semesters in a row thus being declared as “resign” automatically from the status of Universitas Indonesia’s student by the Rector’s decree on Status Determination.
- Proven to be in violation of rules or regulations that caused the student to lose his right as FTUI students.
- Deemed unfit to continue their study based on consideration from a team of Doctors appointed by the Head of the University.

Student who still maintain satisfactory academic performance and meet the evaluation criteria to continue his study but would like to resign on his own free will may submit a written application to the Dean with a copy to the Head of the Department.

Master Program
The Maximum length of study to earn a Master Degree in FTUI is at the latest 6 (six) semesters, starting from registration time to graduation. This provision also applies to students who enroll in the FTUI Master program with a “probation” status. Students will lose their right to continue the study (dropping out) if:

- Students fail to achieve a 3.00 GPA of at least 14-18 passed credits (for regular Master Program student) or 12-14 passed credits (for non-regular Master Program student) at the end of the second semesters;
- In the end of the study period evaluation, students fail to achieve the following graduation requirements: registered as an active student in Universitas Indonesia during said semester both administratively and academically; not exceeding the maximum length of study; completed all administrative obligation including the return of all borrowed library and laboratory
collection; and complete all obligation of their study period and/or all assignments given in accordance to the curriculum of the Study Program (including revised Final Project) with a GPA \geq 3.00 (three point zero)

- Students who do not register academically and administratively for two consecutive semesters.
- Proven to be in violation of rules or regulations that caused the student to lose his right as FTUI students.
- Deemed unfit to continue their study based on consideration from a team of Doctors appointed by the Head of the University.

Student who still maintain satisfactory academic performance and meet the evaluation criteria to continue his study but would like to resign on his own free will may submit a written application to the Dean with a copy to the Head of the Department.

Doctoral Program
The Maximum length of study earn a Doctoral degree in FTUI is 10 (ten) semesters, starting from registration time to graduation.

Students of the Doctoral Program (Class and Research) will lose their right to continue to study (dropping out) if:

- Students who do not register academically and administratively for two consecutive semesters will be automatically considered to have resigned from UI.
- Failed to obtain a minimum of B for their Research Proposal Examination or similar exam at the end of their fourth semester;
- Failed to obtain a minimum of 50 (fifty) percent for their Research based on the judgment of the promoter team at the end of their sixth semester;
- Failed to obtain a minimum of 75 (seventy five) percent for their Research based on the judgment of the promoter team at the end of their eighth semester;
- Failed to obtain the following by the end of their study period of ten semesters: produce 1 (one) scientific paper based on research for their dissertation as main writer that can be accompanied by the promoter team and has been accepted to be published in an indexed international journal (8 credits); submit proof of compliance of requirements as stated before as part of the requirements for promotion exam; submit 1 (one) Dissertation and participate in a Promotion Exam as the final step of the Doctoral Program (6-8 credits).
- Exceeded the maximum length of study (10 semesters).
- Proven to be in violation of rules or regulations that caused the student to lose his right as FTUI students.

Student who still maintain satisfactory academic performance and meet the evaluation criteria to continue his study but would like to resign on his own free will may submit a written application to the Dean with a copy to the Head of the Department.

Students of the Doctoral Program (Research) will lose their right to continue to study (dropping out) if:

- Students who do not register academically and administratively for two consecutive semesters will be automatically considered to have resigned from UI;
- Failed to obtain a minimum of B for their Research Proposal Examination or similar exam at the end of their fourth semester;
- Failed to obtain a minimum of 50 (fifty) percent for their Research based on the judgment of the promoter team at the end of their sixth semester;
- Failed to obtain a minimum of 75 (seventy five) percent for their Research based on the judgment of the promoter team at the end of their eighth semester;
- Failed to obtain the following by the end of their study period of ten semesters: produce 1 (one)
scientific paper based on research for their dissertation as main writer and be presented at an international scientific conference and published in the proceeding as a full paper (6 credits); produce 1 (one) scientific paper based on research for their dissertation as main writer that can be accompanied by the promoter team and has been accepted to be published in an indexed international journal (8 credits); submit 1 (one) scientific paper that has been accepted to be published in a nationally accredited journal; submit proof of compliance of requirements as stated before as part of the requirements for promotion exam; submit 1 (one) Dissertation and participate in a Promotion Exam as the final step of the Doctoral Program (6-8 credits).

- Exceeded the maximum length of study (10 semesters).
- Proven to be in violation of rules or regulations that caused the student to lose his right as FTUI students.

Student who still maintain satisfactory academic performance and meet the evaluation criteria to continue his study but would like to resign on his own may submit a written application to the Dean with a copy to the Head of the Department.

2.5. ACADEMIC LEAVE

Student who wishes to be away from his/her academic endeavors at FTUI for one to two semesters, but intend to return to FTUI are eligible for academic leave of absence. Leave of absence could be only given to student who has studied at least two semesters at FTUI, unless with specific circumstances. Academic leave for special circumstances are academic leave that is given to students for an unavoidable hindrance, such as: state task, university task, or undergoing medication which prohibited said student to participate in academic activity. Academic leave is not counted as part of the length of study.

Procedures of Academic Leave
1. To obtain academic leave, a student must write a letter requesting for academic leave to the Dean before the beginning of the administrative registration period of semester.
2. If the academic leave is approved, PAF will change the status of the student as academic leave before the beginning of the administrative registration period of semester and the amount of tuition fee will automatically be changed.
3. The student must pay 25 % of tuition fee during the period of administrative registration of the intended semester.
4. If a student has been granted an academic leave but fail to pay the obligated fee due to them during the registration period, the academic leave will be canceled and the student status will revert to inactive (empty).
5. In the situation as stated above, if the student still insist on making payment after the registration period has passed, the student will be charged with a late administration registration fee in the amount stated in the regulation issued in the Rector’s Academic Fee.
6. If the students fail to pay during the prescribed period of administrative registration, Exceptional Administrative Registration will apply.
7. If the Academic Leave is proposed not accordance with point (1) above, or is proposed after the semester is on, the student should pay full amount (100 %) of tuition fee.

2.6. FACULTY and DEPARTMENT JUDISIUMS

Judisium is a meeting held at both the Faculty and the Department level to decide whether a student has fulfill all academic requirements and may graduate and earn a degree in engineering based on the Department / Faculty Evaluation.

2.7. SEMESTER GRADE TRANSCRIPT, DIPLOMA and ACADEMIC TRANSCRIPTS

FTUI Central Administration Office is responsible for issuing Semester Grade Transcript, Diploma
and Academic Transcript for all FTUI's graduates. Student Academic History is issued based on student’s request while the diploma and academic transcripts are issued only once at the time of the student’s graduation. Contained within the Student Academic History and Academic Transcript are name, course code and grades of all courses that the students took during their study period. Also included is the student’s Grade Point Average (GPA) which is calculated based on all courses’ grades. Diplomas and Academic Transcripts will be handed to all graduates no later than 2 (two) months from the date of graduation.

The Semester Academic Transcript (DNS) gives the information on the student’s identity (name, student ID and latest education), Academic Advisor, Faculty, Study Program, Specialty, Education Level, Subject Code, Subject Title, Credit, Letter Grade, Semester GPA, and GPA. The Semester Academic Transcript can be issued as hard copy based on a student request as required. A valid DNS is signed by official handling the academic administration in the Faculty level.

Academic Record recorded chronologically all academic activity of a student since they first registered as a student until they are no longer registered, due to graduation, drop out, or resignation. The academic status of a student of each semester is recorded in the Academic Record. The Academic Record is also used as a source of information for student, Academic Advisor, and Study Program to the success of a student study and is issued as required based on the student’s request and validated by the Vice Dean of the Faculty.

Academic Transcript is given to student that has been declared as a graduate from a Study Program which is decided in a graduation determination meeting and contained information on a student identity (name, student ID, place and date of birth), previous education, education level, study program, specialty, list and code number of subjects, letter grade, number of required credits, number of obtained credits, GPA, title of the student’s Final Project, diploma number and year of graduation. All subjects taken by the student, including repeated subjects and transfer credit subjects, are included in the Academic Transcript which is issued in two language, Bahasa Indonesia and English. The Academic Transcript will be given to students with no arrears of tuition fees.

Diploma is given to student that has been declared as a graduate from a Study Program which is decided in a graduation determination meeting. Diploma contained information on the identity of the diploma holder (name, place and date of birth), academic title, name and signature of the Rector and Dean, date of diploma issued, date of graduation, student ID, diploma number and signature and photo of the diploma holder. In the event that the diploma is lost or damaged, the diploma holder is allowed to request a copy of the diploma. Dean/ Vice Dean/ Director of Academic on behalf of the Rector may signed to validate a copy of diploma. Diploma will be given to students with no arrears of tuition fees.

2.8 OFFENSES AND SANCTIONS

In any particular courses, no students shall engage in any form of unethical or improper conduct, such as but not limited to examination offenses:

- Utilizing unauthorized materials/notes to enhance performance during on examination.
- Attempting to observe the work of another student.
- Taking an examination for another person, or permitting someone else to do so.
- Collaborating improperly by joint effort on discussion in anyway expressly prohibited by lecturer.

When incidents, as enumerated above occurs, the following sanctions may be imposed (as per FTUI regulation):

- The student may be assigned E for the subject in question
- The student may be suspended for one semester
- The student may be dismissed or expelled by FTUI

If necessary, a meeting of PanitiaPenyelesaianPelanggaran Tata Tertib (Offence Settlement Committee) (PT32) may be held.

Academic Sanction for Perpetrators of Academic Cheating In Exams

a. Academic sanction in the form of the cancellation of said exam (E grade) for student caught or proven committing academic fraud in examination process, such as working with other student, copying other student’s work or giving answer to other student;

b. Academic sanction in the form of study period cancellation (for all subjects) for said semester
for student caught or proven committing academic fraud in examination process such as opening books, notes or other equipment planned before;

c. Academic sanction in the form of cancellation study period for said semester and one semester suspension for student caught or proven committing academic fraud in examination process due to working together with outside person(s) outside of the examination room;

d. Academic sanction in the form of expulsion from the Faculty of Engineering Universitas Indonesia (expelled) for student caught or proven committing academic fraud in the examination process by replacing other examinee or by having someone else take their place;

e. Academic sanction in the form of expulsion from the Faculty of Engineering Universitas Indonesia (expelled) for student caught or proven committing academic fraud in the examination process for planning and carrying out the plan to help other examinee;

f. Other academic fraud will be handled through a hearing by the Committee of Rules and Conduct Regulation Violation (Panitia Penyelesaian Pelanggaran Tata Tertib (P3T2)) Faculty of Engineering Universitas Indonesia;

g. Student is entitled to an appeal with the help of their Academic Advisor and the Vice Dean for Academic, Research, and Student Affairs Faculty of Engineering Universitas Indonesia, submitted to the Faculty Academic Senate in the quest of justice.

Academic Sanction on Plagiarism and Act of Fraud in the Completion of Final Project

Plagiarism is an act of stealing ideas or thought already available in written and/or someone else’s writing and used them as if it is our own ideas, thoughts and/or writing thus causing harm/loss to the original owner both material or non material, this plagiarism can be in the form of using a word, phrase, sentence, paragraph, or even a chapter of someone else’s writing or book, without stating the source. Included in this is the auto plagiarism.

Auto Plagiarisme is an act of using an idea or thought repeatedly in writing or using someone’s own writing in parts or whole without stating the origin published source as if those ideas or thoughts are a new idea, thought and/or writing.

Plagiarism criteria used as a based to decide a sanction focuses on the amount of idea or phrase stolen and how similar the writing in phrase, sentence, paragraph, section, chapter, and the writing as a whole. A work can be considered plagiarism if based on the verification result on the writing contained a similarity level of 35% or more with the original work. To prevent plagiarism, student is obligated to check their final work using software of anti plagiarism provided by the Faculty or University before submitting their work to their advisor/promoter/co-promoter. If such software is unavailable, student is required to check existing list of research in connection to the topic of their research and state such research in their reference of research. Student caught and proven of committing plagiarism is entitled to an appeal tried in the Study Program level to the Faculty which the Faculty will later passed on to the university through the P3T2 to be verified and processed.

In case of an active student, early sanction can be in the form of delaying the final project examination or delaying the graduation status for student who has been declared passing the final project examination. Student that has been declared as a graduate but have not received their diploma, with the approval of the Rector, the Dean may hold said student diploma while await the Rector’s final decision. Academic sanction on plagiarism for active student is established through the Dean’s decree based on the proposal by the Head of the Study Program or recommendation from the Faculty in one month at the latest since the date of the proposal letter was accepted by the Dean. For graduate student is established through the Rector’s Decree based on the P3T2 recommendation. The heaviest academic sanction given can be in the form of cancellation of the student final project (for active student) with the obligation to write a new final project with new topic, while for graduate student the sanction is in the form of revocation of academic titles.
The act of fraud in the writing of Final Project, Essay as Exam Substitute, or Assignment, includes the usage of other person’s service/ replacement/ consultant/ or other service to complete assignments in the name of said student and other manipulative act of fraud. This act does not include the usage of service for data collecting, survey, and data processing for the completion of final project of student. Sanction given to the perpetrator of said act of fraud in the completion of final project is established through the Dean’s decree issued in one month at the latest since the proposal letter from the Head of Study Program is received by the Dean. The heaviest academic sanction given can be in the form of cancellation of the student final project (for active student) with the obligation to write a new final project with new topic, while for graduate student the sanction is in the form of revocation of academic titles. Active students who consciously act as a ghost writer in writing the final works for other students will be given the equivalent of student academic sanction given to the perpetrators of acts of fraud.

2.9. ACADEMIC REGULATION OF THE UNIVERSITAS INDONESIA
List of Academic Regulations at Universitas Indonesia can be accessed via http://resipotory.ui.ac.id.

Below is a list of Decrees that functioned as reference for education program at Universitas Indonesia

GENERAL:
Decree of the Board of Trustees Universitas Indonesia
Number: 008/SK/MWA-UI/2004 on the Amendment of Board of Trustees’ Decree Number: 005/SK/MWA-UI/2004 on the Code of conduct on Campus Life in Universitas Indonesia

EDUCATION:
Decree of the Rector Universitas Indonesia
Number: 285/SK/R/UI/2003 on the Implementation Guidelines for Cross-Faculty Lectures in Universitas Indonesia

Decree of the Board of Trustees Universitas Indonesia
Number: 006 / MWA-UI/2004 on the Universitas Indonesia’s Academic Curriculum

Decree of the Rector of Universitas Indonesia
Number: 491/SK/R/UI/2004 on Universitas Indonesia Education Activities Conclusion Regulations

Decree of the Board of Trustees Universitas Indonesia

Decree of the Board of Trustees Universitas Indonesia
Number 003 / TAP/MWA-UI/2005 on General Guidelines for Implementation on Universitas Indonesia’s Professional Programs

Regulation of the Board of Trustees Universitas Indonesia
Number: 006 / Peraturan/MWA-UI/2005 on Student Learning Outcomes Evaluation at Universitas Indonesia

Regulation of the Board of Trustees Universitas Indonesia
Number: 007 / Peraturan/MWA-UI/2005 on Academic Education Implementation Norms in Universitas Indonesia

Regulation of the Board of Trustees Universitas Indonesia
Number: 008 / Peraturan/MWA-UI/2005 on Professional Education Curriculum Norms in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 838/SK/R/UI/2006 on Administration of Universitas Indonesia Student’s Learning Outcomes

Decree of the Rector of Universitas Indonesia
Number: 012/SK/R/UI/2007 on Implementation of the of Students Learning Activity in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 450/SK/R/UI/2008 on the Implementation of E-Learning in the University Indonesia

Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 290/D/SK/FTUI/VI/2013 on the English Requirements for Undergraduate International Program Single Degree Faculty of Engineering Universitas Indonesia.

Decree of the Rector of Universitas Indonesia
Number: 014 year 2016 on the Implementation of Undergraduate Program in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 015 year 2016 on the Implementation of Master Program in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 016 year 2016 on the Implementation of Doctoral Program in Universitas Indonesia

Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 622/D/SK/FTUI/IX/2016 on Academic Sanction for Academic Fraud Perpetrator in Faculty of Engineering Universitas Indonesia.

Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 623/D/SK/FTUI/IX/2016 on General Regulation on Supplementary Exam for Mid Term and Final Examination in Faculty of Engineering Universitas Indonesia.

Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 624/D/SK/FTUI/IX/2016 on Academic Sanction for Plagiarism and Act of Fraud in the Completion of Final Project in Faculty of Engineering Universitas Indonesia.

RESEARCH

Decree of the Board of Trustees Universitas Indonesia
Number 002/SK/MWA-UI/2008 on University’s Research Norms

Decree of the Board of Trustees Universitas Indonesia
Number 003/SK/MWA-UI/2008 on Research Policy at Universitas Indonesia

Decree of the Board of Trustees Universitas Indonesia
Number 009/SK/MWA-UI/2008 on amendment of the Decree of the Board of Trustees of Universitas Indonesia Number 003/MWA-UI/2008 on Research Policy in Universitas Indonesia
3. FACILITIES AND CAMPUS LIFE

NEW FACILITIES AVAILABLE IN FTUI

1. All classrooms in S building are now having one special chair for each classroom dedicated to left handed students.

2. FTUI has renovated the S405 classroom into a specially design discussion room for students to learn and discuss in groups in the implementation of Student-Centered Learning (SCL). This renovation is partly funded by USAID through their PEER Science research program by providing chairs, computer screen for each discussion group, wireless LCD projector and documented camera. The renovation is completed by the start of the Odd Semester of 2015. The classroom will be able to accommodate up to 80 students in groups discussion form as in problem-based learning (PBL) or Collaborative Learning (CL) and up to 100 students in classroom form.

3. Online Electricity Metering and Monitoring System now help FTUI in monitoring electricity usage of each building and their characteristic. www.ee.ui.ac.id/power; www.eng.ui.ac.id/power

4. Offline Water Metering and Monitoring System prepare FTUI in determining the water usage of each building and help plan the creation of rain water well within the faculty.

5. Smoking is prohibited throughout most of the faculty areas. However, the new and vastly improved Smoking Shelter is now available in the student’s cafeteria area and in front of the S Building.

6. Starting from April 2012, we have started to tests all of our cafeteria vendors for E-Coli. Working together with the Faculty of Public Health, we conducted several Hygiene tests to our vendors. Between these tests we also conducted seminars, socialization, and counseling to all of our food vendors regarding the level of cleanliness and hygiene level expected from them. We also improved the sewer, sink and the vendor’s facilities to achieve the desired effect. By February 2015, all food vendors in our Student’s Cafeteria are 100% free of E-Coli, Salmonella and Borax. Thus, making us proud to say that FTUI’s Students’ Cafeteria is one of the healthiest in the university.

3.1. INTEGRATED STUDENTS SERVICE BUILDING (PPMT)
This building is located at the left of the Rector building with the one door policy in serving the registration process of all Universitas Indonesia students, whether they are vocational, undergraduate, undergraduate extension, master, doctoral, specialist, and professional students. This building consists of three divisions: PPSI division, Student Affairs division, and Academic division.

3.2. FACULTY ADMINISTRATION CENTER (PAF)
Academic administrative services for all academic programs in FTUI are managed by PAF. The services provided for students include academic records, change of grades from lecturers, testamur and academic transcripts, registration, absence of leave, enrollments and letter of reference letter. The working hour is at 08.00 to 16.00 from Monday to Friday, at PAF building.

3.3. UNIVERSITY CENTRAL LIBRARY
Location: Kampus UI Depok
Service hours of UI Central Library

<table>
<thead>
<tr>
<th>Days</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday - Friday</td>
<td>08.30 - 19.00 WIB</td>
</tr>
<tr>
<td>Saturday & Sunday</td>
<td>08.30 - 15.00 WIB</td>
</tr>
<tr>
<td>Holly Month of Ramadhan</td>
<td>08.30 - 15.00 WIB</td>
</tr>
</tbody>
</table>

Membership:
Students, lecturers, researchers and employee of the Universitas Indonesia are entitled for membership of the central library with the following requirements:
1. Provide the latest semester payment proof or the latest study card (IRS) or certification letter
from any faculty, unit or department within the Universitas Indonesia.
2. Provide a 2x3 photo (one)
3. Provide a cover letter from the faculty (for lecturers)

Lending Procedures:
- General text books can be borrowed for two weeks (max. 3 books) by showing your Student Card. Borrowed books need to be stamped.
- Reference books, magazines, newspaper and thesis can only be read on the spot or photocopied.
- Dissertation and thesis can only be photocopied as many as 10 pages.

UI Central Library Services

Reference Service
This service is provided to help the UI civitas academica in searching information, especially for students who are working on their final assignment or research. Information search request may be submitted in person or via email (reflib@ui.ac.id).

Information Package
Information package is a form of service in the form of certain topics of information packages. Each package consists of several articles and their annotation in accordance to the selected topic. Each article can be obtained by contacting the reference division first (reflib@ui.ac.id) or by direct phone request (+6221-7270751).

Information Search Training
The information search training consists of several packages. They are: basic and advance package. This training is provided to help improve the information skill of library visitors and members. This service is available to all university members, especially new students and students who are in their final year. Request for training can be submitted directly or through the email perpusui@ui.ac.id.

Circulation (Borrowing Books)
The circulation services are located in level 1
The library’s collection of reference books, thesis, dissertation, research reports and UI-ana can only be read on the spot at the UI Central Library.

UI Central Library Facilities
OPAC (Online Public Access Catalog)
OPAC is a tool to search the information regarding the available collection of the library by using a terminal computer. OPAC computers are available on every floor of the library.

Internet Access
Internet access connection at the UI central library uses the integrated network (JUITA - Jaringan Terpadu) and can also be accessed by using the UI Hotspot. Internet service is also available at the first floor of the central library. Also available are computers with internet access for the usage of library visitors and members.

Computer, Scanner and Data Backup
Students are allowed to use the provided computers to work on their assignments, picture/photo scanning and to burn the result of their information search to a CD.

Photocopy
A photocopy machine is available at the UI Central Library
Discussion, Class and Seminar Rooms
Discussion, Class and Seminar rooms are available for students’ needs and for classes.

Special Study Rooms
Special study rooms are available and can be used by all university members. These rooms are equipped with a desk, filing cabinet and internet access.

 Locker
250 lockers are available for UI Central Library Members.

3.4. COMPUTER SCIENCES & NETWORK
Directorate of Information System Development and Service (PPSI) are responsible for the programmed computer network system designed to help fulfill the students and lecturers needs in computer usage (from academic activities such as programming to internet usage) through the Integrated UI network (JUITA).

Requirements for using the JUITA:
• Registered as a UI student
• Fill out registration form with a reference from the Associate Dean for Students Affairs/Head of Study Program/Academic Counselor of the student.

Place of Registration:
• Depok (Integrated Student Service Center Building)
• Salemba (PUSILKOM Building)

Hotline Service
Users who are experiencing problems in the use of this facility can report or request the help of the Computer Technical Unit through the following PPSI hotline service:
Phone : +6221-7863419
Email : support@ui.ac.id
Web Site : http/cso.ui.ac.id
Office Hours : Monday - Friday
(09.00 - 16.00)

Puskom Services at FTUI
Puskom (Pusat Komputer) provides services related to education and information technology development for students and academic/non-academic staff. The office is located at 2nd floor of GK Building at FTUI, Depok Campus. Main duties of Puskom is to provide education facilities for students, learning and research facilities for lecturers, and services for education administration, students and personnel. Puskom also provides connection services to internet and local area network at the Faculty and the University. Internet can be accessed at all area of FTUI. This facility can be used by students as well as faculties. All computer networks have been connected by fiber optic cables for inter-building and copper cable in the buildings with capacity of 100 Mbps. Besides providing local networks, Puskom also controls 7 computer servers with redundancy backup to minimize troubles in academic and research services. Computers are also available for students at various locations at FTUI i.e. computer laboratory at 2nd floor of GK Building, as well as at FTUI building at Salemba Campus. The service hour is 09.00 to 16.00 from Monday to Friday. For further information please contact Puskom at GK Building, 2nd floor, tel. 021-7863508, 021-2720011 ext. 64, or send email to puskom@eng.ui.ac.id.

3.5. STUDENT WELFARE
3.5.1. UNIVERSITAS INDONESIA MOSQUES
• The Ukhuwah Islamiyah (UI) Mosque Depok located in the UI Depok Campus. Established on 28 January 1987 for the Friday prayer with Prof. H. Moh. Daud Ali, SH as khatib (preacher).
This mosque was named Ukhuwah Islamiyah for within this mosque is fostered the Islamic brotherhood within the campus as well as the unity and brotherhood of Moslem from within and outside of campus area.

- The Arif Rahman Hakim (ARH) Mosque Salemba is located in the UI Salemba Campus. Established on 10 November 1967, 27 Rajab 1387 H. Based on the UI Rector Decree dated 16 August 1966, a development committee was established and consist of students. The vision of this mosque is to be the center of Islam education in the campus and produces modern Moslems (equipped with faith and knowledge) that can implement the teachings of Islam and help solve religious problems.

3.5.2. TEKSAS BRIDGE

The Teksas Bridge is a linkage bridge between two faculties in the UI Depok campus, the Faculty of Engineering and the Faculty of Humanities. These two faculties are separated by an 80 meters lake. The Teksas Bridge is hoped to serve as:

- As a connection bridge and “Landmark”
- As a research object for steel application product
- As a promotional tool on “Aesthetics Steel”

The concept of this bridge aims towards two approach:

- The side of the bridge on the Faculty of Engineering UI reflects a powerful and masculine character symbolized with a “Sail” shaped Pylon Bridge soaring to the sky as a symbol of “LINGGA”.
- The side of the bridge on the Faculty of Humanities UI reflects a flexible and feminine character symbolized with a “Hole Gate” shaped Pylon Bridge as a symbol of “YONI”.

3.5.3. CAMPUS BUS

To serve the transportation needs of students within the campus, Universitas Indonesia provides 20 campus busses. These busses will serve inside campus routes from these times: 07.00-21.00 (Monday-Friday) and 07.00-14.00 (Saturday). These yellow campus busses have two different routes:

- **Blue**: UI Dormitory, Gerbatama, UI Train Station, Faculty of Psychology, Faculty of Social and Political Science, Faculty of Humanities, Faculty of Economics, Faculty of Engineering, KuKel, Student Center Building, Faculty of Mathematic and Natural Sciences, Faculty of Public Health, Balairung, UI Mosque, and Faculty of Law.
- **Red**: UI Dormitory, Gerbatama, UI Train Station, Faculty of Law, UI Mosque, Balairung, Faculty of Public Health, Faculty of Mathematic and Natural Sciences, Student Center Building, KuKel, Faculty of Engineering, Faculty of Economics, Faculty of Humanities, Faculty of Social and Political Science, and Faculty of Psychology.

Executive Bus

In order to provide transportation service, especially outside campus transportation, Universitas Indonesia provides Air Conditioned and Non-Air Conditioned busses for rent. These busses are available for various types of activity, such as: UI student organization activities, academic support activities, and many more.

Rental Procedures:

- Written rental request is submitted to:
 Directorate of Student Affairs
 Integrated Student Service Center
 Building, Kampus UI Depok
 Phone : +6221-7867222 (Operator)
 Fax : +6221-7863453
- Payment should be made, at the very latest, one week before the date of use via BNI Bank, Kampus UI Depok Branch, and Account Number: 1273000024 under the name of Universitas Indonesia.
- Proof of payment must be submitted to the Directorate of Student Affairs. Cancellation done 3 (three) days before the date of use will be charge a 10% cancellation fee from the paid rent. Cancellation on the date of use will be charge a 30% cancellation fee from the paid rent.
3.5.4. STUDENT WELFARE AND FACILITY BUILDING (GKFM) / University Health Center
Address: Kampus UI Depok
Phone: +6221-78881019
This building is located in front of the Faculty of Engineering in UI Campus Depok. GKFM / University Health Center Building was built to better serve several important needs of the students, such as:

Polyclinic Unit
Provide a free health service to all students of the Universitas Indonesia. Students only need to provide their Student ID card to process their membership card for future medical record to receive this service. There are several services available:
- a. Public Health Service
- b. Dental Health Service

Service Hours:
Monday - Thursday: 08.00 - 12.30
 and 14.00 - 19.00
Friday: 08.00 - 11.00
 and 14.00 - 19.00
Saturday: 08.00 - 12.00

Note:
Aside from the above mentioned facilities for students which are funded by the Students Welfare and Facility Fund, GKFM in UI Depok Campus also provide facilities for blood chemistry examinations, x-ray, and cardiac examination for university members with affordable prices.

Pharmacy
The pharmacy provides free medicine for 3 (three) days for UI students who seek treatments in the Polyclinic unit. The pharmacy also provides various other medicines for first aid needs for general public purchase.

UI Student Counseling and Guidance (BKM)
In providing service in the mental welfare of the UI students, the Student Counseling and Guidance is a place where UI students can receive psychological help in dealing with academic, personal or family problems. These psychological help are given in the form of counseling and guidance. Guidance service is the provision of information (to an individual or group) with the purpose of making sure that students are able to learn and build an optimal social relationship. Counseling service is the process of giving help to students and support student in finding a way to solve his problem. Here, a counselor functions as a facilitator.

Services in the UI Student Counseling and Guidance
The routine services provided by the BKM UI are counseling and guidance services daily which are done at:
Service Time: Monday - Friday
Service Hours: 09.00 - 15.00
Place: Student Welfare Center
 2nd floor, Student Welfare & Facility Center Building
 UI Campus Depok
Phone: +6221-96384797

BKM UI staff of counselors consists of psychologies, psychiatrists, and academic counselors.

Problems handled by BKM UI
Generally, the problems handled by the BKM UI consist of academic, personal, family, and social problems.
BKM UI’s other services:
• Online counseling
• Peer counseling training
• Counseling training for counselor lecturers and BKM management in the faculty level.
• Coordinate meeting between BKM in the university and faculty level.
• Personality development training
• Group therapy

UI Salemba Polyclinic
For students in the UI Salemba Campus, the university also provides similar health service in the polyclinic for public health service.

Service time : Monday - Friday: 08.00 - 12.00
and 14.00 - 18.00

3.5.5. UI STUDENT DORMITORY
Location : UI Campus, Depok
Phone/Fax : +6221- 7874414 /
 +6221-7874271
Capacity : 594 rooms for male students housing, 656 rooms for female students housing
 (including the VIP - AC rooms)
Facility : TV, cafetaria, public pay phone, public internet shops, computer rental

UI Wismarini Student Dormitory
Location : Jl. Otto Iskandar Dinata No. 38, East Jakarta, Indonesia
Phone/Fax : +6221-8195058
Capacity : 72 rooms for male students housing, 111 rooms for female students housing
Facility : Badminton court, TV, cafeteria, Table Tennis

The UI Wismarini student dormitory is provided to students from the Salemba Campus (Faculty of Medicine & Faculty of Dentistry).

Facility
• Standard housing facility: Bed, table, chair, wardrobe, shoe rack, lamp, bathroom, wash basin.
• Technology facility: Public pay phone shops, public internet shop, photocopy
• Public facility: Cafeteria, praying room, laundry service, sport facility, car/motorcycle parking areas, minimart, dormitory market

Room Specification
• Standard room: Standard bed, table, chair, bookcase, wardrobe, shoe rack, lamp, outdoor bathroom, non AC.
• Standard plus room: Standard bed, table, chair, book case, wardrobe, shoe rack, lamp, outdoor bathroom, air conditioned.
• Bungur and Melati room: Spring bed mattress, table, chair, indoor bathroom, wash basin, small kitchen, living room, air conditioned.
• VIP room: Spring bed mattress, table, chair, indoor bathroom, wash basin, small kitchen, living room, air conditioned.

Other information
• UI Depok dormitory has their own set of rules and regulations which must be obeyed by all dormitory residents as an attempt to create conducive environment for dormitory residents and as an attempt to maintain harmony among the various elements of the UI Depok dormitory residents.
• Each undergraduate student residents of the UI Depok dormitory are entitled to live in the dormitory for one year (semesters 1 and 2).
• Residents will be charged for every electronic device which they brought to their dormitory rooms.
• For further information, please contact UI Dormitory secretariat at +6221-78744144 or by clicking http://asrama.ui.edu.

Registration Process Flow Chart for UI Dormitory

Step 1: Joint Academic Registration where students will receive their student ID number (NPM). Students will then be asked to fill out registration form and enclose:
(1) a copy of ID card
(2) a copy of academic registration proof
(3) a copy of acceptance letter
(4) 3x4 photographs
(5) a letter of statement on impoverished condition
(6) not a smoker statement

Step 2: acquire a recommendation from the Faculty’s Associate Dean for Students Affair --> submit the form package + recommendation --> considered entitled to a room in the dormitory: No --> STOP; Yes --> continue to the next step

Step 3: Make a registration at the UI Depok dormitory by submitting the form package + recommendation, pay the first month rent + security deposit at the dormitory counter.

Step 4: Accepted as dormitory resident for two semesters. Submit proof of payment and receive the room key.

3.5.6. WISMA MAKARA
Phone : +6221-78883670, 78883671
Reservation : +6221-78883672
E-mail : info@makara.cso.ui.ac.id
Website : http://www.wismamakara.com

Wisma Makara, located within the UI Depok campus, is a choice of accommodation for the Southern Jakarta and Depok area. This hotel is very suitable for seminar, training, workshop activities. Surrounded by rubber trees and a lake; the hotel’s cool, calm, and beautiful atmosphere provides the perfect background for your various activities. The hotel’s tranquility also makes it very suitable for those of you who need tranquility to work and rest.

Available facilities:
• 70 fully furnished rooms (AC, TV, refrigerator)
• Restaurant
• Swimming Pool
• Coffee Shop
• Meeting room (up to 100 person capacity)
• Pay phone shop and internet shop
• Photocopy
• Ballroom (with 800 person capacity)
• Parking area
3.5.7. UI STUDENT ACTIVITY CENTER (PUSGIWA)
Location : UI Campus Depok
Phone : +6221-7270201
Pusgiwa UI is a place for various student activities in Universitas Indonesia. Here we can find secretariat offices of various UI student organizations. Pusgiwa also provides many facilities for students’ activities such as an 300-400 person auditorium.

3.5.8. UI STUDENTS HALL
Location : UI Salemba Campus
Capacity : 300 People
Phone : +6221-31901355/56
The UI Salemba Student Hall is one of the facilities in UI under the management of Directorate of Student Affairs and Alumni Relation. This hall is often used for various activities such as meetings, seminars, workshops, and many more. The hall is available for use by the university members and public.

3.5.9. SPORT FACILITIES
A. Stadium
 - Football field
 - Triple Jump Field
 - Athletic Field
B. In Door (Gymnasium)
 - Badminton court
 - Volleyball court
 - Basketball court
C. Out Door
 - Hockey field
 - Basketball court (3 lines)
 - Badminton court (1 line)
Permit form or letter for the use of UI Student Activity Center (Pusgiwa), UI Student Hall, and Sport Facilities must be submitted to the Directorate of Student Affairs and Alumni Relation UI located at the Student Activity Center Building, UI Campus Depok.
Phone : +6221-7866403, 7863453
Fax : +6221-7863453
at FTUI, several sport facilities are available: basket ball court, futsal court and climbing wall.

3.5.10. BIKE TO CAMPUS
As a proof to Universitas Indonesia’s commitment in implementing the “Go Green” program, UI has provided free bicycles as a mean of transportation within the campus area. Started in 2008, this program establishes collaboration with the Bike to Work and Polygon, making UI the first campus in Indonesia with their own Bike to Campus program.

These bicycles, which colors and and form are specially design for UI, are single seat bicycles. By July 2009, there are around 300 units of bicycle available for use and will continue to be added in accordance with the campus development or demand.

How to Borrow:
1. Students simply showed their student ID card (KTM) to officer in charge of each bike shelter.
2. Campus bicycle can only be use on the available bicycle track. It is forbidden to ride them outside of the available track or to take them outside of campus area.
3. Each bicycle is equipped with a trunk with a maximum capacity of 10 kg and is not to be use as a passenger space.
4. Borrowed bicycle is the responsibility of each student until it is returned to the officer in
charge of each bike shelter.
5. Students may return the borrowed bicycle at the nearest bike shelter by showing their student ID card (KTM) to the officer of said shelter.

Service time for Bike to Campus is Monday to Friday, 08.00 - 17.00. For usage outside of service day and time, interested party must coordinate in accordance to the existing regulation.

A few points worth noting in cycling:
Once you’ve received your borrowed bicycle from the shelter officer, please do the following:
1. Make sure that your bicycle are in good order and function well.
2. Make sure that you have both hand on the bicycle handle, put your books/bags on the provided space.
3. Arrange your seat in accordance to your height, the height of your seat determines your comfort in cycling.
4. Each bicycle has three shifter levels, use them in accordance.
5. Ride the bicycle on the provided track, stay at the left side of the track when passing other bicycle.
6. Pay special care to motorcycles at each crossing.
7. Pay special attention to cycling safety.

3.6. STUDENT ORGANIZATION
Students are a nation’s agent of change in making changes towards a fair and prosperous independent society. Their power in fighting and struggling toward that goal must always be balanced with moral power as future asset in their fight in realizing the country’s objectives. Thus, students need a vessel where all of their independent, family oriented, scientific, society oriented, and open activities can be accommodated. In Universitas Indonesia, this vessel is called Universitas Indonesia Student Society Association (Ikatan Keluarga Mahasiswa Universitas Indonesia - IKM UI).

IKM UI is a formal and legal organization which is the parent organization for all student activities in Universitas Indonesia. IKM UI adopts constitutional values adapted with the need of student lives. Sovereignty of IKM UI lies in the hand of the students and is fully implemented according to Laws and Constitution of IKM UI. The members of IKM UI are registered students in the Universitas Indonesia, consisting of active and regular members. Active members are IKM UI members that have followed active member admission procedures and received recommendation from the faculty. Regular members are IKM UI members that are not registered within the active membership of IKM UI. The symbol of the Universitas Indonesia Student Society Association (IKM UI) is the Makara of Universitas Indonesia with the wording IKATAN KELUARGA MAHASISWA UNIVERSITAS INDONESIA in black.

Student organizations that are incorporated within the IKM UI are:
1. Students Forum
2. Students Representative Council
3. Student Executive Body
4. Financial Audit Agency
5. Student Court
6. Student Element of the Board of Trustees
7. Autonomous Body of the Student Activity Unit
8. Semi Autonomous Body of the Student Activity Unit

Students Representative Council (Dewan Perwakilan Mahasiswa - DPM)
Students Representative Council is the high level body within the Universitas Indonesia Student Society Association (IKM UI) which possesses a legislative power. Members of the DPM UI consist of independent members from each faculties and representatives of legislative bodies of each faculty. Independent members are voted through a general election, while there can only be one
representative from each faculty’s legislative body. Membership of DPM UI is inaugurated by a student forum decree. Term of office for members of the DPM UI is one year and ended simultaneously with the inauguration of the new members of the DPM. The requirements for becoming a member of the DPM UI are regulated within the IKM UI laws. DPM UI has the authority in term of legislative, supervision, and assessment of Students Representative Council’s (BEM UI) Work Accountability Report, jurisdiction, facility, and designing the admission mechanism and follow up on financial budget plan of each student organizations within the Universitas Indonesia for each period of management. Members of the DPM UI are entitled to interpellation right, voting right, and the right to convey suggestion and express their opinions.

Secretariat : Student Activity Center
Building (Pusgiwa), 2nd floor
Phone : +6221-94629107,
+6285717884964

Students Representative Council (Badan Eksekutif Mahasiswa - BEM)
Universitas Indonesia Students Representative Council is a student organization within the university level with the executive power. Term of office for UI Students Representative Council is one year, from January to December each year. Chairman and Vice Chairman of BEM UI are elected as a couple directly by members of the IKM UI in a Universitas Indonesia General Election. The elected Chairman and Vice Chairman of BEM UI are later officially inaugurated with a Student Forum Decree. Function and authority of BEM UI are, among other: advocate students in issues relating to funds and facilities at the university level; addressing the external politic policy of IKM UI; serve and coordinate with the Universitas Indonesia Autonomy Body of UKM UI, faculty’s executive body, and student element of the Board of Trustees. BEM UI Board of Administrators is elected based on open and close recruitment mechanism.

Student Activity Unit (Unit Kegiatan Mahasiswa - UKM)
Student Activity Unit of Universitas Indonesia (UKM-UI) is a place of student activities and creations in the Universitas Indonesia in one area of specialization, talent and religious services at the university level. The Student Activity Unit consists of the Autonomy and Semi Autonomy Bodies. Universitas Indonesia UKM Autonomy Body is a UKM in the university level which is deemed qualified and valid by the decree of the Student Forum into an autonomic UKM UI Autonomy Body. While the Universitas Indonesia UKM Semi Autonomy Body is a place of student activities and creations in the Universitas Indonesia in one area of specialization, talent and religious services at the university level under the coordination of the Students Representative Council.

a. Art
1. Krida Budaya Dance League
2. Madah Bahana Marching Band
3. Mahawarditra Philharmonic
4. Paragita Choir
5. Student Theater

b. Sport
1. Badminton
2. Hockey
3. Tennis
4. Soccer
5. Basket Ball
6. Swimming
7. Volley Ball
8. Soft Ball
9. Bridge
10. Futsal
11. Dance Sport
12. Cricket
13. Table Tennis

c. Martial Art
1. Taekwondo
2. Merpati Putih
3. Aikido
4. Wushu

d. Religious Groups
1. Moslem Student Society (Nuansa Islam Mahasiswa - SALAM)
2. Catholic Student Society (Keluarga Mahasiswa Katolik - KMK)
3. Oikumene Civitas Academica Society (Persektuan Oikumene Sivitas Akademika - POSA)
4. Buddhist Student Society (Keluarga Mahasiswa Budhis)
5. Hindu Student Society (Keluarga Mahasiswa Hindu)

e. Academic Group
1. Eka Prasetya Student Study Group (KSM EP)
2. English Debating Society (EDS)

f. Entrepreneurship
1. Student Voice
2. CEDS
3. Student Radio (RTC UI FM) 107.9

g. Others
1. Wira Makara (Student Regiment)
2. Students’ Mountaineering Club (Mapala)

3.7. CAREER DEVELOPMENT CENTER (CDC)
Career Development Center is a center with the aim of preparing UI graduates to have more skill and higher level of competitiveness and at the same time channeled UI graduates to the working world. CDC is located in the Student Center Building.
Phone/Fax : +6221-70880577/78881021
Email : cdc-ui@ui.ac.id
FTUI also has a CDC, located at 3rd floor of Engineering Center (EC) Building.
Phone : +6221-78880766

3.8. NATIONAL STUDENT SCIENCE WEEK
The National Student Science Week (Pekan Ilmiah Mahasiswa Nasional - PIMNAS) is a prestigious event for all Universities in Indonesia organized by the Directorate General of Higher Education (DIKTI). The Adikarta Kertawidaya trophy is the award contested at the PIMNAS. PIMNAS is an opportunity to channel the creativity, education and community service of the society in a Student Activities Program. Below is some of the Student Activities Program being contested within the National Student Science Week.

Student Creativity Program – Research (PKM-P)
This program is a research program that aimed to identify the determinants of the quality of the product, find a causal relationship between two or more factors, experimented with a form or equipment, to establish the method of learning, conduct an inventory of resources, modifying existing products, identify the chemical compounds in the plants, testing the efficacy of plant extracts, formulate marketing techniques, a health survey of street children, teaching methods Balinese script in elementary school students, the rate of economic growth in the craft center of Kasongan, superstition factor that characterizes the behavior of the Javanese community and other activities that have such a purpose.

Student Creativity Program - Technology Application (PKM-T)
This program is a technology assistance program (quality of raw materials, prototypes, models, equipment or production processes, waste management, and quality assurance systems and many other) or other micro-or small-scale industries (home industries, small traders or cooperation) as needed by the potential partners in the program. PKMT require students to exchange ideas with
their partner in the program first, because the product is a solution of a problem which the PKMT partner prioritizes. Thus, in the proposed program, the student must attach a Statement of Willingness to Work Together with Partner on a paper with Rp. 6000, - seal.

Student Creativity Program - Entrepreneurship (PKM-K)

This program is the where students develop their skills in entrepreneurship and is a profit oriented program. Business commodities produced can be in the form of goods or services which in turn are one of the basic capital students will need in entrepreneurship and to enter the market.

Student Creativity Program - Community Service (PKM-M)

This program is an assistance program in science, technology, and arts in an effort to increase performance, build business skills, structuring and improving the environment, strengthening community institutions, the socialization of rational drug use, exposure to and understanding aspects of customary law, relief efforts on illiterates in the society and other community programs both for formal and non-formal societies.

Student Creativity Program - Writing Scientific Articles (PKM - AI)

This program is a program of writing a scientific article which originated from student activities in education, research, or community service which the student has done himself (case studies, field practice, community development work, student creativity program, internships, and many other).

Student Creativity Program - Written Concept (PKM - GT)

This program is a program of writing a scientific article that originated from ideas or concepts from a group of students. This written idea refers to an actual problem that can be found in the community and require a smart and realistic solution. In each area these programs are subdivided into seven groups of fields of science, namely:

1. Health field, including: Pharmacy, Nutrition, Obstetrics, Medicine, Dentistry, Nursing, Public Health, and Psychology.
2. Agricultural field, include: Veterinary Medicine, Forestry, Maritime, Fisheries, Agriculture, Animal Husbandry, and Agricultural Technology.
3. Mathematic and Natural Sciences field, including: Astronomy, Biology, Geography, Physics, Chemistry, and Mathematics.
4. Technology and Engineering field, including: Information Technology, Engineering, and Agricultural Technology.
5. Social Economy field, including: Agribusiness (Agriculture), Economic, Social and Political Sciences.
6. Humanities field, including: Religion, Language, Philosophy, Literature, and Art.
7. Education field, including: Education Sciences study program under the Faculty of Education.

Submission deadline for PKM-K, PKM-M, and PKM-P proposals are in October of each year, while deadline proposals for PKM-GT and PKM-AI are in March of each year. Almost all of these areas can be followed by students in 12 faculties at UI. PIMNAS is a means to prove the existence of UI as a research university in Indonesia. Win the Adikarta Kertawidya trophy and show the existence of UI as the Research Campus.

For further information:
http://bem.ui.ac.id/
http://mahasiswa.ui.ac.id/info-pkm-2010.html

3.9. SCHOLARSHIP

Universitas Indonesia currently manages approximately 71 scholarships both from the government and the private sector. Information about scholarships can be obtained at the Student Affairs Division of each faculty or through the website of the Directorate of Student Affairs at www.mahasiswa.ui.ac.id.
There are two types of scholarship in UI:
• UI Scholarship
• Donor/Sponsor Scholarship

General requirement procedure for scholarship application from Donor/Sponsor:
• Submit application through the Faculty Head with a recommendation from the Associate Dean of Student Affairs.
• Submit a photocopy of academic transcript stating a GPA corresponding with the requirement given by the donor/sponsor.
• Not a smoker.
• Is not a receiver of similar other scholarship.
• Other requirements as stated by the Donor/Sponsor.

LIST OF NAME OF SCHOLARSHIP DONOR/Sponsor for Universitas Indonesia Students
1. Bank BNI 46
2. Bank Central Asia
3. Bank Indonesia
4. Bank KEB Indonesia
5. Bank Lippo
6. Bank Mandiri
 • Bank Mandiri
 • Bank Mandiri Prestasi
7. Bank Mayapada
8. Bank Niaga
9. Bank Permata
10. Bank Tabungan Negara
11. Student Special Aid
 • Special Aid for Undergraduate Program Student
 • Special Aid for Vocational Program Student
12. BAZNAS
13. West Java Scholarship
14. BMU Scholarship
15. CIMB Niaga Excellent Scholarship
16. DKI Jakarta Scholarship
 • Jakarta Achievement Scholarship
 • Jakarta Thesis Scholarship
17. BPMIGAS
18. BRI
19. BUMN
20. DIKNAS
 • DIKNAS (Excellent Activist Scholarship)
 • DIKNAS (Excellent Master Scholarship)
 • DIKNAS (Super Excellent Scholarship)
21. DIKNAS 1 (BBM)
22. DIKNAS 2 (PPA)
23. Eka 2007 - 2008
25. Eka Cipta (Uang Buku)
26. Exxon MOBIL (For Students from Aceh)
27. Exxon MOBIL (For Students from Aceh)

Thesis
28. Indosat
29. Karya Salemba 4 (KS 4)
30. KORINDO
31. LGE
32. MARUBENI
33. MC. DERMONT
34. Part Time Job

Flowchart of Scholarship Application
35. Posco (Thesis Aid)
36. PPA/BBM Angkatan 2009
 - PPA/BBM DIII
 - PPA/BBM S1
37. PPE
38. PT. BUMA Apparel Industry
39. PT. Coca Cola
40. PT. Indocement
41. PT. Accenture
42. PT. Sun Life Indonesia
43. PT. Thiess
44. Qatar Charity
45. Recapital
46. Rotary Club Jakarta Sudirman
47. Salim
48. Sariboga
49. Shell (Extension Scheme)
50. Shell (New Scheme)
51. Sime Darby
52. Sumitomo Bank (Supportive Scholarship)
53. Sumitomo Bank (Full Scholarship)
54. Sumitomo Corporation Scholarship
55. Supersemar
56. Tanoto
57. Tanoto S2
58. Total E & P
59. TPSDP (DIKTI)
60. UFJ Foundation / Mitsubishi
61. Unilever
62. Y. Asahi Glass (YAGI)
63. Y. Toyota (REGULER)
64. Yayasan IJARI
65. Yayasan Goodwill Internasional
66. YAYASAN TIFICO
67. YKPP - Pertamina
 - YKPP - Pertamina (Living Allowance)
 - YKPP - Pertamina (Tuition Fee)
Insurance Claims Process

Start
- **Student**

Students Experience an Accounted Peril
- Students file a report to UPT PLK/Nearest Police station

Students request a cover letter from Associate Dean of Student Affairs by providing:
- doctor’s letter,
- a proof of payment, chronological report of event and report from UPT PLK/Police

Directorate of Students Affairs
- Associate Dean of Student Affairs submit the insurance claim to the Directorate of Student Affairs

Student files his/her claim to Jasa Raharja Putra Mampang Branch Office, South Jakarta

Facility of Students Affairs
- **Faculty**

Finish

<table>
<thead>
<tr>
<th>Cause</th>
<th>Condition</th>
<th>Required Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train Accident</td>
<td>Injured</td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Treatment report from the attending doctor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Original receipt from the hospital or the attending physician</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Accident Report from Polsuska (PT. KAI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Autopsy report from the hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Death Certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. A copy of the victim’s birth certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. A copy of Family Card</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Heir certificate letter from the local district office.</td>
</tr>
<tr>
<td>Road Accident</td>
<td>Injured</td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Treatment report from the attending doctor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Original receipt from the hospital or the attending physician</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Accident Report from Transportation Agency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Autopsy report from the hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Death Certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. A copy of the victim’s birth certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. A copy of Family Card</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Heir certificate letter from the local district office.</td>
</tr>
</tbody>
</table>
3.10. INSURANCE

Each student enrolled in Universitas Indonesia for each running semester (participate in academic activities) will also be registered as an insurance member of PT. Asuransi Jasa Raharja.

For these insured students, they are allowed to submit an insurance claim in accordance with the following provisions:

- Accidents included within the insurance claim are accidents which occurred during the student’s journey from home to UI campus to participate in academic and extracurricular activities whether it is within or outside of Campus area and with the UI/Faculty’s Management’s knowledge and permission.
- Compensation on claim regarding students’ accident is only applicable to those who have paid the DKFM fee for the semester.
- In the event of an accident, student must report the accident no later than 3x24 hours to the office of the Universitas Indonesia Directorate of Student Affairs Sub Directorate of Student Welfare Services or the nearest PT Jasa Raharja Office Branch.
- If after 180 (one hundred and eighty) days, the accident is not reported, insurance compensation shall be canceled.
- Compensation claim (for victims suffering from injuries) must be submitted by attaching the original and valid receipt from doctor/hospital/clinic that treated the student’s injuries.
- Non-medical care or treatment is not compensable.
- Students may send their inquiries regarding any matter that are not listed here directly to the Universitas Indonesia Head of Student Welfare Sub Directorate at the Central Administration Building, Universitas Indonesia Campus, Depok.

Compensation Receivable from the Insurance Claim *)

Death due to an accident :
Rp. 5.000.000, -

Permanent disability due to accident :
Rp. 10.000.000, -

Care / medical Treatment due to accident (maximum payment) :
Rp. 3.500.000, -

*) Subject about to change without notice

3.11. GENERAL INFORMATION

Post Office, Depok Campus

The Depok Campus Post Office offers postage stamp sales, special delivery mail delivery, registered mail, parcel post, money orders, checks and postal giro and savings services such as Batara. Address: Ground Floor Integrated Student Services Center (PPMT) Building, UI, Depok Campus, 16424

Important Phone Numbers
UI Campus Salemba
Phone : +6221-330343, 3303455
Fax : +6221-330343

UI Campus Depok
Phone : +6221-7270020, 7270021, 7270022, 7270023, 7863460

| Firefighters | 116 |
| SAR | 55 021 |

Ambulance
RSCM : 118
Accidents : 119, 334 130
Police (on duty) : 525011

Police station
Central Jakarta : 3909922
North Jakarta : 491 017
3.12. INTERNATIONAL JOURNAL OF TECHNOLOGY

International Journal of Technology (IJTech) is bi-annual international referred journal with the objectives to explore, develop, and elucidate the knowledge of engineering design and technology, to keep practitioners and researchers informed on current issues and best practices, as well as serving as a platform for the exchange of ideas, knowledge, and expertise among technology researchers and practitioners.

International Journal of Technology provides an opportunity to share detailed insights from different understandings and practices associated with technology. It provides an international forum for cross-disciplinary exchange of insights and ideas regarding value and practices for dissemination. International Journal of Technology will publish your work to international society of practitioners and researchers with interest in technology design and development from a wide variety of sectors.

Website: www.ijtech.eng.ui.ac.id

3.13. QUALITY IN RESEARCH (QiR) CONFERENCE

QiR Conference is a bi-annual international conference organized by FTUI since 1998. The 13th QiR was held in Yogyakarta from 25 - 28 June 2013. It was attended by over 400 participants from 16 different countries in the world. This conference provide a chance for students, be it undergraduate, master or doctoral program students, to present their research findings in front of an international audience. The 14th QiR will be held in August 2015. For more detail information on QiR, please visit: http://qir.eng.ui.ac.id.

3.14. INTERNATIONAL OFFICE

International Office is the university division dedicated to support the internationalization goals of the university and to handle international mobility involving the university and the international civitas academica. Their goal is to assist the international students and scholars handle their academic-related matters at Universitas Indonesia and to bridge Universitas Indonesia’s civitas academica with overseas universities. Universitas Indonesia has a worldwide cooperation with various universities all over the world. These cooperations include not only academic but also research collaborations, giving the international access and exposure to its entire proud member.

The International Office of Universitas Indonesia provides various services such as: Bilateral Cooperation (University to University Cooperation), Regional Cooperation (International Associations & International Forums), Government to Government Cooperation (G to G), International Learning and Teaching, Student Exchange, Double Degree, Sandwich Program, Visiting Scholars, Study abroad, Scholarship Opportunities, International Research and Research Training, International Knowledge Transfer; are some of the services provided by the International Office. These opportunities are open for all university members from lecturers to students, be it in their Bachelor, Master or Ph.D program. Students can benefit from these programs in experiencing a once in a life time chance to study and understand different academic cultures in the world.

For further information, please contact:
Central Administration Building
1st Floor, Universitas Indonesia
Kampus Depok, Jawa Barat 16424
Phone/fax : +62 21 - 7888 0139
Email : intofui@yahoo.com, io-ui@ui.ac.id
Mlist : internationaloffice@yahooogroups.com
Twitter : @intofui
UNDERGRADUATE PROGRAM
4.5. UNDERGRADUATE PROGRAM IN ELECTRICAL ENGINEERING

Program Specification

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1. | **Awarding Institution** | Universitas Indonesia
Double Degree: Universitas Indonesia and partner university |
| 2. | **Teaching Institution** | Universitas Indonesia
Double Degree: Universitas Indonesia and partner university |
| 3. | **Programme Title** | Undergraduate Program in Electrical Engineering |
| 4. | **Class** | Regular, Parallel, International |
| 5. | **Final Award** | Sarjana Teknik (S.T)
Double Degree: Sarjana Teknik (S.T) and Bachelor of Engineering (B.Eng) |
| 6. | **Accreditation / Recognition** | BAN-PT: A accredited
AUN-QA |
| 7. | **Language(s) of Instruction** | Bahasa Indonesia and English |
| 8. | **Study Scheme (Full Time / Part Time)** | Full Time |
| 9. | **Entry Requirements** | High school /equivalent, or D3 / Polytechnique / equivalent,
AND pass the entrance exam. |
| 10. | **Study Duration** | Designed for 4 years | |
| | **Type of Semester** | **Number of Semester** | **Number of weeks / semester** |
| | Regular | 8 | 17 |
| | Short (optional) | 3 | 8 |
| 11. | **Graduate Profiles:** | Bachelor of engineering who is able to design both hardware and/or software as solution in electrical engineering problem based on technological advancement in accordance with professional ethics. |
| 12. | **Expected Learning Outcomes:** | |
| | General outcomes: | |
| | 1. Able to design hardware. | |
| | 2. Able to design software. | |
| | 3. Able to handle general issues and specific in electrical engineering. | |
| | 4. Able to apply the basic principles of mathematics, physics, and statistics in solving electrical engineering. | |
| | 5. Capable of critical thinking, creative, and innovative and have the intellectual curiosity to solve problems at the level of the individual and the group. | |
| | 6. Able to identify varieties of entrepreneurial efforts that are characterized by innovation and self-reliance based on ethics. | |
| | 7. Able to use the language both spoken and written in the Bahasa Indonesia and English for academic or non-academic activities. | |
| | 8. Able to provide alternative solutions to problems that arise in the environment, society, nation, and country. | |
| | 9. Able to utilize information communication technology (ICT). | |
| | Electronics Engineering Majoring Outcomes: | |
| | 1. Able to design advanced electronics circuit. | |
| | 2. Able to analyse photonic devices. | |
| | 3. Able to design MEMS. | |
| | 4. Able to design VLSI circuit. | |
| | 5. Able to analyse state of the art in the field of electronics and photonics. | |
| | 6. Able to utilize technological advancement to solve problems related to his/her expertise (stream). | |
12. Telecommunication Engineering Majoring Outcomes:
1. Able to design wire and wireless communication equipment system.
2. Able to design communication network system.
3. Able to analyse the performance of communication systems on different media.
4. Able to identify the process of information signal processing.
5. Able to examine the development of telecommunications engineering.
6. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring).

Control Engineering Majoring Outcomes:
1. Able to identify dynamic control system in mathematical equation.
2. Able to design discrete controller.
3. Able to design knowledge-based controller.
4. Able to reverse engineer simple controller.
5. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring).

Electrical Power Engineering Majoring:
1. Able to characterize electric power engineering and energy.
2. Able to review the latest technology to solve the problem of electric power and energy fields.
3. Able to analyze the phenomenon of high field to resolve the problems of the field of electric power.
4. Able to itemize the problems of electric power and energy.
5. Able to design simple application in the fields of electric power and energy.
6. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring).

Biomedical Engineering Majoring Outcomes:
1. Able to apply the basic principles of biology in field of biomedicine engineering.
2. Able to apply the techniques, skills and modern tools that are necessary in the practice of biomedicine engineering.
3. Able to analyse medical data/information related to the condition of human physiology.
4. Able to make simple medical device design at the level of individuals and groups.
5. Able to process medical signal to improve the performance of a medical device.
6. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring).

13. Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>71</td>
<td>49.31 %</td>
</tr>
<tr>
<td>iv</td>
<td>Majoring Subject</td>
<td>21</td>
<td>14.58 %</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>8</td>
<td>5.56 %</td>
</tr>
<tr>
<td>v</td>
<td>Special Subject (Internship, Seminar, Undergraduate Thesis)</td>
<td>8</td>
<td>5.56 %</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

14. Total Credit Hours to Graduate: 144 SKS

Career Prospects

The graduates of this program have been employed in various industrial companies within one month (in average) after the graduation. Some of them are involved in power engineering, IT, electronic, oil & gas, telecommunication and other related industries. Some of graduates were even employed before the graduation.

Some occupation or job titles that are suitable for this program are electrical engineer, process engineer, control engineer, instrumentation engineer, program manager, project manager, technical manager and professional lecturers.
LEARNING OUTCOMES

UNDERGRADUATE PROGRAM

ELECTRICAL ENGINEERING

Sarjana Teknik yang mampu membuat rancangan perangkat keras dan/atau perangkat lunak sebagai solusi suatu permasalahan di bidang teknik elektro sesuai etika profesi

- Mampu membuat rancangan perangkat keras
- Mampu membuat rancangan perangkat lunak
- Mampu menangani masalah umum dan spesifik di bidang teknik elektro
- Mampu mengidentifikasi sistem kendali dinamis dalam persamaan matematika
- Mampu membuat rancangan pengendali diskrit
- Mampu membuat rancangan pengendali berbasis pengetahuan
- Mampu mengintegrasikan pengendali sederhana
- Mampu mengkaji perkembangan teknik telekomunikasi
- Mampu membuat rancangan sistem perangkat komunikasi kabel dan nirkabel
- Mampu membuat rancangan sistem jaringan komunikasi
- Mampu menganalisis kinerja sistem komunikasi pada media berbeda
- Mampu mengidentifikasi berbagai proses pengalihan sinyal informasi
- Mampu menggunakan teknologi informasi dan komunikasi sesuai keahliannya (KI)
- Mampu menggunakan bahasa kisah dan tulisan dalam bahasa Indonesia dan bahasa Inggris dengan baik untuk kegiatan akademik dan non akademik
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu mengidentifikasi ragam upaya wirausaha yang bercirikan inovasi dan kemandirian yang berdasarkan etika
- Mampu berpikir kritis, kreatif, dan inovatif serta memiliki keinginan untuk meningkatkan kualitas hidup masyarakat, bangsa, dan negara
- Mampu menggunakan bahasa lisan dan tulisan dalam Bahasa Indonesia dan Bahasa Inggris dengan baik untuk kegiatan akademik maupun non akademik
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
Diagram Alur Mata Kuliah Prasyarat Untuk Mata Kuliah Praktikum

Semester 1

- Mikroprosesor
- Mikrokontroler

Semester 2

- Teknik Telekomunikasi
- Teknik Kendali

Semester 3

- Teknik Telekomunikasi
- Teknik Kendali

Semester 4

- Praktikum Teknik Telekomunikasi
- Praktikum Teknik Kendali

Semester 5

- Teknik Telekomunikasi
- Teknik Kendali

Semester 6

- Praktikum Teknik Telekomunikasi
- Praktikum Teknik Kendali

Semester 7

- Teknik Telekomunikasi
- Teknik Kendali

Semester 8

- Praktikum Teknik Telekomunikasi
- Praktikum Teknik Kendali
Course Structure Undergraduate Program

Electrical Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600003</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE601001</td>
<td>Intro to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE600020 - 48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE602002</td>
<td>Electric Circuit 1</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE603003</td>
<td>Electric Circuit 2</td>
<td>3</td>
</tr>
<tr>
<td>ENEE603004</td>
<td>Electric Circuit Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE603005</td>
<td>Vector Analysis and Complex Variable</td>
<td>2</td>
</tr>
<tr>
<td>ENEE603006</td>
<td>Probability and Stochastic Process</td>
<td>3</td>
</tr>
<tr>
<td>ENEE603007</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENEE603008</td>
<td>Semiconductor Devices</td>
<td>2</td>
</tr>
<tr>
<td>ENEE603009</td>
<td>Fund. of Digital System & Lab</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE604010</td>
<td>Basic Computer and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE604011</td>
<td>Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ENEE604012</td>
<td>Electronic Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE604013</td>
<td>Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>ENEE604014</td>
<td>Signal and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE604015</td>
<td>Electric Materials</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGE600012</td>
<td>Health, Safety & Environment Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENEE605016</td>
<td>Numerical Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE605017</td>
<td>Telecommunication Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE605018</td>
<td>Electric Power Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENEE605019</td>
<td>Electric Power Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE605020</td>
<td>Control Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE605021</td>
<td>Control Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE605022</td>
<td>Algorithm and Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>19</td>
</tr>
<tr>
<td>ENEE606023</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606024</td>
<td>Modelling and Simulations</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606025</td>
<td>Telecommunication Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE606026</td>
<td>Microprocessor and Microcontroller</td>
<td>4</td>
</tr>
<tr>
<td>ENEE606027</td>
<td>Microprocessor & Microcontroller Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE606028</td>
<td>Electric Measurements</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606029</td>
<td>Electric Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Majoring Courses</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>22</td>
</tr>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Majoring Courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>16</td>
</tr>
<tr>
<td>ENEE608033</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Majoring Courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>144</td>
</tr>
</tbody>
</table>

6th Semester

7th Semester

8th Semester

TOTAL 144
CURRICULUM STRUCTURE TELECOMMUNICATION ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606301</td>
<td>Coding Technique and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606302</td>
<td>Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606303</td>
<td>Broadband Multimedia Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607304</td>
<td>Antennas and Propagation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607305</td>
<td>Optical Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608307</td>
<td>Mobile and Wireless Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608308</td>
<td>Communication System Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

CURRICULUM STRUCTURE ELECTRICAL POWER ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606101</td>
<td>Electric Energy Conversion</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606102</td>
<td>Power Electronics and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606103</td>
<td>Management and Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607104</td>
<td>Electric Power System and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607105</td>
<td>High Current & Voltage Eng + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607106</td>
<td>Building Electric Installation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608108</td>
<td>Electric Power Transmission & Distribution</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608109</td>
<td>Electric Power System Protection</td>
<td>2</td>
</tr>
</tbody>
</table>

CURRICULUM STRUCTURE ELECTRONICS ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606201</td>
<td>Advanced Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606202</td>
<td>Photonic Devices</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606203</td>
<td>Semiconductor Device Fabr + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606204</td>
<td>Introduction of Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606205</td>
<td>VLSI</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606207</td>
<td>Solar Cell</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606208</td>
<td>MEMS</td>
<td>3</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE CONTROL ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606401</td>
<td>Digital Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606402</td>
<td>Process Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606403</td>
<td>Electric Drive Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607404</td>
<td>Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607405</td>
<td>Adaptive and Predictive Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608407</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608408</td>
<td>Knowledge Based System</td>
<td>3</td>
</tr>
</tbody>
</table>

CURRICULUM STRUCTURE BIOMEDICAL ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606501</td>
<td>Biology and Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606502</td>
<td>Medical Communication System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606503</td>
<td>Intro to Biomedical Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607504</td>
<td>Medical Imaging Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607505</td>
<td>Medical System Modelling</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608507</td>
<td>Biomedical Instrumentations and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608508</td>
<td>Medical Informatics</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE607306</td>
<td>Special Course of Telecommunications 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608309</td>
<td>Special Course of Telecommunications 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607107</td>
<td>Special Course of Electrical Power 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608110</td>
<td>Special Course of Electrical Power 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606206</td>
<td>Special Course of Electronics 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606209</td>
<td>Special Course of Electronics 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607406</td>
<td>Special Course of Control 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608409</td>
<td>Special Course of Control 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607506</td>
<td>Special Course of Biomedics 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608509</td>
<td>Special Course of Biomedics 2</td>
<td>2</td>
</tr>
</tbody>
</table>

FAST-TRACK CURRICULUM (S1 AND S2)

FAST TRACK CURRICULUM

TELECOMMUNICATION ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>
FAST TRACK CURRICULUM ELECTRONICS ENGINEERING STREAM

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7</td>
<td>7th Semester</td>
<td>7th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Rekayasa dan Kewirausahaan</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Penulisan Ilmiah</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE603007</td>
<td>Matematika Terapan</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606303</td>
<td>Komunikasi Multimedia Pita Lebar</td>
<td>Broadband Multimedia Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENET801002</td>
<td>Sistem Radar dan Disain</td>
<td>Radar Systems and Design</td>
<td>3</td>
</tr>
<tr>
<td>ENET801003</td>
<td>Pengolahan Sinyal dan Aplikasi</td>
<td>Digital Signal Processing & Apps</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607304</td>
<td>Antena dan Propagasi</td>
<td>Antennas and Propagation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607305</td>
<td>Komunikasi Optik</td>
<td>Optical Communications</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Semester 8</td>
<td>8th Semester</td>
<td>8th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE608033</td>
<td>Skripsi</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Metodologi Penelitian</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENET802004</td>
<td>Teknik Sistem Medis Nirkabel</td>
<td>Wireless Medical System Eng.</td>
<td>3</td>
</tr>
<tr>
<td>ENET802005</td>
<td>Disain RF Lanjut</td>
<td>RF Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>ENET802006</td>
<td>Disain Antena Modern</td>
<td>Modern Antenna Design</td>
<td>3</td>
</tr>
<tr>
<td>ENM803007</td>
<td>Komunikasi Multimedia Nirkabel</td>
<td>Multimedia Wireless Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608308</td>
<td>Divais Sistem Komunikasi</td>
<td>Communication System Devices</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Semester 9</td>
<td>9th Semester</td>
<td>9th Semester</td>
<td></td>
</tr>
<tr>
<td>ENET803007</td>
<td>Tek. Komunikasi Gelombang Cahaya</td>
<td>Lightwave Communication Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENET803008</td>
<td>Topik Khusus Telekomunikasi</td>
<td>Special Topic in Telecommunication</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Manajemen & Keekonomian Proyek Teknik</td>
<td>Engineering Economy & Project Manage-</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>ment</td>
<td></td>
</tr>
<tr>
<td>Semester 10</td>
<td>10th Semester</td>
<td>10th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Publikasi Ilmiah</td>
<td>Publication Scientific</td>
<td>2</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Tesis</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

UNDERGRADUATE PROGRAM

ELECTRICAL ENGINEERING
<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Rekayasa dan Kewirausahaan</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Penulisan Ilmiah</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Matematika Terapan</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEP801002</td>
<td>Operasi & Kendali Pembangkitan TL</td>
<td>Power Generation Ops & Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEP801003</td>
<td>Mutu dan Kualitas Daya Sistem TL</td>
<td>Electrical Power System Quality</td>
<td>3</td>
</tr>
<tr>
<td>ENEP801004</td>
<td>Energi dan Lingkungan</td>
<td>Energy and Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607104</td>
<td>Sistem Tenaga Listrik dan Praktikum</td>
<td>Electrical Power System and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607105</td>
<td>Teknik Tegangan & Arus Tinggi +P</td>
<td>High Current & Voltage Engineering Lab</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Semester 8</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ENEE608033</td>
<td>Skripsi</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Metodologi Penelitian</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEP802004</td>
<td>Sistem Dinamik dan Pemodelan</td>
<td>Dynamic System and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Manajemen & Ekonomi Energi</td>
<td>Economics Energy and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEP802006</td>
<td>Elektronika Daya Industri</td>
<td>Industrial Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td>CODE</td>
<td>MATA AJARAN</td>
<td>COURSE</td>
<td>CREDIT</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>ENEE608108</td>
<td>Distribusi & Transmisi Tenaga Listrik</td>
<td>Electric Power Trans. & Distribution</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608109</td>
<td>Proteksi Sistem Tenaga Listrik</td>
<td>Electric Power System Protection</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Semester 9</td>
<td>9th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Manajemen & Keekonomian Proyek Teknik</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENP803007</td>
<td>Topsus Ketenagalistrikan & Energi</td>
<td>Topics in Power System and Energy</td>
<td>2</td>
</tr>
<tr>
<td>ENP803008</td>
<td>Perencanaan Sistem Tenaga Listrik</td>
<td>Power System Planning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Semester 8</td>
<td>8th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Publikasi Ilmiah</td>
<td>Publication Scientific</td>
<td>2</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Tesis</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

FAST TRACK CURRICULUM CONTROL ENGINEERING STREAM

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7</td>
<td>7th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Rekayasa dan Kewirausahaan</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Penulisan Ilmiah</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Matematika Terapan</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEC801001</td>
<td>Kendali Analog dan Dijital</td>
<td>Analog and Digital Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEC801002</td>
<td>Topik Khusus Riset Terkini</td>
<td>Special Topic on Advance Research</td>
<td>3</td>
</tr>
<tr>
<td>ENEC801003</td>
<td>Pemodelan dan Rekayasa Sistem</td>
<td>Modeling and System Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607404</td>
<td>Robotika</td>
<td>Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607405</td>
<td>Sistem Kendali Prediktif & Adaptif</td>
<td>Adaptive & Predictive Control System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Semester 8</td>
<td>8th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE608033</td>
<td>Skripsi</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Metodologi Penelitian</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEC802004</td>
<td>Sistem Kendali Multivariabel</td>
<td>Multivariable Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEC802005</td>
<td>Robotika Cerdas</td>
<td>Intelligent Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEC802006</td>
<td>Kendali Adapatif dan Optimal</td>
<td>Adaptive and Optimal Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608407</td>
<td>Mekatronika</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608408</td>
<td>Sistem Berbasis Pengetahuan</td>
<td>Knowledge Based System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Semester 9</td>
<td>9th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEC803007</td>
<td>Kendali dan Sistem Cerdas</td>
<td>Intelligent System and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEC803008</td>
<td>Kendali Lanjut Sistem Penggerak Elektrik</td>
<td>Advanced Control on Electric Drive</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Manaj. & Keekonomian Proyek Teknik</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
CURRICULUM OF INTERNATIONAL PROGRAM ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE611001</td>
<td>Fundamental of Digital Systems and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE611002</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENGE610003</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENGE610007</td>
<td>Physics (Electric, Magnet, Wave & Optic)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610008</td>
<td>Physics (Electric, Magnet, Wave & Optic) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE611003</td>
<td>Introduction to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENEE611004</td>
<td>Electrical Materials</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE612005</td>
<td>Basic Computer and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE612006</td>
<td>Semiconductor Devices</td>
<td>2</td>
</tr>
<tr>
<td>ENGE610004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE610005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE612007</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENEE612008</td>
<td>Electric Circuit 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE613009</td>
<td>Electric Circuit 2</td>
<td>3</td>
</tr>
<tr>
<td>ENEE613010</td>
<td>Algorithm & Programming</td>
<td>4</td>
</tr>
<tr>
<td>ENEE613011</td>
<td>Vector and Complex Variable Analysis</td>
<td>2</td>
</tr>
<tr>
<td>ENEE613012</td>
<td>Electric Circuit Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE613013</td>
<td>Electrical Power Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE613014</td>
<td>Electrical Power Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE613015</td>
<td>Telecommunication Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE613016</td>
<td>Telecommunication Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE613017</td>
<td>Probability and Stochastic Process</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE614018</td>
<td>Control Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE614019</td>
<td>Control Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE614020</td>
<td>Electronics Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ENEE614021</td>
<td>Electronics Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE614022</td>
<td>Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>ENEE614023</td>
<td>Electrical Measurements</td>
<td>2</td>
</tr>
<tr>
<td>Subject Code</td>
<td>Subject Name</td>
<td>Credits</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENEE614024</td>
<td>Electrical Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE614025</td>
<td>Numerical Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE614026</td>
<td>Signal & Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE615027</td>
<td>Microprocessor & Microcontroller</td>
<td>4</td>
</tr>
<tr>
<td>ENEE615028</td>
<td>Microprocessor and Microcontroller Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>UIGE610004</td>
<td>Integrated Characteristic Building Subject B</td>
<td>6</td>
</tr>
<tr>
<td>ENEE615029</td>
<td>Digital Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE615030</td>
<td>Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENEE615031</td>
<td>Power Electronics and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>6th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE616032</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE616033</td>
<td>Modelling and Simulation</td>
<td>2</td>
</tr>
<tr>
<td>UIGE610005-9</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Characteristic Building Subject A</td>
<td>6</td>
</tr>
<tr>
<td>ENEE616034</td>
<td>Introduction of Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE616035</td>
<td>Communication System Devices</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>7th Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE610003</td>
<td>Sports/Arts</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 6 10012</td>
<td>Health, Safety & Environment Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENEE617036</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE617037</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE617038</td>
<td>Electric Power System and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE617039</td>
<td>Process Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE617040</td>
<td>Photonic Devices</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>8th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE618041</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
</tr>
</tbody>
</table>
ELECTIVES

<table>
<thead>
<tr>
<th>CODE</th>
<th>Electives</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE617101</td>
<td>Object Oriented Programming and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE618102</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Resume

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>15</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>103</td>
</tr>
<tr>
<td>Sum</td>
<td>136</td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
THE SYLLABUS
UNIVERSITY COURSES

UIGE600001 (6 Credits)
MPKT A
Learning Outcomes:
Capable of critical thinking, creative, innovative; have the intellectual curiosity to solve problems at the individual and group level.
Able to provide problem-solving alternative against various problems arising in the environment, society, nation, and country.
Topics:
The power and primacy of the character, the basics of philosophy, logic, foundations of ethics, whether it’s human, individual and group, society and culture
Prerequisites: none
Textbook:

UIGE600002 (6 Credits)
MPKT B
Learning Outcomes:
Capable of critical thinking, creative, innovative; have the intellectual curiosity to solve problems at the individual and group level.
Able to provide problem-solving alternative against various problems arising in the environment, society, nation, and country.
Topics:
The power and primacy of the character, the basics of philosophy, logic, foundations of ethics, whether it’s human, individual and group, society and culture
Prerequisites: none
Textbook:

UIGE600003 (3 Credits)
ENGLISH
Learning Outcomes:
Able to use spoken and written English well for both academic and non-academics activities.
Topics:
Study skills: active learner, vocabulary building, word formation and using the dictionary, listening strategies, extensive reading
Grammar: Basic grammar of sentences, clause. Reading: reading skills: skimming, scanning, main ideas, supporting ideas; Note taking reading popular science article, reading an academic text
Listening: short conversation, lecture and note-taking, news broadcast, short story
Speaking: discussion, giving presentation
Writing: summary of short articles, self-describing graphs and tables, academic paragraphs, essays
Prerequisites: none
Textbook:

UIGE600020 - UIGE600048
SPORTS/ARTS
See the academic guidebook of Faculty of Engineering

UIGE600010 - UIGE600015
RELIGION
See the academic guidebook of Faculty of Engineering

FACULTY COURSES
ENGE600003
CALCULUS (4 CREDITS)
Learning Outcomes:
Able to apply advanced mathematical concepts for electrical engineering; Able to apply mathematical concepts of functions and limits, derivative (single/multivariable) and its applications, integrals (single/multifold) and its applications, Taylor series, and Macclaurin series
Topics:
Functions and limits, Derivative (single/multivariable) and applications, integrals (single/multifold) and its applications, Taylor and Maclaurin series
Prerequisites: none
Textbook: none

ENGE600004
LINEAR ALGEBRA (4 CREDITS)
Learning Outcomes:
Able to apply the concept of Linear equations systems, Determinants, vector spaces, the space Results In Time, value and Eigen Vectors, as well as a Linear transformation
Topics:
The concept of Linear equations System, Determinants, vector spaces, the space Results in Time, value and Eigen Vectors, Linear transformation
Prerequisites: none
Textbook: none

ENGE600005
PHYSICS (MECHANICS AND THERMAL) (3 CREDITS)
Learning Outcomes:
Able to apply the concepts of basic physics, mechanics and thermodynamics in understanding nature and engineering phenomena including its applications.
Topics:
Mechanics of motion, gravity, the potential energy of the particle dynamical, works and energy, momentum, rotational motion, collision, kinematics and dynamic, angular momentum Physics Heat-Sound, temperature, heat, laws of thermodynamics I and II, kinetic gas theory I and II, Modern Physics-Quantum
Prerequisites: none

ENGE600006
PHYSICS (MECHANICS AND THERMAL) LABORATORY (1 CREDIT)
See the academic guidebook of Faculty of Engineering

ENGE600007
PHYSICS (ELECTRICITY, MWO) (3 CREDITS)
Learning Outcomes:
Able to apply the concepts of basic physics, electricity, magnetism, optics, and waves in understanding nature and engineering phenomena including its applications.
Topics:
A static electric charge, Coulomb, electric field, Gauss law, electric potential, Capacitor and di-electric. Dynamic power, current, and prisoners, Ohm’s law, electrical, electrochemical potential difference, the electric circuit. Field magnetism, magnetic motive force and flow, the effects of Hall, law ampere, the intensity of the magnetic field B, Biot-Savart’s law, the law of Faraday, inductance, electromagnetics, oscillations, Maxwell’s equations.
Prerequisites: none
PHYSICS (ELECTRICITY, MWO) LAB
See the academic guidebook of Faculty of Engineering

ENGE600012
HEALTH SAFETY ENVIRONMENT PROTECTION
See the academic guidebook of Faculty of Engineering

ELECTRICAL ENGINEERING COURSES

ENEE611003
ENEE601001
INTRODUCTION TO ELECTRICAL ENGINEERING (2 CREDITS)
Learning Outcomes:
Able to explain the basic concepts of electrical engineering and its application in everyday life.
Topics:
Basic concepts and its applications of: Electronics Engineering, telecommunications engineering, Control Engineering, electric engineering and energy, and biomedical engineering.
Prerequisites: none
Textbook:
Diktat Pengantar Teknik Elektro UI

ENEE612008
ENEE602002
ELECTRIC CIRCUITS 1 (3 CREDITS)
Learning Outcomes:
Able to calculate the electric charge, current, and voltage in a series basis; Able to explain voltage source, current source (free/bound), resistors, and capacitors; Being able to compute the independent circuit using the superposition theorem, the transformation of the source, and Thevenin-Norton; Able to calculate the electric circuit analysis using the variables node (current series), mesh, super-node (circuit voltage), super-mesh; Being able to analyze the response time a series order and order-1-2;
Topics:
Concept: current, voltage, power, and energy; Voltage source, current source (free/bound), resistors, and capacitors; Resistive circuit of series and parallel; Analysis of node, super-node, mesh, super-mesh; Superposition theorem, the transformation of the source, and Thevenin-Norton; Response time-order series 1 and 2
Equipment:
Prerequisite: Calculus, Physics (electricity, mwo).
Textbook:

ENEE613009
ENEE603003
ELECTRIC CIRCUITS 2 (3 CREDITS)
Learning Outcomes:
Being able to make a simple electric circuit design; Able to analyze a 3-phase circuit; Able to analyze electric circuit of frequency response order-1 and order-2; Able to analyze basic circuits shared ideal transformer and inductance; Able to make design of passive and active filter circuits by utilizing basic circuits; Able to analyze a 4 poles circuit.
Topics:
3 phase circuits; Laplace transform; frequency response; shared inductance circuits; 1 order filter circuits passive and active; 4 poles circuits.
Prerequisite: Electric Circuits 1, Vector Analysis and Complex Variables.
Textbook:
ELECTRIC CIRCUIT LABORATORY (1 CREDITS)

Learning Outcomes:
Able to calculate the electric charge, current, and voltage in a series basis; Able to explain voltage source, current source (free/bound), resistors, and capacitors; Being able to compute the independent circuit using the superposition theorem, the transformation of the source, and Thevenin-Norton; Able to analyze circuit ammeter, voltmeter, ohmmeter, and wheat-stone bridge; Able to calculate the electric circuit analysis using the variables node, super-node, mesh, super-mesh;

Topics:
Basic electricity; linearity analysis-mesh and knot; analysis of superposition; Thevenin and Norton; poles series circuits; alternating current circuits; three phases circuits;

Prerequisite: Electric Circuits 1

VECTOR ANALYSIS COMPLEX VARIABLE (2 CREDITS)

Learning Outcomes:
Able to apply advanced mathematical concepts to the field of electrical engineering that includes the complex variable, Cauchy-Riemann equation, Integral Cauchy; Able to apply basic vector differential, integral vector (line, surface and volume), Green's theorem, the Divergence theorem, Gauss and Stokes \(\nabla \times \mathbf{A} = \nabla \times \frac{\partial \mathbf{E}}{\partial t} \); Able to apply the concept of Vector calculus, Complex numbers and functions

Topics:
Complex variables, complex numbers and functions, polar form, powers and roots, de Moivre\’s theorem, dot and cross products, limit. The derivatives, the analytic function. The Cauchy-Riemann equations, Laplace equation, exponential, trigonometric and hyperbolic functions, logarithm and general power. Complex integration, line integrals in complex plane, the Cauchy integral theorem and formula, derivatives of analytic functions. Laurent series, singularities, zeros and infinity, residue integration method and residue, integration of real integrals. With a conformal mapping, Complex analysis and potential theory. Vector differential calculus, vector in 2-space and 3-space. The inner (dot) Product and vector (cross) product, vector and scalar functions and fields. Derivatives, the gradient of scalar fields. Directional derivatives. The divergence and the curl of the vector field. Line integral, the path independence of line integrals. Double integrals, Green's theorem in the plane, the Surfaces for surface integrals, Triple integrals. Divergence theorem of Gauss, Stokes's theorem.

Prerequisite: Calculus, Linear Algebra

Textbook:

ENEE603009
ENEE611001
Fund. of Digital System & Laboratory (3 CREDITS)
Learning Outcomes: In this course, students will learn all design phases and implementations of a digital system. At the end of the course, students will be able to analyze simple digital circuits, and able to design digital systems using combinational and simple sequential building blocks. This lecture also involves practical work in the laboratory to design, implement and verify digital logic systems using digital circuit simulation software.
Topics: Boolean Algebra Principles and applications; Interface Logic Families; Number System & Data Encoding; Basic Logic Circuits; Basic Modular Design of Combinational Circuits; Basic Modular Design of Sequential Circuits.
Practical work: Module 1-Introduction and introduction to Digital Circuit Basics, Module 2 - Boolean Algebra and Elementary logic gates, Module 3 - Karnaugh Map, Module 4 - complex logic gate, Module 5 - Decoder and Encoder, Module 6 - Multiplexer and De-multiplexer, Module 7 - Digital Arithmetic Circuit, Module 8 - Flip-Flop and Latch, Module 9-Registers and Counters, Module 10 - Group Project
Prerequisite: none.
Textbook:

ENEE612007
ENEE603007
ENGINEERING MATHEMATICS (4 CREDITS)
Learning Outcomes:
Able to apply differential equations and several transformation functions for solving problems in the field of electrical engineering.
Topics:
Ordinary Differential Equations (and Constant Coefficient is not constant), Partial Differential Equations, Difference Equations, Laplace transform, Fourier series, Fourier transform, Z Transformation
Prerequisites : Calculus, Linear Algebra
Textbook:

ENEE612006
ENEE603008
SEMICONDUCTOR DEVICES (2 CREDITS)
Learning Outcomes:
Students are able to explain basic concept of semiconductor material for electronics application, basic operation of metal-semiconductor junction, p-n junction, bipolar transition, Metal-Oxide-Semiconductor Field-Effect Transistor, current state of electronic devices
Topics:
Static Characteristic, BJT Dynamic Response Modeling, Junction Capacitance, Transient Response, Metal-Semiconductor Contacts and Schottky Diodes, Ideal MS Contact, Schottky Diode, MOS Fundamentals, Ideal Structure, Electrostatics MOFSET-The Essentials, Qualitative Theory of Operation, Quantitative ID-VD Relationship, ac response Metal-Semiconductor Workfunction Difference, Oxide Charges.

Prerequisites: No

Textbook:

Reference Text:

ENEE612005
ENEE604010

BASIC COMPUTER AND LABORATORY (3 CREDITS)

Learning Outcomes:

- Able to explain types and function of computer hardware
- Able to make the draft algorithms to solve the problem of computation and manipulation of data
- Able to make the draft algorithms: Pseudocode, Flowcharts, Looping, selection/Branching
- Able to implement the algorithm into a high level programming language and low level
- Able to implement the Matlab Script
- Able to implement the structure and control in the language of C
- Able to implement modular programming in C language

Topics:
The history of the computer, computer hardware Components, operating systems, computer networks; Pseudocode; Flowchart; Looping; Selection/Branching; Matlab Script; Structure and control in the C language.

Prerequisite: Basic System digital and Practical.

Textbook:

ENEE614020
ENEE604011

ELECTRONIC CIRCUITS (3 CREDITS)

Learning Outcomes:

- Able to apply the basic concepts of electronics
- Able to analyze basic electronics circuits
- Able to compose electronic circuits by using electronic devices

Topics:

- Series diode transistor circuits
- The circuit configuration of power supply transistors
- Transistor applications
- Frequency Response
- A series of amplifiers

Prerequisite: Semiconductor device, Power Series 1, Series 2 Electric

Textbook:

ENEE614021
ENEE604012

ELECTRONIC CIRCUITS LABORATORY (1 CREDIT)

Learning Outcomes:

- Able to apply the basic concepts of electronics
- Being able to practice the workings of a diode, transistor, circuit configuration, frequency response, amplifiers
- Able to use electronic measuring instrument

Topics:

- Series diode transistor circuits
- The circuit configuration of power supply transistors, transistor...
applications; response frequency, the circuit amplifier.

Prerequisites : Electronic Circuit.

Textbook:
Electronic Circuit Teaching Modules - Electronic Laboratory.

ENEE614022
ENEE604013

ELECTROMAGNETICS (4 CREDITS)

Learning Outcomes:
Able to apply physical concept for electrical engineering; Able to apply Maxwell’s equations on solving the problem of time variation in the form of an integral and differential, energy storage, and quasi static field and analysis of wave in time domain.

Topics:
Electrostatic, Magneto-static, Electromagnetic dynamic, Plane Waves, Maxwell’s Laws, Electromagnetic Interference, transmission line

Prerequisite: Complex Variables and Vector analysis

Textbook:

ENEE614026
ENEE604014

SIGNAL AND SYSTEMS (3 CREDITS)

Learning Outcomes:
Able to apply physical concept for electrical engineering; Able to apply the concept of linear systems for signal processing and digital filter design

Topics:
Other types of signals and linear systems, the characteristics of the system time fixed (LTI), review of the Fourier transform, the discrete time Fourier transform, digital Fourier transform, Laplace, sampling and reconstruction of discrete time signals, the transformation of analog filter design, Z.

Prerequisite: Engineering Mathematics

Textbook:

ENEE611004
ENEE604015

ELECTRICAL MATERIAL (2 CREDITS)

Learning Outcomes:
Able to explain the classification of electric materials; Being able to analyze the problems of electrical material;

Topics:
Description of the electrical material, bonds of the molecule, the arrangement of atoms in the solid, dielectric polarization, electric material classification

Prerequisites:

Textbook:

ENEE614025
ENEE605016

NUMERICAL COMPUTATION (3 CREDITS)

Learning Outcomes:
Able to apply numerical methods in the form design computing algorithms and data manipulation;
Topics:
The design of algorithms for numerical Methods: a search for roots, numerical methods for the resolution of systems of linear equations, numerical methods a search of curve fitting, numerical methods for differential and integral, numerical methods for ordinary differential equations; The Concept Of Interpolation
Prerequisite: Engineering Mathematics, Basic Computer

Textbook:

ENEE613015
ENEE605017
TELECOMMUNICATION ENGINEERING (3 CREDITS)
Learning Outcomes:
Able to apply the basic concept of telecommunications engineering; Able to apply the concept of global communication systems; Capable of analyzing analog and digital modulation; Able to explain telephony system; Able to calculate the PCM and TDM, Digital Line Coding; Able to analyze telecommunications network: a basic Phone, the technique of grafting, signaling techniques, the concept of Queuing, a communications network radio, microwave, and fiber optics
Topics:
Global communication systems; analog and digital modulation; telephony system; PCM and TDM; Digital Line Coding; telecommunications network: a basic phone, connection, signaling, and the concept of the queue; communications network radio, microwave, and fiber optics
Prerequisites: Probability and stochastic processes, mathematical techniques, and Electromagnetics
Textbook:

ENEE605018
ELECTRIC POWER ENGINEERING (3 CREDITS)
Learning Outcomes:
Able to explain the concept of electric that includes generation, transmission and distribution; Being able to compute the parameters of electric machines.

Topics:
The basic Mechanical and electromagnetic, circuit of Three phase transformer, the basics of Machine Flow back and forth, Synchronous Machine, Parallel Operation of Synchronous Generators, Induction Motors, direct current Motors, transmission line, equation and Representation system, introduction of a power Flow Study, disturbance of symmetric and Asymmetric
Prerequisite: Electrical Circuits.
Textbook:

ENEE605019
ELECTRICAL POWER ENGINEERING LABORATORY (1 CREDITS)
Learning Outcomes:
Capable of testing characteristics of electric machines; Being able to classify the electrical machines
Topics:
Direct Current Machines, Transformers, Synchronous Machines, Induction Machines
Prerequisite: Electrical Circuits.
Textbook:
Electric Power Engineering Teaching Modules-Power Energy Conversion Laboratory

ENEE614018
ENEE605020
CONTROL ENGINEERING (3 CREDITS)
Learning Outcomes:
Able to apply the basic concept of control; Able to apply the concept of block diagrams, Time Response, system stability and steady-state error, root locus, frequency response; Capable of designing controllers with the bode diagram, and is able to analyze the state-space, capable of governing designing state-space.
Topics:
Block diagrams; Time Response; The stability of the system; Steady-state error; Root locus; Frequency response; Design controllers with root locus; Design of controller with bode diagram; The state-space model analysis; Governing state-space design; Design Observer
Prerequisite: Engineering Mathematics
Textbook:

ENEE614019
ENEE605021
CONTROL ENGINEERING LABORATORY (1 CREDITS)
Learning Outcomes:
Able to use the device data acquisition; Able to apply the response time, system stability and steady error, root locus design, frequency response, controllers with root locus, Bode’s diagram with controller design, the introduction of PLC, state-space.
Topics:
Response time, system stability and steady error, root locus design, frequency response, controllers with root locus, Bode’s diagram with controller design, the introduction of PLC, state-space
Prerequisite: Engineering Control
Textbook:
Laboratory Workbook - Control Systems Laboratory.

ENEE613010
ENEE605022
ALGORITHM AND PROGRAMMING (4 CREDITS)
Learning Outcomes:
Able to make the draft algorithms to solve the problem of computation and manipulation of data; Able to apply the concepts: Modular; Iteration and Recursion; Sorting; Searching; Array; Pointers; Linked List
Topics:
Modular; Iteration and Recursion; Sorting; Searching; Array; Pointers; Linked List; Static and dynamic data structures in C language
Prerequisites: Basic of computer
Textbook:
3. Deitel & Deitel, “How to Program”

ENEE616033
ENEE606024
MODELLING AND SIMULATION (3 CREDITS)
Learning Outcomes:
Able to establish mathematical model system, capable of performing the analysis of mathematical models of the system, able to build simulations based on mathematical models, Capable of analyzing simulation system.
Topics:
Basic modelling and simulation, methods of modeling of physical systems, analysis of the model of non-linear dynamical systems, dynamical models of simulation with Matlab/Simulink,
Data modeling, system identification, data exploration methods, methods of optimization of the least squares model, validation, data modeling with Matlab/Simulink.
Prerequisite: Numerical Computation
Textbook:

ENEE613016
ENEE606025
TELECOMMUNICATIONS ENGINEERING LABORATORY (1 CREDIT)
Learning Outcomes:
Able to put into practice the basic concept of telecommunications engineering; Being able to practice the communication system globally; analog and digital modulation; telephony system; PCM and TDM; Digital Line Coding; telecommunication network: telecommunications network: a basic Phone, the technique of grafting, signaling techniques, the concept of Queuing, a communications network radio, microwave, and fiber optic; Able to use the measure of telecommunications.
Topics:
Global communication systems; analog and digital modulation; Telephony system; PCM and TDM; Digital Line Coding; FIR Filters; the parameters of the antenna and wireless communication and channel simulation using software radio mobile; optical communication systems.
Prerequisite: Telecommunications Engineering
Textbook:
Laboratory Workbook - Telecommunication Engineering Laboratory.

ENEE615027
ENEE606026
MICROPROCESSOR AND MICROCONTROLLER (4 CREDITS)
Learning Outcomes:
Able to implement the algorithm into a high level programming language and low level; Able to implement Microprocessors and programming addressing mode in Assembly language for Microprocessors.
Topics:
Microprocessor’s Addressing Modes; Programming Assembly language for Microprocessors
Prerequisite: Basic Computer
Textbook:

ENEE615028
ENEE606027
MICROPROCESSOR AND MICROCONTROLLER LABORATORY (1 CREDITS)
Learning Outcomes:
Able to implement the algorithm into a high level programming language and low level; Capable of practicing Microprocessors and programming addressing mode in Assembly language for Microprocessor.
Topics:
Microprocessor’s Addressing Modes; Programming Assembly language for Microprocessors.
Prerequisite: Microprocessor and Microcontroller
Textbook:
1. Practical module Microprocessor and Microcontroller Digital Laboratory, Department of electri-
ENEE614023
ENEE606028
ELECTRIC MEASUREMENTS (2 CREDITS)
Learning Outcomes:
Able to explain the philosophy of electric quantity measurement; Able to calculate the threshold quantity of electricity that is safe; able to analyze a series of measurements
Topics:
Introduction of measuring instruments, the fault/error in measurement, the security and safety in Electrical Measurements, Measuring Electrical Quantities in General, measurement of Grounding Prisoners (Grounding Resistance), an Oscilloscope, a Digital gauge
Prerequisite: Electronics Circuits.
Textbook:

ENEE614024
ENEE606029
ELECTRIC MEASUREMENTS LABORATORY (1 CREDITS)
Learning Outcomes:
Capable of measuring electrical quantities; Able to choose the measuring instrument to suit the needs of measurement topics:
Topics:
Gauge 1 phase, 3 phase measurement tool, the tool to measure the energy and power, grounding measuring instrument
Prerequisites:
Measurement of Electrical Quantities
Textbook:
Electric Quantity Measurement lab course modules-high-voltage Laboratory and measurement of electricity.

ENEE617037
ENEE607031
ENGINEERING ENTREPRENEURSHIP (2 CREDITS)
Learning Outcomes:
Able to implement the concepts and skills of entrepreneurship in the field of electrical engineering; Able to perform analysis and make the business plan expertise in innovation/product which corresponds to the development of information technology; Able to implement the concepts and skills of entrepreneurship in the field of electrical engineering
Topics:
Charging for Expertise, Think, Plan, Act Like an Entrepreneur, Making a Business Successful, Taking the Initiative, Enabling an E-Business, Providing Outsourced Services & Building a Contracting Business, guest lectures
Prerequisites : None
Textbook:
2. The material of the lectures given by practitioners of the entrepreneurial
ENEE607032
ACADEMIC WRITING (3 CREDITS)
Learning Outcomes:
Able to write scientific papers with good structure
Being able to write down the steps with a detailed and structured research; capable of processing data with research tools statistics
Topics:
Systematics of academic writing; experimental variables and set up; statistical analysis tools, the use of the language of Indonesia is good in scientific works; English usage in scientific papers, word processing software; styling; referencing tools
Prerequisites: none

MAJORING
TELECOMMUNICATIONS ENGINEERING

ENEE606301
CODING TECHNIQUE AND APPLICATIONS (3 CREDITS)
Learning Outcomes:
Capable of outlining the types of encoding; Being able to analyze the techniques used in data compression coding and reliable communications.
Topics:
Information measures, source and channel models, various source coding schemes including Huffman coding, run-length coding, linear predictive coding, transform coding, and various channel coding schemes including cyclic codes, BCH codes and convolutional codes. Trellis Coded Modulation. Application for Speech Coding, Image and Video Coding.
Prerequisite: Probability and stochastic processes
Textbook:

ENEE615030
ENEE606302
COMMUNICATION NETWORKS (3 CREDITS)
Learning Outcomes:
Able to explain mathematical concepts with regard to the concept of communication networks; Able to explain the concept of circuit switching and packet switching as well as concepts related to communication traffic; Able to explain the concept of queueing and queue theories for communication network; Able to explain concepts and mechanisms of QoS on the network communication
Topics:
Mathematics for the network, the concept of a communication network (layering); Circuit Switched and Packet Switched, the concept of communication traffic (Erlang B, Erlang C, Engset, Bernoulli, etc.); Various theories of the queue (M/M/1, M/M/c, M/G/1, M/G/c, etc.); Markov chain concept for communication networks, QoS assurance mechanism concept and the communication network.
Prerequisite: Telecommunications Engineering.
Textbook:

ENEE606303
BROADBAND MULTIMEDIA COMMUNICATIONS (3 CREDITS)
Learning Outcomes:
Being able to analyze the concept of broadband multimedia.

Topics:
The concept of multimedia technologies, TCP/IP, network protocols, ATM, Frame Relay, MPLS, broadband wireless access technologies, metro Ethernet, NGN and IMS, QoS, Resource management, QoS, the mechanisms work and how to guarantee it, a multimedia network model, the component performance throughput capacity.
Prerequisite: Telecommunications Engineering.
Textbook:

ENEE607304
ANTENNAS AND PROPAGATION (3 CREDITS)
Learning Outcomes:
Able to describe wave propagation and transmission system and its implications on the performance of communication systems; Able to explain various mechanisms of propagation of electromagnetic waves; Able to explain the working principle of antenna and antenna performance parameters; Being able to describe the various types of antenna as a means for transmitting signals; Able to calculate the performance of the simple antenna systems which good in theory or application; Able to calculate the performance of a single element antenna such as a dipole, yagi, antenna loop, funnels, slot antenna and micro-strip antenna; Able to design a simple antenna and measure it; Being able to analyze the types of wave propagation and select the correct antenna for wireless communication system.
Topics:
Working principles of the basic parameters of antenna, the antenna measurement techniques, several types of antennas: dipole antenna, monopole, antenna stacking, aperture antenna and antenna with reflector. Radio wave propagation (ground surface wave, wave, wave, space sky wave, and microwave and millimeter wave);
Prerequisite: Electromagnetics
Textbook:
3. IEEE journal transaction Antenna and Propagation

ENEE607305
OPTICAL COMMUNICATIONS (3 CREDITS)
Learning Outcomes:
Able to explain wired transmission media/fiber optic as well as their principles; Able to explain the components of the optical communication system; Able to analyze optical communication systems
Topics:
Structure and optical fiber waveguide, signal degradation in on optical fiber, optical sources, optical components, optical coherent fiber communication; the techniques of modern systems; The techniques and coding theory; Performance analysis of optical communication systems
Prerequisite: Electromagnetics and Telecommunications Engineering.
Textbook:

ENEE608308
MOBILE AND WIRELESS COMMUNICATIONS (3 CREDITS)
Learning Outcomes:
Able to explain the different types of wireless communication, concept of cellular, wireless communication components; Able to explain concepts, techniques and components of wireless mobile communication; Able to analyze performance of wireless mobile communications system.
Topics:
Overview of wireless communications, cellular concept/fundamentals, large scale fading/path loss, small scale fading, modulation techniques, equalization, diversity, channel coding/error control coding overview, multiple access, emerging wireless technologies: WLAN, 3G and WCDMA, 4G and LTE, mobile ad hoc networks, body area networks and mobile health, future wireless system.

Prerequisite: Telecommunications Engineering

Textbook:

ENEE616035
ENEE608307
COMMUNICATION SYSTEM DEVICES (3 CREDITS)

Learning Outcomes:
Able to analyze various subsystem communication devices; Able to analyze transmission line, adjustment circuit, resonator, filter, amplifier, LNA, oscillator, mixer; Able to design the subsystems communication device based on active component for radio wave.

Topics:
Passive Components simple radio waves, the active component is a simple radio waves

Prerequisite: Electromagnetics, Circuit Electronics, Telecommunications Engineering.

Textbook:

ENEE607306
SPECIAL COURSE OF TELECOMMUNICATIONS 1 (3 CREDITS)

Learning Outcomes:
Able to follow the development of the telecommunications industry and apply it; Able to follow the development of the latest telecommunications technology aspects;

Topics:
Current issues about aspects of telecommunication technology

Prerequisites: none

Textbook: no

ENEE608309
SPECIAL COURSE OF TELECOMMUNICATIONS 2 (3 CREDITS)

Learning Outcomes:
Able to follow the development of the telecommunications industry and apply it; Able to follow the latest developments in business and telecommunications regulation.

Topics:
Current issues of business and regulation of telecommunications.

Prerequisites: none

Textbook: no

MAJORING
ELECTRICAL POWER ENGINEERING

ENEE606102
POWER ELECTRONICS AND LABORATORY (3 CREDITS)

Learning Outcomes:
Able to design simple application field of electric power; Able to explain the philosophy of power electronics equipment; Capable of calculating parameters on power electronics circuits; Able to design simple circuits using power electronics equipment
Topics:
Introduction to power electronics, electronic components, power converter AC-AC converter, AC-DC, DC-DC converter, DC-AC converter, power electronics applications
Prerequisite: Electric Power Engineering, Electronic Circuit
Electricity.
Textbook:
2. Power Electronics lab course Modules-Electrical energy conversion Laboratory

ENEE606103
MANAGEMENT AND ENGINEERING ECONOMY (3 CREDITS)
Learning Outcomes:
Being able to classify the energy field; Able to explain the basics of business and management; Able to calculate the economics in electric field; Able to analyses the comparison of alternative technologies; Able to analyze alternative replacement; Being able to analyze the latest technology in the field of energy conversion; Able to calculate the economics source of energy; Being able to analyze the potential source of energy.
Topics:
The basic concept of management, organization type, organization resources, economic concepts, and the correlation value is money and time, comparative studies, analysis of replacement, the basics of energy management, energy costs, and calculation of potential energy
Prerequisite: none
Textbook:

ENEE617038
ENEE607104
ELECTRICAL POWER SYSTEM AND LABORATORY (3 CREDITS)
Learning Outcomes:
Being able to analyze the magnetic and electric field high on power system; Able to explain the philosophy of power system; Able to calculate the parameters of power network; Capable of analyzing system of electric power network; Being able to find a solution to the problem of the quality of electric power; Being able to analyze the source of disturbance in the generation, transmission, and distribution of electricity; Capable of minimizing the effects of disturbance on electric power systems.
Topics:
The phenomenon of electric field and magnetic field on the electric power system, the effects of magnetic field and electric field on electric power systems, mitigation of effects of magnetic field and electric field.
Sources of disturbance on electric power systems, the effects of disturbance on mitigation of the effects of power system disturbances in electric power systems
Prerequisite: Engineering Mathematics, Electrical Power Engineering

ENEE606101
ELECTRICAL ENERGY CONVERSION (3 CREDITS)
Learning Outcomes:
Being able to classify the energy field; Being able to decipher the various types of energy as electric generators; Able to calculate the range of potential energy as electricity generation; Being able to analyze the process of converting electric energy; Able to apply the principles of electrical energy conversion; Being able to analyze the latest technology in the field of energy conversion.
Topics:
Basic conversion of energy, sources of energy, new energy Conversion Technology, and renewable power plants, Thermal power plants, non-thermal power plant.
Prerequisite: Electric Power Engineering.
Textbook:

ENEE607106
BUILDING ELECTRIC INSTALLATION (2 CREDITS)
Learning Outcomes:
Able to make the planning of the electrical installation of the building; Able to calculate the magnitudes of the electrical installation parameters on the building; Able to itemize those parts of the electrical installation of the building
Topics:
Basic electrical installation, the components of the electrical installation, the requirements of the electrical installation, electrical installation technology, security lighting, security and safety, as well as the procedures for electrical installation of buildings
Prerequisite: Electric Power Engineering
Textbook:

ENEE607105
HIGH CURRENT & VOLTAGE ENGINEERING + LABORATORY (3 CREDITS)
Learning Outcomes:
Being able to analyze the magnetic and electric field high on power system; Able to explain the phenomenon of electric field and magnetic field is high; Capable of testing electric power equipment; Able to analyze about the occurrence of interference due to the phenomenon of the high terrain.
Topics:
The concept of a high-voltage, high-voltage test, high voltage generation, impulse generators, direct current testing and flow back and forth, testing electrical equipment
Prerequisite: Electromagnetics, Electric Power Engineering
Textbook:

ENEE608109
ELECTRICAL POWER SYSTEM PROTECTION (3 CREDITS)
Learning Outcomes:
Able to explain the philosophy of electric power system protection; Able to calculate the electrical protection system; Able to evaluate the protection system of electric power; Able to design protection system of electric power.
Topics:
Electrical protection philosophy, types of relay protection, the principle of relay protection, setup relay protection, the coordination principle of protection.
Prerequisite: Electric Power Engineering
Textbook:

ENEE608108
ELECTRICAL POWER TRANSMISSION & DISTRIBUTION (3 CREDITS)
Learning Outcomes:
Able to explain the philosophy of the distribution and transmission of electric power systems; Able to calculate the parameters of the transmission and distribution; Being able to analyze the transmission and distribution of electric power systems.
Topics:
The introduction of transmission and distribution of electrical power, the circuit of three phase motors, Inductance, Capacitance and Resistance on the transmission network, transmission network performance characteristics, the distribution Transformer, electric power distribution network.

Prerequisite: Electric Power Engineering

Textbook:
2. Iwa Garniwa, “design of electric power Distribution Equipment,” Publisher - high-voltage Laboratory and measurement of electricity, Electrical Engineering Department, FTUI, 2008.

ENEE607107
SPECIAL COURSE OF ELECTRICAL POWER 1 (2 CREDITS)
Learning Outcomes:
Able to design a simple application in the field of energy and power system.
Topics: customized to class’ needs about power system technological development, and can be given by several guest lecturers
Prerequisite: Electrical Power Engineering
Textbook: None

ENEE608110
SPECIAL COURSE OF ELECTRICAL POWER 2 (2 CREDITS)
Learning Outcomes:
Able to design a simple application in the field of energy and power system.
Topics: customized to class’ needs about power system technological development, and can be given by several guest lecturers
Prerequisite: Electrical Power Engineering
Textbook: None

MAJORING
ELECTRONICS ENGINEERING

ENEE617040
ENEE606202
PHOTONIC DEVICES (3 CREDITS)
Learning Outcomes:
Able to explain the working principle of passive and active photonic
Able to apply the principles of physics and mathematics to calculate the variable change device photonic
Being able to determine the independent device photonic
Able to explain passive: photonic device and optical, lattice (grating), polarization; and active photonic device: laser, LED, and photodetector
Being able to compute using Photonic device variables theory of light: the law of Snell, Fresnel equation, Fermat’s law, polarization
Able to determine variables NA, attenuation, dispersion, mode sense, dispersive power, Registrar, power, free spectral range, coherence, vector and matrix Jones
Topics:
The theory of light: the law of Snell, the law of Fresnel, Maxwell’s equation, Fermat’s law, polarization, diffraction, NA, attenuation, dispersion, mode sense, dispersive power, Registrar, power, free spectral range, the coherency matrix, vector, Jones,
Photonic passive devices: optical, as well as lattice (grating), polarization; Active photonic device: laser diode, an LED and a photodetector.
Prerequisite: a Semiconductor Device
Textbook:
3. Modul Praktikum Pilihan - Laboratorium Optoelektronika

ENEE607205

VERY LARGE SCALE INTEGRATION (VLSI) (3 CREDITS)

Learning Outcomes:
- Able to design VLSI circuit

Topics:
- Review of CMOS semiconductor device fabrication, the rules of design, Scale of Lambda, Asynchrony, designing logic gates, Inverter, NAND, NOR, Full custom design, Semi-custom design, validation, Packaging/IO, design for manufacturing, testing and design of fault modeling, Coding for synthesis, characteristics and Estimate the performance series, the high level design Optimization, Programmable logic arrays, subsystem Design, Properties of CMOS Logic: Area, Power, Delay, time Optimization Engine, sequential, and the structure of the regular VLSI.

Prerequisite: Electronics Circuit, semiconductor device Fabrication

Textbook:

ENEE606201

ADVANCED ELECTRONICS CIRCUITS (3 CREDITS)

Learning Outcomes:
- Able to analyze: integrated circuits, digital circuits with bipolar digital circuits, MOSFET, power amplifier, high-order active filter, oscillator circuit, Schmidt Trigger, voltage regulators; Able to design: integrated circuits, digital circuits with bipolar digital circuits, MOSFET, power amplifier, high-order active filter, oscillator circuit, Schmidt Trigger, voltage regulators.

Topics:
- Integrated circuits, digital circuits with bipolar digital circuits, MOSFET, power amplifier, high-order active filter, oscillator circuit, Schmidt Trigger, voltage regulator

Prerequisite: Electronics Circuits

Textbook:

ENEE616034

ENEE607204

INTRODUCTION OF NANOELECTRONICS (3 CREDITS)

Learning Outcomes:
- Able to analyze recent developments in the field of electronics and photonic; Being able to analyze the workings of the Nano-electronic and Nano-photonic device.

Topics:
- Nano technology and its application in the field of electronics, from the micro to the Nano, the miniaturization of electronics device, scaling the dimensions of transistor, the workings of the single electron transistors, molecular electronics work, fabrication, and characterization of Nano-devices, Nano-technology and its application in the field of photonic, the workings of the single-photon detector, the workings of the OLED

Prerequisite: A Semiconductor Device, Semiconductor Device Fabrication

Textbook:

ENEE606203

SEMICONDUCTOR DEVICE FABRICATION + LABORATORY (3 CREDITS)

Learning Outcomes:
- Able to explain the process of fabricating semiconductor devices; Capable of making a semiconductor fabrication process design on microelectronics devices; Able to use the device fabrication
process design.
Topics:
The history of the semiconductor industry, semiconductor, wafer preparation and Crystal growth, contamination control, lithography, oxidation, diffusion, ion implantation, etching, deposition, application usage Supreme ver. 4.
Prerequisite: Device Electronics.
Textbook:
2. Practical semiconductor device Fabrication Module-Electronics Laboratory

ENEE608207
SOLAR CELLS (3 CREDITS)
Learning Outcomes:
Able to identify work areas devices to solar cells; Being able to compute the parameter limit efficiency, loss-power loss in a solar cell device; Being able to analyze the way of working and the solar cell performance, design and fabrication of silicon solar cells.
Topics:
The workings of the solar cell, the Parameter limit efficiency, loss-power loss in a device the solar cell, solar cell device work area, the design of silicon solar cells, and fabrication of silicon solar cells
Prerequisite: Electronics Circuit, Semiconductor Device Fabrication
Textbook:

ENEE608309
MICRO ELECTRONIC MECHANICAL SYSTEM (3 CREDITS)
Learning Outcomes:
Able to design MEMS circuits;
Topics:
Background the development of MEMS, electronics and materials processing, MEMS and micro-electronics technology, preparation of standard silicon micromachining, bulk, and the surface of silicon micromachining, MEMS, micro stereo lithography micro-sensor, the SAW, the SAW on a solid object, the measurement parameter micro-sensor IDT, IDT micro-sensor Fabrication Micro-sensor, IDT, smart sensors and MEMS.
Prerequisite: Electronics Circuit, Semiconductor Device Fabrication
Textbook:

ENEE60730 6
SPECIAL COURSE OF ELECTRONICS 1 (2 CREDITS)
Learning Outcomes:
Being able to analyze the development of technology devices and photonic systems; Able to analyze basic photonic system for certain functions
Topics:
Current topics of development of technology devices and systems photonic
Prerequisite: Electronics Circuits
Textbook: none

ENEE607309
SPECIAL COURSE OF ELECTRONICS 2 (2 CREDITS)
Learning Outcomes:
Able to analyze recent developments in the field of electronics;
Topics:
The topics of the current technological development of electronic systems and devices
Prerequisite: Electronics Circuits
Textbook:-
MAJORING
CONTROL ENGINEERING

ENEE607405
ADAPTIVE & PREDICTIVE CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Able to identify the model and application of predictive and Adaptive; Capable of analyzing discrete control system, the stability of non-linear system using Lyapunov method; Capable of designing discrete adaptive and predictive control; Able to evaluate the performance of predictive and adaptive control systems.
Topics:
The basic concept of predictive and adaptive control, recursive parameter estimation, method of pole placement method, minimum variance, dynamic matrix control, model algorithmic control, generalized predictive control, predictive control room situation.
Prerequisite: Control Engineering
Textbook:

ENEE615029
ENEE606401
DIGITAL CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Capable of analyzing discrete control system; Able to explain the characteristics of discrete systems; Capable of analyzing the stability of discrete systems; Able to design a simple discrete controller; Able to make discrete controller design method: root locus, and pole placement; Able to make the design of state observer of discrete Full order observer, and Reduced order observer
Topics:
The basic concept of a digital control system, a review of z-transforms, discrete time transfer functions, methods of realization of discrete control system, Transient and steady state response, analysis of stability of discrete systems, discrete root locus method, design the root locus method control discrete, discrete state space models, canonical forms, discrete state space model analysis (Eigen values, controllability, observability), pole-placement method of discrete, observer design of discrete.
Prerequisite: Control Engineering
Textbook:

ENEE617039
ENEE606402
PROCESS CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Able to identify the model of dynamical systems of industrial processes; Able to explain measurement techniques of dynamical systems of industrial processes; Able to explain the characteristics of industrial processes; Able to describe systems of industrial processes; Able to identify industrial process modeling method
Topics:
Process and characteristics of the problem, the process of measurement methods, sensors and transmitters, signal conditioning and installation, industrial process modeling, PID controllers, tuning PID control, cascade control, feedforward control, smith predictor, a variation on another controller.
Prerequisite: Control Engineering
Textbook:
ENEE607404
ROBOTICS (3 CREDITS)
Learning Outcomes:
Able to identify the needs of the components of Robotics; Being able to analyze the kinematics of the robot; Able to evaluate the drive systems Robotics; Integrated control system capable of designing on simple robotics systems; Able to design kinematics robotics.
Topics:
Robotics Automation system components (sensors, actuators, controllers), the principle of work of system of robotics, kinematics of robots, robotics control systems (position control) robot kinematics-based interconnection system components, robotics, engineering the design of robots, robot programming, simulation with OpenGL, the introduction of a high level of robots.
Prerequisite: Engineering control, algorithms and programming.
Textbook:
1. Robotics: design, control, and artificial intelligence, Andi Publisher by Endra Pitowarno, 2006.

ENEE606403
ELECTRIC DRIVE CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Being able to analyze the component controller and electric drive system components; Able to evaluate the performance of the electric drive system with simulation; Able to evaluate simple motor drive systems.
Topics:
Electric drive systems, modeling of electric motors (DC, PMSM, IM), power transfer circuit (PWM 3 phase inverter), the servo motor DC brushless speed controller, and position, the concept of reference frame, vector control, simulation of electric drive system.
Prerequisite: Engineering Control.
Textbook:

ENEE608407
MECHATRONICS (3 CREDITS)
Learning Outcomes:
Being able to analyze the components of the controller; Capable of analyzing the limitations of Mechatronics system components; integrated control system capable of designing in Mechatronics system is simple; capable of designing system of Mechatronics Robotics with applications to accommodate the limitations of the components.
Topics:
Introduction to Mechatronics systems, characteristics and limitations of Mechatronics system Method of improvement reliability of Mechatronics system components, Mechatronics system design, electromechanical system modeling, design and development of application software, control compliant, tele-robotic, bilateral control.
Prerequisite: Robotics
Textbook:

ENEE608408
KNOWLEDGE BASED SYSTEMS (3 CREDITS)
Learning Outcomes:
Able to identify the model of knowledge-based dynamical systems; Being able to analyze the performance of artificial neural network; Able to implement algorithms in programming language for knowledge-based systems.
Topics:
the working system of neurons, cells, artificial neural network architecture (JST); the learning method is JST; back propagation neural networks (BPNN); algorithms and analysis of programming error, function of BPNN in Matlab; optimization of parameters; application of BPNN program as the system identifier of the pattern, the system control based neural network: an analysis of the use of methods of control, as a system of BPNN identification of neural network-based systems:
representation of data and the use of BPNN as identification system, program development system identification using the BPNN full-based system, the development of BPNN and analysis theory and its application, program development system control using the BPNN full system integration based BPNN.

Prerequisite: control Engineering, Algorithms and programming

Textbook:

ENEE607406
SPECIAL TOPIC OF CONTROL ENGINEERING 1 (2 CREDITS)

Learning Outcomes:
Able to follow the development of the control technology and its implementation; Able to follow the development of current aspects of control technology.

Topics:
Current issues about control technological aspects

Prerequisites: none
Textbook: none

ENEE608409
SPECIAL TOPIC OF CONTROL ENGINEERING 2 (2 CREDITS)

Learning Outcomes:
Able to follow the development of the control technology and its implementation; Able to follow the latest development of the control technology business.

Topics:
Current issues about control business technology.

Prerequisites: none
Textbook: none

MAJORING
BIOMEDICAL ENGINEERING

ENNE606502
MEDICAL COMMUNICATION SYSTEM (3 CREDITS)

Learning Outcomes:
-Able to explain some of the technology of communication system for medical applications
-Able to explain the system of e-healthcare and telemedicine
-Able to explain the process of designing the system wired/wireless medical communication

Able to make the design through simulation design of medical devices

Topics:
Introduction to medical communication system, e-healthcare and telemedicine. Several special course will be delivered include body-centric wireless communications, electromagnetic properties and modeling of the human body, portable wearable devices, medical implant communication systems, e-healthcare infrastructure, wireless body area network, mobile-based telemedicine system, and wireless power technology in medical devices.

Communication systems on and off, in the body and how to model the via simulation

Prerequisites: none
Textbook:

ENEE607504
MEDICAL IMAGING TECHNOLOGY (3 CREDITS)

Learning Objective:
After getting the courses the student is expected to:
1. Able to understand some basic concepts in medical imaging technology
2. Able to explain and analyze the basic method of medical image processing in reconstructing, improving the quality of the image, making the image segmentation, image analysis, visualization of image data, and manage medical imagery in order to support the process of imaging/medical imaging in the field of health
Able to apply the methods in environmental biology and basic science to medical applications system
Able to integrate circuit and electronic device to device/instrument of biomedicine
Able to make simulations of imaging methods in medical devices
Being able to make a report of the results of the simulation of a small project
Being able to analyze the signals in the medical system to process the signal with the signal processing technique of medical

Topics:
Introduction to Medical Imaging Technologies (x-ray and Ultrasound, MRI, CT, PET and SPECT, Electrical Impedance Tomography), Image formation and Reconstruction (Acquisition, Digitization, Image Reconstruction Methods), Image Enhancement (Fundamentals of enhancement techniques, Image enhancement with linear, nonlinear, adaptive, and fixed, pixel-based methods), Image Segmentation and Analysis (Fundamentals of Medical Image Segmentation, Image acquisition and preprocessing artefacts, Thresholding, Edge-based techniques, Region-based segmentation, Classification, Morphological Methods for Biomedical Image Analysis), Image Visualization (2-dimensional visualization, 3-dimensional visualization methods: surface rendering, volume rendering, Algorithm for 3-d visualization), Image Management (Fundamentals of Compression Standards, Storage and Communication, Image archive and retrieval, three-dimensional compression). Medical image processing, artifact acquisition, thresholding, Edge-based techniques, Region-based segmentation, Classification, The methods of image formation process and its analysis
Image formation, medical imaging tools
Formation of the image of medical signals and image analysis, visualization

Prerequisites: None.

Textbook:

ENEE606501
BIOLOGY AND ANATOMY (3 CREDITS)
Learning Objective:
Give the basic knowledge of the mechanisms of biology and anatomy of engineering.
Instructional Objectives:
a. Able to explain the basic concepts of cell biology, molecular, biochemical and genetic engineering
b. Have the knowledge about the essential components and the various functions of the system of molecular cell.
c. Have the knowledge of the techniques and approaches that are commonly used in molecular biology of the cell.
d. Apply the knowledge of biology to biomedical engineering and health sciences.
Able to explain the phenomenon in the medical field with the approach to biology and anatomy of human organs
Able to make reports papers
Able to explain the phenomenon in the medical world with the approach to biology and anatomy of human organs

Topics: constituent molecules of the cell, structure and function of proteins within the cell, metabolism, changes in the cells; Molecular design of biochemical constituents of life, and the genetic revolution, DNA, linkages with biodiversity, biochemical protein synthesis of nucleic acids into a sequence of amino acids-RNA polymerase 2, until the Ribosome for protein synthesis, eukaryotic and prokaryotic differences; Catalytic reactions in cells: nucleoside monophosphate kinases, proteases; Mechanical chemical in cells: how protein motors to convert chemical energy into mechanical work. Understanding human anatomy, Cytology and Histology, Osteology, Arthrologi, Miologi, digestive
system, respiratory system, circulatory system.
Constituent molecules of the cells and organs of human body Anatomy

Prerequisites: None
Textbook:

ENEE607505
MEDICAL SYSTEM MODELLING (3 CREDITS)
Learning Outcomes:
Learning Objective:
Understand the components of the medical system, understand the mathematical model of the medical system, understand the modeling method of the medical system, Able to perform simple modelling medical systems and able to simulate.
Able to apply the algorithm for a device/instrument of biomecine
Able to report the results of the coding program
Topic: Introduction to signal and system of medical models, mathematical modeling and signal system in General, analytic modeling of medical system, analysis of analytical models, methods of identification of the medical system, the method of parameter estimation model, the simulation model of the medical system.
Analytic modeling of medical system
Analysis of analytical models, methods of identification of the medical system, the method of parameter estimation model, the simulation model of the medical system.
Prerequisites: None.
Textbook:

ENEE608508
MEDICAL INFORMATICS (3 CREDITS)
Learning Objective:
After getting the courses the student is expected to:
1. Able to understand the basic concepts of information technology to be applied in the field of health
2. Able to apply the basic methods of Informatics with the use of basic knowledge of programming to acquire, organize, combine, and analyze health data sources
3. Able to apply the algorithm for a device/instrument of biomedical engineering
4. Able to apply the basic principles in biology in the concept of medical technology
5. Able to explain the basic biomedical engineering
Able to apply concepts of basic science into principles in biomedicine

Introduction to medical informatics and its method Algorithms and methods of medical informatics

Prerequisites: None.
Textbook:

ENEE606503
INTRODUCTION TO BIOMEDICAL TECHNOLOGIES (3 CREDITS)
Learning Objective:
After completion of the following courses, students are able to:
1. Understand biomedical technology systems
2. Explain the concept of system engineering applications to the problems of human biology
3. Illustrate the concept of detection, measurement, and monitoring of human physiological signal
4. Explain the concept of the diagnosis interpretations through the techniques of signal processing bioelectric data
5. Explain the concept device-device for therapy and rehabilitation
6. Make computer data analysis based on data from patients in the framework of decision making in clinical
7. Explain the concept of device for artificial organs
8. Reviewing the concept of medical imaging techniques
Able to apply the basic principles in biology in the concept of medical technology
Able to explain the basic biomedical engineering
Able to apply concepts of basic science into principles in biomedical engineering
Prerequisites: None.
Textbook:

ENEE608507
BIOMEDICAL INSTRUMENTATIONS + LAB (3 CREDITS)
Learning Outcome:
After following this course, students are able to:
1. Understand the biomedical measurement system
2. Understand and apply various kinds of cardiovascular system measurement
3. Understand and apply various kinds of respiration system measurement
4. Understand and apply various kinds of nervous system
5. Understand patient safety factors that must be considered in the measurement
Able to apply the basic principles in biology in the concept of medical technology
Able to explain the basic engineering science biomedicine
Able to apply concepts of basic science into the principles of biomedical engineering
Able to operate medical equipment
Able to integrate circuit and electronic device to device/instrument of biomedicine
Able to make the design through simulation design of medical devices
Topic: Introduction to biomedical instrumentation; Basic transducer principle (active and passive transducer, the transducer for biomedical application; the source of bioelectric potensials; electrodes; the cardiovascular system; cardiovascular measurement; measurement in respiratory system; non invasive diagnostic instrumentation; measurement in nervous system; sensory and behavioural measurements; electrical safety of medical equipment; role of laser in healthcare.
Prerequisites: None.
Textbook:
ENEE608509
SPECIAL COURSE OF BIOMEDICAL 1 (2 CREDITS)

Learning Outcome:
This course provides an understanding of physical principles on the biological mechanisms and process (movement, design, structure, materials and transport).

At the end of the study, students are expected to:
- Apply biomechanical principles to resolve problems in human movement and musculoskeletal such as ergonomic, rehabilitation and training.
- Use of the effective and safe biomechanics instrumentation and equipment for the acquisition/assessing human movement.
- Understand the trend of future problems of biomechanics.

Able to explain the phenomenon in the medical with the approach of biology and anatomy human organs.

Topics:
Newton’s laws, fluid mechanics: Bernoulli, Drag forces, Reynold number, Mechanics of static systems and moving system, Kinetics and force on the body as well as the influence on the movement and stability, Basic mathematic in motion/movement, analysis and instrumentation on the motion of the body, the basic concept of human body bones muscle mechanics, Ergometry, The basic concept of energy.

Prerequisites: None.

Textbook:

SPECIAL COURSE OF BIOMEDICAL 2 (2 CREDITS)

ENEE618102
SOFTWARE ENGINEERING (3 CREDITS)

Learning Outcomes: In this course, students will learn how to design software with correct steps and able to document them. After following this course, students will able to design software using the stage of the software life cycle with the desired risk level, capable of making design software with the correct stages; capable of documenting the stages of design software.

Topics: Hardware and software processes; Requirements analysis and elicitation; System specifications; System architectural design and evaluation; Concurrent hardware and software design; System integration, Software testing and validation; Maintainability, manufacturability, sustainability

Prerequisite: Algorithm and Programming

Textbook:

ENEE617101
OBJECT ORIENTED PROGRAMMING + LABORATORY (3 CREDITS)

Learning Outcomes: In this lecture, students will study how to create program with object-oriented concepts. After following this course, students are able to implement a software design into object-oriented programming language; able to establish the concept of object-oriented programming (class, constructor, scope of variables); able to outline the Basic objects (arrays, array list, object collection, iterator); able to describe the concept of design class (coupling, cohesion, refactoring, inheritance, polymorph, substitution); able to implement a GUI-based programming, exception handling and multithreading.

Topics: Java Language Elements; Java Language Operation; Defining and Using Class; System, Strings, String Buffer, Math & Wrapper Classes; Array; Classes & Inheritance; Design Graphical User Interface & Event Driven; Exceptions; Collections; Threads and Javadoc

Prerequisite: Algorithm and Programming

Textbook:

SPECIAL COURSES

ENEE616032
ENEE606023
INTERNSHIP (2 CREDITS)
Learning Outcome:
Able to apply technical knowledge that has been acquired during the study; Able to demonstrate work professionalism, work in teams, discipline, responsibility, initiative & interest, leadership, and attitude/behaviour; Able to present the results of the internship in the internship’s defense.

Topic: None.

Prerequisite:
Have passed the 90 CREDITS. Internship place are industrial or lab associated with electrical engineering on the condition there is a supervisor in the internship place. The selection of the internship place is started with the administrative process through the Department of electrical engineering.

Textbook: None.

ENEE617036
ENEE607030
SEMINAR (2 CREDITS)
Learning Outcome:
Able to propose system, component, and process of the research; Able to write research proposal; Able to present the research proposals.

Syllabus: Introduction; Literature studies; Research design.

Prerequisite: Passed the 90 CREDITS.

Textbook:
1. Technical guidelines on the writing of Thesis students of the University of Indonesia.
2. IEEE Citation Reference.

ENEE618041
ENEE608033
BACHELOR THESIS (4 CREDITS)

Learning Outcome:
Able to make the design of the system, component, and process; Able to carry out the research plan; Able to analyze the research results; Able to convey the results of the study in the bachelor thesis defense.

Topic: Design and implementation of experimental research; Data analysis; Conclusions.

Prerequisite: Passed 120 CREDITS

Textbook:
2. IEEE Citation Reference.
4.6. UNDERGRADUATE PROGRAM IN COMPUTER ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.50%</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>16</td>
<td>11.11%</td>
</tr>
<tr>
<td>iii</td>
<td>Basic Electrical Engineering Subject</td>
<td>17</td>
<td>11.80%</td>
</tr>
<tr>
<td>iv</td>
<td>Core subject</td>
<td>76</td>
<td>52.78%</td>
</tr>
<tr>
<td>v</td>
<td>Elective Subject</td>
<td>9</td>
<td>6.25%</td>
</tr>
<tr>
<td>vi</td>
<td>Special Subject (Internship, Seminar, Undergraduate Thesis)</td>
<td>8</td>
<td>5.56%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100%</td>
</tr>
</tbody>
</table>

Total Credit Hours to Graduate 144 SKS
Career Prospects

The program graduates are needed in almost all fields of work, e.g. industry, services, banking and all fields requiring the application IT (Information technology). Some professional profiles that are suited to this program’s graduate are IT Manager, Project Manager, Program Manager, Programmer, System Analyst, Software Developer, Data Analyst, Product Specialist, Software Engineer, Computer Hardware Engineer, System Administrator, IT Support, etc.
Learning Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarjana Teknik yang mampu merancang jaringan informasi dan sistem berbasis komputer secara sistematis, dengan menggunakan metode baku sesuai dengan etika profesi</td>
<td></td>
</tr>
<tr>
<td>Mampu membuat rancangan sistem, komponen, dan proses berlabel kebutuhan dalam berbagai bidang kehidupan</td>
<td></td>
</tr>
<tr>
<td>Mampu membuat rancangan sistem berbasis komputer</td>
<td></td>
</tr>
<tr>
<td>Mampu membuat algoritma dan mengimplementasikannya ke dalam pemrograman</td>
<td></td>
</tr>
<tr>
<td>Mampu menerapkan prinsip dasar matematika, fisika dan statistik dalam menyelesaikan permasalahan teknik komputer</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

- Profil Lulusan
- Kompetensi UI
- Kompetensi FT
- Kompetensi TekKom UI
CURRICULUM STRUCTURE COMPUTER ENGINEERING

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600003</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENCE601001</td>
<td>Fundamental of Digital System and Lab.</td>
<td>3</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE600020-48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCE602002</td>
<td>Introduction to Computer Engineering +Lab.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE603003</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENCE603004</td>
<td>Basics of Electronic Circuits</td>
<td>2</td>
</tr>
<tr>
<td>ENCE603005</td>
<td>Electric Circuits</td>
<td>2</td>
</tr>
<tr>
<td>ENCE603006</td>
<td>Electric and Electronic Circuits Lab.</td>
<td>1</td>
</tr>
<tr>
<td>ENCE604012</td>
<td>Advanced Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603008</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603009</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603010</td>
<td>Vector Analysis and Complex Variables</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE604011</td>
<td>Signal and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603007</td>
<td>Algorithm</td>
<td>3</td>
</tr>
<tr>
<td>ENCE604013</td>
<td>Digital System Design and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENCE604014</td>
<td>Computer Based Systems</td>
<td>4</td>
</tr>
<tr>
<td>ENCE604015</td>
<td>Computer Based Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENCE604016</td>
<td>Computer Networks and Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE605017</td>
<td>Probability and Stochastic Process</td>
<td>3</td>
</tr>
<tr>
<td>ENCE605018</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCE605019</td>
<td>Embedded System 1</td>
<td>2</td>
</tr>
<tr>
<td>ENCE605020</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENCE605021</td>
<td>Design & Management Computer Networks +Lab</td>
<td>4</td>
</tr>
</tbody>
</table>
UNDERGRADUATE PROGRAM

6th Semester

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCE605022</td>
<td>Database Systems and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td>ENCE606023</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENCE606024</td>
<td>Telecommunication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606025</td>
<td>Computer Networks Security and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606026</td>
<td>Embedded Systems 2 and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606027</td>
<td>Professionalism and Ethics in IT</td>
<td>2</td>
</tr>
<tr>
<td>ENCE606028</td>
<td>Object Oriented Programming + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606029</td>
<td>Wireless Technology</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCE607030</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607031</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607032</td>
<td>Entrepreneurship in Information Technology</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607033</td>
<td>Capita Selecta in Computer Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607034</td>
<td>Telecommunication Networks Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCE607035</td>
<td>Human Computer Interaction</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>17</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCE608036</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENCE608037</td>
<td>Project Management in IT</td>
<td>3</td>
</tr>
<tr>
<td>ENCE608038</td>
<td>Multimedia Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>13</td>
</tr>
</tbody>
</table>

Total 144

ELECTIVES COMPUTER ENGINEERING

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odd Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE607101</td>
<td>Regulation & Public Policy on ICT Sector</td>
<td>3</td>
</tr>
<tr>
<td>ENCE607102</td>
<td>Data Analysis Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Even Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE608103</td>
<td>VLSI Design</td>
<td>2</td>
</tr>
<tr>
<td>ENCE608104</td>
<td>Big Data Technology</td>
<td>3</td>
</tr>
</tbody>
</table>
Resume

<table>
<thead>
<tr>
<th>University General Subjects</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Engineering Subjects</td>
<td>16</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>101</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
</tr>
<tr>
<td>Elective Subjects</td>
<td>9</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
Syllabus of courses in Computer Engineering according to the structure of the curriculum:

UIGE600002
MPKT B
6 CREDITS
See The Engineering Syllabus

ENGE600007
Physics (Electricity, MWO)
3 CREDITS
See The Engineering Syllabus

ENGE600008
PHYSICS (ELECTRICITY, MWO) LABORATORY
1 CREDITS
See The Engineering Syllabus

ENGE600003
CALCULUS
4 CREDITS
See The Engineering Syllabus

ENCE601001
FUNDAMENTAL OF DIGITAL SYSTEM + LABORATORY
3 CREDITS

Learning Outcomes: In this course, students will learn all design phases and implementations of a digital system. At the end of the course, students will be able to analyze simple digital circuits, and able to design digital systems using combinational and simple sequential building blocks. This lecture also involves several practical work in the laboratory to design, implement and verify digital logic systems using digital circuit simulation software.

Topics: Boolean Algebra Principles and applications; Interface Logic Families; Number System & Data Encoding; Basic Logic Circuits; Basic Modular Design of Combinational Circuits; Basic Modular Design of Sequential Circuits.

Practical work: Module 1-Introduction and introduction to Digital Circuit Basics, Module 2 - Boolean Algebra and Elementary logic gates, Module 3 - Karnaugh Map, Module 4 - complex logic gate, Module 5 - Decoder and Encoder, Module 6 - Multiplexer and De-multiplexer, Module 7 - Digital Arithmetic Circuit, Module 8 - Flip-Flop and Latch, Module 9-Registers and Counters, Module 10 - Group Project

Prerequisite: none.

Textbook:

UIGE600003
ENGLISH
3 CREDITS
See The Engineering Syllabus

UIGE600001
MPKT A
6 CREDITS
See The Engineering Syllabus
UNDERGRADUATE PROGRAM

UIGE600010 - UIGE600015
RELIGION
2 CREDITS
See The Engineering Syllabus

UIGE600020 - UIGE600048
SPORTS/ARTS
1 CREDITS
See The Engineering Syllabus

ENGE600002
LINEAR ALGEBRA
4 CREDITS
See The Engineering Syllabus

ENGE600005
PHYSICS (MECHANICS AND THERMAL)
3 CREDITS
See The Engineering Syllabus

ENGE600006
PHYSICS (MECHANICS AND THERMAL) LABORATORY
1 CREDITS
See The Engineering Syllabus

ENCE602002
INTRODUCTION TO COMPUTER ENGINEERING + LABORATORY
3 CREDITS
Learning Outcomes: This course is the introduction to the computer engineering world. This lecture discusses topics that are the basics required in computer engineering. At the end of the course students will be able to explain the components of a computer system both hardware and software, able to design simple algorithms in pseudocode and able to implement them into programs by using a particular programming language.
Practical work: Module 1 - Introduction, Module 2- computer hardware, Module 3- computer software, Module 4- Flowchart, Module 5 - Pseudocode, Module 6- Introduction to Programming in C language, Module 7- Branching in C Language, Module 8- Looping in C language, Module 9-Project in C Language.
Prerequisite: Basic Digital System
Textbook:

ENCE603003
ENGINEERING MATHEMATICS
4 CREDITS
See Electrical Engineering Syllabus

ENCE603004
BASICS OF ELECTRONICS CIRCUITS
2 CREDITS
Learning Outcomes: In this course students will learn the basic electronics components as well as its circuitry. At the end of this course, students will be able to describe the properties of materials
and the operation of a basic electronics component, such as a diode, transistors, op-amps, filters etc.

Topics: Electronics Materials, diodes, bipolar transistors and; MOS transistor circuit, timing, and power; Storage cell Architecture; Operational Amplifiers

Prerequisite: Physics Electricity, Magnetism, Optics and waves

Textbook:

ENCE603005
ELECTRIC CIRCUIT
2 CREDITS

Learning Outcomes: In this course, students will learn the basic electric circuits. At the end of this course, students will be able to analyze simple electronic and electric circuits using appropriate techniques, analyze the resistive circuits, their AC and DC properties as the basics of electric engineering.

Topics: Introduction, resistive circuits, the dependent sources and op. amps, analysis methods, energy - storage elements, first - order circuits, second - order circuits, phasors, sources and sinusoidal AC steady state analysis, air conditioning - steady - state power.

Prerequisites: Physics electricity, magnetism, Optics and waves

Textbook:

ENCE603006
ELECTRIC AND ELECTRONIC CIRCUITS LABORATORY
1 CREDITS

Learning Outcomes: In this course students will learn the practical skills in handling components and basic electronic and electric circuit. At the end of this lab practice, students will be able to analyze the operation of electric and electronics circuit using simple techniques.

Topics: Module 1-Introduction; Module 2-Diode; Module 3-BJT Amplifiers; Module 4-FET Amplifier; Module 5-Op-Amp Amplifier; Module 6-Filter; Module 7-basic Electricity; Module 8-Mesh and Node analysis of Linearity; Module 9-Thevenin and Norton Superposition Analysis;

Prerequisite: Physics electricity, magnetism, Optics and waves, Electrical Circuits, basic Electronics Circuits

Textbook:
4. Module electrical and electronic Circuit Teaching

ENCE603007
ALGORITHM
3 CREDITS

Learning Outcomes: In this course students learn how to evaluate the algorithm. After following this course, the student will be able to explain the basis of the analysis of algorithms; able to explain classic algorithms; able to evaluate algorithm by its complexity

Topics: The basic of algorithms analysis; The algorithm strategy; Classical algorithms for common ta

Prerequisite: Advanced Programming

Textbook:
ENCE600008
COMPUTER ORGANIZATION & ARCHITECTURE
3 CREDITS

Learning Outcomes: In this course, the architecture and the organization of computer system is discussed. After following this course, the student will be able to distinguish the meanings of computer organization and architecture computer, capable of analyzing the computer architecture, particularly the design of instruction-set, the correlation between clock-speed and CPU performance and the influence of the structure of the bus for computing speed, was able to decipher the role of cache memory to improve memory access time, including its organization and updates mechanism. Student will also be able to develop small programs using the basic instruction set of hypothetical processor. Students will also be able to elaborate on the influence of the programming techniques for computational speed. Students will also be able to analyze advanced processor design in improving performance computing like pipelining, parallel processors and multicore processors.

Topics: The basic Instruction set architecture; Organization Of The Processor; Memory; Peripheral subsystems; Multi-many core architectures; Pipelining

Prerequisite: Intro to Computer Engineering + Lab

Textbook:

ENCE603009
DISCRETE STRUCTURES
3 CREDITS

Learning Outcomes: In this course students will learn the basic principles of discrete mathematics and apply it to examine and study the modern computing techniques and build a foundation for analyzing problems in computer engineering and developing solutions. After following this course, the student will be able to create sets and functions, applying the techniques of proof, as well as being able to use the theory of graph, tree, iteration and recursion in various cases of problems in the field of computer engineering.

Topics: set; relation; function; Boolean algebra; proofing techniques; basic proof; graph; tree; iteration; recursion

Prerequisite: none

Textbook:

ENCE603010
COMPLEX VARIABLES AND VECTOR ANALYSIS
2 CREDITS

See Electrical Engineering Syllabus

ENCE604011
SIGNAL AND SYSTEMS
3 CREDITS

See Electrical Engineering Syllabus
ENCE604012
ADVANCED PROGRAMMING
3 CREDITS
Learning Outcomes: In this course will be on learn regarding programming using high-level languages. After following this course the student is expected to able to implement modular programming in the form of a function (by value and by reference); being able to implement recursion algorithm into the C language; capable of using arrays in C program; able to make programs with data structures; able to make programs with dynamic data structures.
Topics: Programming constructs and paradigms: pointer, Array, linked list; Problem-solving strategies: searching, sorting; Data structures; Recursion
Prerequisite: Introduction to computer engineering and Practical
Textbook:

ENCE604013
DIGITAL SYSTEM DESIGN + LABORATORY
3 CREDITS
Learning Outcomes: In this course, it will discussed the principles in designing digital systems. After following this course, the student is expected to be able to design and analyze sequential and combinational circuit using a hardware modeling language definition language (HDL) and able to do synthesis into the PLD, CPLD and FPGA-like.
Topics: Modular Design of Combinational Circuits; Modular Design of Sequential Circuits; Control and Data-path design; design with programmable logic; system design constraints; fault models & testing
Prerequisite: Fundamental of Digital System + Lab
Textbook:
2. Bryan mealy, Fabrizio Tappero, Free Range VHDL, freerangefactory.org
3. Digital System Design Lab Modules

ENCE604014
COMPUTER BASED SYSTEMS
4 CREDITS
Learning Outcomes: In this course, it will be discussed about microprocessor and microcontroller technology. After following this course, the student is expected to be able to do the process interface to the I/O equipments; able to make simple programs in Assembly language for embedded systems; capable of designing embedded systems with a simple microcontroller
Topics: Introduction to computer systems, addressing modes, data transfer, programming microprocessor with Assembly language, memory interface, introduction of computer-based systems, programming Input/Output, interrupt handling, timer
Prerequisite: Computer Organization & Architecture, Basic Electronic Circuit
Textbook:

ENCE604015
COMPUTER BASED SYSTEMS LABORATORY
1 CREDITS
Learning Outcomes: In this subject, students will conduct hands-on programming the microprocessor and microcontroller-based embedded systems, as well as interfacing microcontroller. After following this lab course students are expected to be able to conduct interfacing to the i/o tools, able to make simple programs in Assembly language for embedded systems and capable of designing embedded systems with a simple microcontroller 8051 and ARM
ENCE604016
COMPUTER NETWORKS AND LABORATORY
4 CREDITS
Learning Outcomes: In this course, students study the topics about computer networks comprehensively from layer 1 to layer 7. After following this course, the student will be able to implement the various Protocol TCP/IP and Ethernet network technology as well as the right addressing in a simple network, able to implement simple network-based VLAN and applying various routing protocols such as static routing, RIP, Single Area OSPF and make use of Access Control lists, DHCP and NAT to support networking capabilities, and is able to implement basic access control features in computer networks and are able to utilize the concept of dynamic addressing and implementing network address translation in simple computer network
Topics: architecture and network topology, Protocol and communications networks; OSI and TCP/IP Layer; technology access network on the LAN and WAN; Ethernet technology; network layer; IP Address & Subnetting; transport network and application protocol; Basic switched networks; VLAN & InterVAN; The concept of routing static & dynamic; Routing Protocol RIP; Single Area OSPF; Access Control List Standard & Extended; DHCP Server & Client, Relay, Static & Dynamic NAT
Prerequisite: Intro to Computer Engineering + Laboratory
Textbook:

ENCE605017
PROBABILITY AND STOCHASTIC PROCESSES
3 CREDITS
See Electrical Engineering Syllabus

ENCE605018
SOFTWARE ENGINEERING
3 CREDITS
Learning Outcomes: In this course, students will learn how to design software with correct steps and able to document them. After following this course, students will able to design software using the stage of the software life cycle with the desired risk level, capable of making design software with the correct stages; capable of documenting the stages of design software
Topics: Hardware and software processes; Requirements analysis and elicitation; System specifications; System architectural design and evaluation; Concurrent hardware and software design; System integration, Software testing and validation; Maintainability, manufacturability, sustainability
Prerequisite: Advanced Programming
Textbook:
ENCE605019
EMBEDDED SYSTEMS 1
2 CREDITS
Learning Outcomes: In this course, students learn to make embedded systems design (hardware and software) for specific applications. After following this course, students will be able to design embedded systems with sensors and actuators in synchronous and asynchronous system.
Topics: Characteristics of embedded systems; Asynchronous and synchronous serial communication; Data acquisition, control, sensors, actuators
Prerequisite: Computer-Based Systems, Electric Circuits, Basics of Electronics Circuits
Textbook:

ENCE605020
OPERATING SYSTEM
3 CREDITS
Learning Outcomes: In this subject, it will be discussed the basic principles of early generation and up-to-date operating system. After following this course, the student will be able to explain the system resource management of computer systems, able to explain the memory management techniques; able to explain the techniques of data storage management; able to explain the architecture of distributed systems
Topics: Operating Systems Structures; Process; Thread; CPU Scheduling; Concurency; Memory-system management, storage management; distributed system architectures
Prerequisite: Computer Organization & Architecture
Textbook:

ENCE60 5021
DESIGN & MANAGEMENT COMPUTER NETWORKS + LABORATORY
4 CREDITS
Learning Outcomes: On this subject it will be studied how to design a network with a larger scale taking into account aspects of scalability and reliability. After following this course the student will be able to implement the various techniques of redundancy and LAN Link Aggregation to increase scalability and reliability of the network, being able to use the Routing Protocol EIGRP and OSPF in the scale of a larger network, as well as capable of designing a network WAN and Internet as well as applying the principles of network management and procedures
Topics: Network Scalability; LAN redundancy; Link Aggregation; Wireless LAN; Multi-area OSPF Multi-access and; EIGRP. Hierarchical Network Design; WAN technologies; Point to Point connection and Frame Relay; Broadband Solutions; Internet VPN; Network Monitoring; Troubleshooting the networks; Network performance evaluation. Project: The design of computer network in an organization of a company.
Prerequisite: Computer Network + P
Textbook:

ENCE60 5022
DATABASE SYSTEMS AND LABORATORY
3 CREDITS
Learning Outcomes: In this course, students will learn the concepts of database systems and applications. After following this course, the student is able to design a structured database in the
software design and implement it into a SQL database system

Topics: Database systems; Event-driven and concurrent programming; Using application programming interfaces

Prerequisite: Discrete Structures

Textbook:

ENCE607031
ACADEMIC WRITING
2 CREDITS

Learning Outcomes: In this course students will learn how to create a proposal and scientific papers for publication. After following this course the student will be able to write scientific papers with a good structure, able to use the Bahasa Indonesia and English in scientific writing, and being able to use the software to write scientific papers with a good format.

Topics: Systematics of scientific writing; experimental variables and setup; statistical analysis tools; The use of the Bahasa Indonesia in scientific works; The use of English languages in scientific works; Word processing software; styling; referencing tools

Prerequisite: none

Textbook:

ENCE606024
TELECOMMUNICATION NETWORKS
3 CREDITS

Learning Outcomes: This course discusses the telecommunications network system. After following this course, the students will able to explain the principles and basic methods of Telecommunication Engineering as well as the use of telecommunication devices in the network system, capable of outlining the techniques of modulation and multiplexing; able to explain the functions of telecommunications devices in the network system

Topics: Introduction to Telecommunication Networks; Modulation (Amplitude and frequency); Digital Modulation; Multiplexing Techniques; Coding; Telephony Systems; Technology of Telecommunications Devices

Prerequisite: Signals and systems

Textbook:

ENCE606025
COMPUTER NETWORKS SECURITY + LABORATORY
3 CREDITS

Learning Outcomes: In this subject, student will study security techniques in computer networks. After following this course, students are able to analyze and implement security aspects on the network computer, capable of analyzing the security and integrity of your data and perform protection, able to apply the techniques of cryptography and authentication in network security and web.

Topics: Security and integrity of Data; Vulnerabilities; Resource Protection; Private & Public Key Cryptography; Authentication; Network and Web Security.

Prerequisite: Design and management of computer networks + Lab

Textbook:

ENCE606026
EMBEDDED SYSTEMS 2 + LABORATORY
3 CREDITS
Learning Outcomes: In this course, students learn to optimize resources in embedded systems that include the CPU, memory and other resources. After following this course, the student will be able to make advanced embedded systems design with attention to efficient power, and for mobile and networking purposes.
Topics: Periodic interrupts, waveform generation, time measurement; Implementation strategies for complex embedded systems; Techniques for low-power operation; Mobile and networked embedded systems.
Prerequisite: Embedded Systems 1, Operating Systems, Digital System Design + Lab

ENCE606027
PROFESSIONALISM AND ETHICS IN INFORMATION TECHNOLOGY
2 CREDITS
Learning Outcomes: In this course, students will learn the concept of professionalism and ethics in the field of information technology. After following this course, the student is able to describe the current issues in the code of conduct IT; able to elaborate on professional ethics, the role of professional organizations against its members; able to explain the current job classification in the field of IT and professional certification IT field; capable of outlining the importance of the code of ethics of the profession and its impact on the wider community; able to explain the social responsibility in the field of IT; able to apply the concepts of professionalism and ethics in certain cases.
Topics: Ethics; Job, profession and professional; Profession in information technology; Organization and code of Ethics of IT experts; cyber ethics; intellectual copyright; Internet crime
Prerequisite: none

ENCE606028
OBJECT ORIENTED PROGRAMMING + LABORATORY
3 CREDITS
Learning Outcomes: In this lecture, students will study how to create program with object-oriented concepts. After following this course, students are able to implement a software design into object-oriented programming language; able to establish the concept of object-oriented programming (class, constructor, scope of variables); able to outline the Basic objects (arrays, array list, object collection, iterator); able to describe the concept of design class (coupling, cohesion, refactoring, inheritance, polymorph, substitution); able to implement a GUI-based programming, exception handling and multithreading.
Topics: Java Language Elements; Java Language Operation; Defining and Using Class; System, Strings, String Buffer, Math & Wrapper Classes; Array; Classes & Inheritance; Design Graphical User Interface & Event Driven; Exceptions; Collections; Threads and Javadoc
Prerequisite: Advanced Programming
ENCE606029
WIRELESS TECHNOLOGY
3 CREDITS

Learning Outcomes: In this course, students learn the basics of wireless technologies including how it works, techniques, and standardizing on wireless network and mobile. After following this course, the participant is able to explain the basics of wireless technology, techniques in wireless network technology, the standard IEEE 802.11, 802.15 and capable of analyzing projections of future wireless technologies.

Topics: The technology 802.11 (Wireless LAN); Technology 802.15 (Bluetooth, Zigbee, WPAN)
Prerequisite: Computer Networks + Laboratory

Textbook:

ENCE607030
SEMINAR
2 CREDITS

Learning Outcomes: In this subject, students learn how to make bachelor thesis proposal to design system, component, and process in the field of embedded systems or computer networks within the research framework.

Topics: Introduction and research background; literature studies; research design
Prerequisite: already passed 120 CREDITS

Textbook:
-

ENEE606023
INTERNSHIP
2 CREDITS

Learning Outcomes: In this subject, students will learn how to work in a company. After following this subject, the student will be able to participate significantly in the team to complete the work related to the field of ICT. In this course, the student is required to be able to be active for working with the team. Students will also be able to deliver the results of his/her work in the internship report seminar.

Topics: Practical work in the company
Prerequisite: already passed 90 CREDITS

Textbook:
-

ENCE607032
ENTREPRENEURSHIP IN INFORMATION TECHNOLOGY
2 CREDITS

Learning Outcomes: In this course students learn the basic concepts of project management and marketing specialized in the field of information technology. After following this course the students are able to implement the concepts and skills of entrepreneurship in innovation of information technology in the form of a business plan expertise in innovation/product which corresponds to the development of information technology.

Topics: Charging for Expertise, Think, Plan, Act Like an Entrepreneur, Making a Business Successful, Taking the Initiative, Enabling an E-Business, Providing Outsourced Services & Building a Contracting Business, guest lectures
Prerequisite: Computer-Based Systems

Textbook:
CAPITA SELECTA IN COMPUTER ENGINEERING
2 CREDITS
Learning Outcomes: In this course, students will learn about the current topics in computer engineering industry. After following this course the students are able to analyze the development of the industry in the field of computer engineering and the problems faced in General.
Topics: The concept of the latest computer technology; Latest computer technology applications; Tradeoff in the new technology of computer science; The latest issues in computer engineering
Prerequisite: none
Textbook: to be determined later

ENCE607034
TELECOMMUNICATION NETWORKS LAB
1 CREDITS
Learning Outcomes: This course aims to provide experience to students in doing experiments that analyze and demonstrate the concepts of Telecommunication Engineering. After completing this course, students are able to explain the techniques of modulation and multiplexing; able to describe the workings of all components of telecommunications devices in the network system
Topics: Introduction to telecommunication networks, Amplitude Modulation, frequency modulation, Telephony Systems, PCM and TDM, Digital Modulation, Line Coding, Digital Filters Fir
Prerequisite: Telecommunications Network
Textbook:
1. Telecommunications Engineering Teaching Modules - Laboratory of Telecommunications.

ENCE607035
HUMAN COMPUTER INTERACTION
2 CREDITS
Learning Outcomes: In this course, students learn and apply HCI theory and analytical approach in producing a prototype of human and computer interaction that is high quality, effective, and efficient. After following this course, the student will be able to design and analyse an interface of computer-based systems.
Topics: factors in HCI; input and output devices; interaction; interaction design; HCI in software process; design rules; implementation support; evaluation techniques; universal design
Prerequisite: none
Textbook:

ENCE608036
BACHELOR THESIS
4 CREDITS
Learning Outcomes: In this special course, students will learn to examine and engage in a research team. After following this course, students will be able to design systems, components, and processes in the field of embedded systems or computer networks within the framework of research. Students will be able to carry out the planned research, be able to analyze the results of the study, able to convey the results of the research in thesis defense.
Topics: Design and implementation of experimental research; Data analysis; Conclusion
Prerequisite: Seminar
Textbook:

ENCE608037
PROJECT MANAGEMENT IN INFORMATION TECHNOLOGY
3 CREDITS

Learning Outcomes: In this subject, students will discuss the managerial principle in IT projects. After following this course, students are expected to be able to apply project management, including team management, scheduling, project management, information management, and design of the project plan.

Topics: Project management principles; Risk, safety, dependability and fault tolerance; IT Project Collaboration strategies; Relevant tools, standards and/or engineering constraints.

Prerequisite: Software Engineering.

Textbook:

ENCE608036
MULTIMEDIA SIGNAL PROCESSING
3 SKS

Learning Outcomes: In this course students will learn multimedia signal processing technology to support the delivery of multimedia information through the Internet. At the end of this course, the student will be able to perform analysis of multimedia signals in the network using appropriate techniques. Students will be able to describe components in multimedia files, multimedia compression techniques, are able to perform analysis and processing of multimedia data such as image, sound and video. Students will also be able to apply a digital image processing algorithms to analyze the information in it.

Topic: Introduction to Multimedia network, Coding and compression of Multimedia Signals (images, sounds, video), improvement the quality of an image, image processing, image Segmentation, representation and description, object recognition.

Prerequisite: Advanced Programming.

Textbook:

ELECTIVES OFFERED IN COMPUTER ENGINEERING STUDY PROGRAM:

ENCE607101
VLSI DESIGN
2 SKS

Learning Outcomes: At the end of this course, student will be able to describe the stages of the CMOS design process, implement the Scale of Lambda design, evaluate the characteristics and performance of the power transistor circuit and CMOS digital, as well as the explain the optimization of high level design techniques.

Topics: Mixed-signal circuits; Design parameters issues; Circuit modelling & Simulation methods.

Prerequisite: Fundamental of Digital System + P.

Textbook:

ENCE607102
DATA ANALYSIS ENGINEERING
3 CREDITS

Learning Outcomes: In this course the student is directed to implement the data analysis algorithm into the program. At the end of this course the student will be able to use mathematical and statistical techniques commonly used in basic pattern recognition. Students will be able to use some of the techniques common learning algorithm either supervised or unsupervised in conducting pattern recognition, classification and clustering.

Topics: An introduction to pattern recognition, artificial neural networks, the back-propagation algorithm, unsupervised learning, Principal Component Analysis.
Prerequisite: Complex Variables and Vector Analysis, probability & process Stochastic Programming, Advanced

Textbook:
1. Christopher M. Bishop, “Pattern Recognition and Machine Learning

ENCE608103
BIG DATA TECHNOLOGY
3 CREDITS
Learning Outcomes: In this course students will learn the technology that can be used in utilizing big data to solve different fields (for example: internet, telecommunications, retail). At the end of this course, students will be able to manage (collection, preparation, processing, validation, interpretation) and analyze large amounts of structured and random data.

Topics: Introduction to Data Engineering, Hadoop Architecture, The Hadoop Distributed File system, Setting Up Hadoop clusters, administering Hadoop, Map Reduce Framework, developing a Database Application, Hive Map Reduce, Spark Processing, Big Data Analytic Project

Prerequisite: Data Base System

Textbook:

ENCE60 81 0 4
REGULATION & PUBLIC POLICY on ICT SECTOR
3 CREDITS
Learning Outcomes: In this course students will be exposed on the basics of drafting process and the development of regulatory and public policies, especially in the era of vast development in information and communication technology (ICT). At the end of this course, the student will be able to explain the basics of public policy, law and regulation in telecommunication industry, and Internet governance. This course will also provide examples of applicable regulation and policy in the field of telecommunications and the Internet, to anticipate the pace of change and the community dynamics implied by the development of ICT.

Topics: Public administration, public policy significance, range of research methods and policy research, comparative studies, introduction to law and policy regulation in telecommunications, economic analysis of telecommunications regulation, key issues of telecommunication regulation, understanding internet governance, the internet governance stakeholder, the internet governance process

Prerequisite: -

Textbook:
5.3. **MASTER PROGRAM IN ELECTRICAL ENGINEERING**

Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td>Master Program in Electrical Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Magister Teknik (M.T.)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>BAN-PT: A - accredited</td>
</tr>
<tr>
<td>7</td>
<td>Language(s) of Instruction</td>
<td>Bahasa Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
</tbody>
</table>

Entry Requirements

Pass the entrance exam, and pass s1/d iv from electrical engineering study program, mechanical engineering, computer science, informatic engineering, mathematic, physics, and equivalent program

Study Scheme (Full Time / Part Time)

<table>
<thead>
<tr>
<th>Type of Semester</th>
<th>Number of semester</th>
<th>Number of weeks /semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Study Duration

Designed for 2 years

Graduate Profiles:

Magister of engineering who is able to formulate solution to complex problems in the field of electrical engineering through advancement technology based research using inter and multidiscipline approach in accordance with professional ethics.

Expected learning outcomes:

General outcomes:
1. Able to model electrical engineering system into mathematical equations
2. Able to formulate the problem solving in electrical engineering with the proper research methods
3. Able to produce innovative independent scientific work
4. Able to apply concepts of professional management in the field of electrical engineering

Majoring in electronics and photonics:
- Able to design advanced electronics and photonics devices
- Able to design photonics system
- Able to study state of the art of technology in the field of electronics and photonics.

Majoring in communication engineering
- Able to evaluate the performance of system and telecommunication network
- Able to design communication system and radar system
- Able to design communication system and radar system equipments
- Able to recommend the latest technology in the field of telecommunications and radar

Majoring in control engineering
- Able to evaluate control system performance
- Able to recommend the latest control method based on the system need
- Able to design the latest control in the real systems
- Able to study the latest research in field of control engineering

Majoring in electrical power engineering and energy:
- Able to specify technical and non-technical aspects in electric power industrial utilization
- Able to recommend strategy to improve efficiency, quality, and power quality in electrical engineering system
- Able to combine new and renewable generator to electrical network system
- Able to evaluate strategy and risk mitigation in the development of electric power system who are reliable, secure, environmentally friendly
12 Majoring in computer engineering and network:
- Able to design advanced information network
- Able to design advanced computer system
- Able to develop the latest technology based system in the field of information technology and multimedia

Majoring in information network security:
- Able to design physical infrastructure in a comprehensive manner that meets high security rules
- Able to analyse information security management in new technological concept for national Indonesia development
- Able to evaluate the information network security based on the rule of technology, legislation, and regulations that apply

Majoring in telecommunication management:
- Able to evaluate the technical and non-technical aspects of a telecommunication system
- Able to recommend strategies and technology for the improvement of the service quality system
- Able to develop insight of technology which oriented to national interests and Indonesia development
- Able to evaluate strategic and regulative policies that are applied to the telecommunication system

Majoring in electrical power management and energy:
- Able to formulate the technical and non-technical aspects, management, and business development and utilization on electrical power industrial economics including energy issues
- Able to recommend strategies for increased efficiency, quality, and the quality of the electrical power system
- Able to integrate new energy power generation and renewable electric network system
- Able to recommend risk mitigation strategies and on the development of electric power system which are reliable, secure, and environmentally friendly

13 Classification of Subjects

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Core Subjects</td>
<td>19</td>
<td>45.23%</td>
</tr>
<tr>
<td>ii</td>
<td>Majoring Courses</td>
<td>23</td>
<td>54.77%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100 %</td>
</tr>
</tbody>
</table>

14 Total Credit Hours to Graduate 42 SKS

Career Prospects

The graduates of this program have been employed in various industrial companies such as power engineering, IT, electronic, oil & gas, telecommunication and other related industries. Some of graduates were even employed before the graduation.

Some occupation or job titles that are suitable for this program are electrical engineer, process engineer, control engineer, instrumentation engineer, program manager, project manager, technical manager and professional lecturers.
Learning Outcome

Mampu merancang devis elektronika dan fotonika lanjut
Mampu merancang sistem fotonika
Mampu mengkaji perkembangan riset di bidang elektronika dan fotonika
Mampu mengevaluasi performa sistem dan jaringan telekomunikasi
Mampu merancang sistem komunikasi dan sistem radar
Mampu merancang perangkat sistem komunikasi dan sistem radar
Mampu mengevaluasi kinerja sistem kendali
Mampu merekomendasikan metode pengendali terkini berdasarkan kebutuhan sistem
Mampu merancang pengendali terkini dalam sistem nyata
Mampu mengkaji perkembangan riset terkini di bidang teknik kendali
Mampu menspesifikasikan aspek teknis dan non-teknis pada pengusahaan dan pemanfaatan industri ketenagalistrikan
Mampu merekomendasikan strategi untuk peningkatan efisiensi, mutu, dan kualitas daya pada sistem ketenagalistrikan
Mampu memadukan pembangkit listrik energi baru dan terbarukan dengan sistem jaringan listrik
Mampu merekomendasikan strategi dan mitigasi resiko pada pengembangan sistem tenaga listrik yang handal, aman, dan ramah lingkungan
Mampu merancang jaringan informasi lanjut
Mampu merancang sistem komputer lanjut
Mampu mengembangkan sistem berbasis teknologi terbaru di bidang teknologi informasi dan multimedia
Mampu merancang infrastruktur fisik jaringan secara komprehensif yang memenuhi kaidah keamanan yang tinggi
Mampu mengevaluasi keamanan informasi dan jaringan komputer berdasarkan kaidah teknologi terkini
Mampu mengelola manajemen keamanan jaringan informasi pada konsep teknologi baru untuk pengembangan nasional di Indonesia berdasarkan perundangan dan regulasi yang berlaku
Mampu mengevaluasi aspek teknis dan non-teknis dari sebuah sistem telekomunikasi
Mampu mengembangkan wawasan teknologi berorientasi kepentingan nasional dan pembangunan negara Indonesia
Mampu mengevaluasi kebijakan strategis dan regulatif yang diterapkan pada sistem telekomunikasi
Mampu merekomendasikan strategi dan teknologi untuk pengingkatan kualitas layanan sistem
Mampu merumuskan aspek teknis dan non-teknis, manajemen, dan keekonomian pada pengusahaan, pemanfaatan, dan industri ketenagalistrikan termasuk persoalan energinya
Mampu merekomendasikan strategi untuk peningkatan efisiensi, mutu, dan kualitas daya pada sistem ketenagalistrikan
Mampu memadukan pembangkit listrik energi baru dan terbarukan dengan sistem jaringan listrik
Mampu merekomendasikan strategi dan mitigasi resiko pada pengembangan sistem tenaga listrik yang handal, aman, dan ramah lingkungan
Mampu memodelkan sistem teknik elektro ke dalam persamaan matematis
Mampu memformulasikan pemecahan masalah di bidang teknik elektro dengan metode penelitian yang tepat
Mampu membuat hasil karya ilmiah mandiri berupa karya inovatif
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifikasi dan mengkaji peluang dan tantangan di bidang teknik elektro
Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro
Mampu memahami aspek teknik, ideologi, dan proses pewujudan konsep dan metafisisasi mitra mitra dalam ringkasan yang relevan
Mampu mengidentifik
FLEW DIAGRAM OF SUBJECTS

Diagram Alir Mata Kuliah Peminatan Teknik Elektronika dan Fotonika

Semester 1
- Matematika Terapan
- Disain Rangkaian Terpadu
- Nanoelektronika
- Divais Fotonika Lanjut

Semester 2
- Metodologi Penelitian
- Disain MEMS
- Divais Solid State
- Divais Heterostruktur

Semester 3
- Manajemen dan Keekonomian Proyek Teknik
- Sistem Optik Koheren
- Sistem Pengukuran dengan Metode Optik

Semester 4
- Tesis
- Publikasi Ilmiah

Diagram Alir Mata Kuliah Peminatan Teknik Telekomunikasi dan Radar

Semester 1
- Matematika Terapan
- Jaringan Komunikasi Broadband
- Sistem Radar dan Desain
- Pengolahan Sinyai dan Aplikasi

Semester 2
- Metodologi Penelitian
- Teknik Sistem Medis Nirkabel
- Disain Rangkaian RF
- Disain Antena Modern

Semester 3
- Manajemen dan Keekonomian Proyek Teknik
- Teknologi Komunikasi Gelombang Cahaya
- Topik Khusus Telekomunikasi

Semester 4
- Tesis
- Publikasi Ilmiah

Panduan
- Mata Kuliah Departemen
- Mata Kuliah Peminatan
Diagram Alir Mata Kuliah Peminatan Teknik Komputer dan Jaringan

Semester 1
- Matematika Terapan
- Manajemen dan Keekonomian Proyek Teknik
- Arsitektur Komputer Lanjut
- Jaringan Informasi Lanjut

Semester 2
- Metodologi Penelitian
- Simulasi Jaringan Berbasis Komputer
- Komputasi Multimedia
- Penginderaan Jauh

Semester 3
- Keamanan dan Kehandalan pada Jaringan
- Rekayasa Perangkat Lunak Berorientasi Objek
- Sistem Embedded Lanjut

Semester 4
- Tesis
- Publikasi Ilmiah

Diagram Alir Mata Kuliah Peminatan Manajemen dan Keamanan Jaringan Informasi

Semester 1
- Matematika Terapan
- Manajemen dan Keekonomian Proyek Teknik
- Keamanan Jaringan Informasi
- Infrastruktur Jaringan Informasi

Semester 2
- Metodologi Penelitian
- Simulasi Jaringan Berbasis Komputer
- Manajemen dan Regulasi Keamanan Informasi
- Manajemen Resiko Keamanan dan Penanganan Bencana

Semester 3
- Keamanan Aplikasi dan Jaringan Bergerak
- Forensik Dijital dan Jaringan

Semester 4
- Tesis
- Publikasi Ilmiah

Panduan
- Mata Kuliah Departemen
- Mata Kuliah Peminatan
Diagram Alir Mata Kuliah Peminatan Manajemen Telekomunikasi

Semester 1
- Matematika Terapan
- Manajemen dan Keekonomian Proyek Teknik
- Teknik Telekomunikasi Modern
- Manajemen Sistem Telekomunikasi

Semester 2
- Metodologi Penelitian
- Manajemen Strategis
- Regulasi dan Kebijakan Telekomunikasi
- Topik Khusus Teknologi Informasi dan Komunikasi
- Kapita Selektta

Semester 3
- Komunikasi Multimedia Nirkabel
- Inovasi dan Daya Saing Teknologi
- Teknologi Jaringan Masa Depan

Semester 4
- Tesis
- Publikasi Ilmiah

Diagram Alir Mata Kuliah Peminatan Manajemen Energi dan Ketenagalistrikan

Semester 1
- Matematika Terapan
- Manajemen dan Keekonomian Proyek Teknik
- Operasi dan Kendali Pembangkit
- Ekonomi Pengusahaan Pembangkitan Tenaga Listrik

Semester 2
- Metodologi Penelitian
- Sistem Dinamik dan Pemodelan
- Manajemen dan Ekonomi Energi
- Manajemen Strategis dan Resiko

Semester 3
- Kualitas Daya Sistem Tenaga Listrik
- Perencanaan Sistem Tenaga Listrik
- Energi dan Lingkungan

Semester 4
- Tesis
- Publikasi Ilmiah

Panduan
- Mata Kuliah Departemen
- Mata Kuliah Peminatan
POST-GRADUATE CURRICULUM COURSES

DEPARTMENT OF ELECTRICAL ENGINEERING

ELECTRONICS AND PHOTONICS ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td>1st Semester</td>
<td>1st Semester</td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801101</td>
<td>Integrated Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801102</td>
<td>Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801103</td>
<td>Advanced Photonic Devices</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
<tr>
<td>2nd Semester</td>
<td>2nd Semester</td>
<td>2nd Semester</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802104</td>
<td>MEMS Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802105</td>
<td>Solid State Device</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802106</td>
<td>Hetero-structure Devices</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
<tr>
<td>3rd Semester</td>
<td>3rd Semester</td>
<td>3rd Semester</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803107</td>
<td>Optical Coherent System</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803108</td>
<td>Optical Method for Measurement</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
<tr>
<td>4th Semester</td>
<td>4th Semester</td>
<td>4th Semester</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
<tr>
<td>TOTAL</td>
<td>TOTAL</td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

TELECOMMUNICATIONS AND RADAR ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td>1st Semester</td>
<td>1st Semester</td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801201</td>
<td>Mobile Broadband System Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801202</td>
<td>Radar Systems and Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801203</td>
<td>Digital Signal Processing & Apps</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
<tr>
<td>2nd Semester</td>
<td>2nd Semester</td>
<td>2nd Semester</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802204</td>
<td>Wireless Medical System Eng.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802205</td>
<td>Advanced RF Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802206</td>
<td>Modern Antenna Design</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
MASTER PROGRAM

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801301</td>
<td>Analog and Digital Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801302</td>
<td>Special Topics on Advanced Research</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801303</td>
<td>Modeling and System Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802304</td>
<td>Multivariable Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802305</td>
<td>Intelligent Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802306</td>
<td>Adaptive and Optimal Control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803307</td>
<td>Advanced Control on Electric Drive System</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803308</td>
<td>Intelligent System and Control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>

CONTROL ENGINEERING

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801301</td>
<td>Analog and Digital Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801302</td>
<td>Special Topics on Advanced Research</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801303</td>
<td>Modeling and System Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802304</td>
<td>Multivariable Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802305</td>
<td>Intelligent Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802306</td>
<td>Adaptive and Optimal Control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803307</td>
<td>Advanced Control on Electric Drive System</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803308</td>
<td>Intelligent System and Control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>
ELECTRICAL POWER AND ENERGY ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801401</td>
<td>Power Generation Ops and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801402</td>
<td>Electrical Power System Quality</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801403</td>
<td>Energi and Environment</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802404</td>
<td>Dynamic System and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802405</td>
<td>Economics Energy and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802406</td>
<td>Industrial Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803407</td>
<td>Topics in Power System and Energy</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803408</td>
<td>Power System Planning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>

COMPUTER ENGINEERING & NETWORKING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801501</td>
<td>Object Oriented based Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801502</td>
<td>Advanced Computer Architectures</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801503</td>
<td>Advanced Information Networks</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802504</td>
<td>Computer Based Network Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802505</td>
<td>Multimedia Computing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE802506</td>
<td>Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803507</td>
<td>Network Security and Reliability</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803508</td>
<td>Advanced Embedded Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
CURRICULUM OF ELECTRICAL ENGINEERING DEPARTMENT
SPECIAL CLASS IN SALEMBA

INFORMATION NETWORK SECURITY MANAGEMENT

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801601</td>
<td>Information Network Security</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801602</td>
<td>Information Network Infrastructure</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802504</td>
<td>Computer Based Network Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802604</td>
<td>Information Security Manag. & Regulation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802605</td>
<td>Security Risk Manag & Disaster Recovery</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE803606</td>
<td>Application & Mobile Network Security</td>
<td>4</td>
</tr>
<tr>
<td>ENEE803607</td>
<td>Network and Digital Forensic</td>
<td>4</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

TELECOMMUNICATIONS MANAGEMENT

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801701</td>
<td>Modern Telecommunications Eng.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801702</td>
<td>Manag. of Telecommunications System</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Master Program

2nd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802703</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802704</td>
<td>Telecommunications Policy & Regulation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE802705</td>
<td>Special Topic in ICT</td>
<td>2</td>
</tr>
<tr>
<td>ENEE802706</td>
<td>Capita Selecta</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

3rd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE803707</td>
<td>Multimedia Wireless Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803708</td>
<td>Tech. Innovation & Competitiveness</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803709</td>
<td>Future Network Technology</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Power and Energy Management

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801401</td>
<td>Power Generation Ops and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801802</td>
<td>Electric Utility Power Generation Economic</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802404</td>
<td>Dynamic System and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802405</td>
<td>Economics Energy and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802805</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

3rd Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE803806</td>
<td>Electrical Power System Quality</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803408</td>
<td>Power System Planning</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801403</td>
<td>Energy and Environment</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>
Resume

<table>
<thead>
<tr>
<th>Basic Electrical Engineering Subjects</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRONICS & PHOTONICS ENGINEERING SUBJECCTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td>42</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Electrical Engineering Subjects</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELECOMMUNICATION & RADAR ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td>42</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Electrical Engineering Subjects</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td>42</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Electrical Engineering Subjects</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICAL POWER AND ENERGY ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td>42</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Electrical Engineering Subjects</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td>42</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Electrical Engineering Subjects</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFORMATION NETWORK SECURITY ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td>42</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>MANAGEMENT OF TELECOMMUNICATION SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Electrical Engineering Subjects</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANAGEMENT OF POWER SYSTEM AND ENERGY SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>
SYLLABUS OF SUBJECTS

ENEE802002
RESEARCH METHOD
3 CREDITS
Learning Outcomes: Capable to write research proposal
Syllabus: Research: a way of thinking & process; Formulating a research problem; Research design; Data collecting; Writing research proposal; Collecting data & processing; Writing research report
Prerequisite: -
References:
1. Technical guidelines on the writing of Thesis students of University of Indonesia

ENEE804005
SCIENTIFIC PUBLICATION
2 CREDITS
Learning Outcomes: Syllabus:-
Prerequisite: -
Reference:

ENEE804004
THESIS
8 CREDITS
Learning Outcomes: In this course, students will be directed to develop independent research guided by a supervising professor or competent lecturer. After following this course the student is expected to be able to make a concept of research associated with existing theories. Under the guidance of a lecturer, students are expected to be able to design, integrate, implement, and analyze the concept, as well as write the results of his research into systematic paper in the form of thesis book. Students are also expected to be able to present and defend the concept and results of his research in front of the examiners in the thesis examination.
Syllabus:-
Prerequisite: Have taken at least 24 CREDITS
Reference:
1. Technical guidelines on the writing of Thesis students of University of Indonesia
2. IEEE Citation Reference

ENEE801001
APPLIED MATHEMATICS
3 CREDITS
Learning Outcomes: After completing the coursework, the student is expected to be able to apply the mathematical equations to solve engineering problems. In the application in the field of technology management, the purpose of this course is also to introduce the students to the
statistical methods that can be used to formulate solutions to technical and business problems in a system and technology application.

Syllabus: Series, Differential Equations And Partial Differential, As Well As Some Of The Transformation; Probability and optimization, statistics, statistical methods; Mathematical Modeling For Business; Decision Analysis; Forecasting; Business Research For Managers; Optimization in the business and engineering; Theory Survey.

Prerequisite: None

Textbook:

ENEE803003

ENGINEERING ECONOMY AND PROJECT MANAGEMENT

3 CREDITS

Learning Outcomes: this course aims to build the competency in evaluating economics and management aspects of the projects, so that students are expected to understand the basic theories to support investment and developing feasibility analysis of service/application technology.

Syllabus: Basics of project and project management; Organizational structure; Management function; Leadership in environmental projects; Conflict Management; Analysis of investment; Analysis of control for infrastructure development; Costs and allocation of wealth; Risk management and control.

Prerequisite: None

Textbook:

ENEF801001

INTEGRATED CIRCUIT DESIGN

3 CREDITS

Learning Outcomes: Capable of designing and analyzing a series of simple integrated electronics.

Syllabus: Technology component of integrated circuit; CMOS Technology; CMOS analog circuit modelling; Properties of device; Operational amplifier sub circuit with CMOS analog; CMOS amplifiers; Analog to Digital converter; Digital to Analog Converter; Computer-based electronic circuit design.

Prerequisite: None

Textbook:

ENEF803007

OPTICAL COHERENT SYSTEMS

3 CREDITS

Learning Outcomes: Able to design and simulate an optical coherent system
Syllabus: Narrowing Linewidth light source; Injection-locked for light source; Heterodyne receiver system; Integrated Devices for Optical Communication Systems; Direct Detection Optical Communication Systems; Coherent System Structure for high speed optical fiber communication; Performance Degradation Sources in Coherent Optical Systems; Multilevel Coherent Optical Systems; Multichannel Optical Systems.

Prerequisite: None

Textbook:

ENEF803008
OPTICAL METHOD FOR MEASUREMENT SYSTEM
3 CREDITS

Learning Outcomes: after seriously following this course student are expected to be able to design using laser, optical fiber and for application in various types of measurement systems.

Syllabus: basic concepts of laser and its properties; Optical phenomena: diffraction and interference; Basic concepts of fiber optics and its properties; Fiber optic sensors which include intensity, polarization and interference; Examples of some applications to measure various types of measurement: temperature, pressure and displacement.

Prerequisite: None

Textbook:

ENEF801003
ADVANCED PHOTONIC DEVICES
3 CREDITS

Learning Outcomes: This course aims to provide a systematic introduction on modern photonics and its subsystem devices for applications in the field of optical communications, optical sensing and imaging, optical data storage and computing as well as solid state illumination.

Syllabus: Guided wave optics; Fiber optics; Optical resonator; Optical photons; photons and atom; Photons in semiconductor; Laser amplifiers; Photon Source semi-Conductor; Photonic modulators: electro-optics, nonlinear optics and acousto optic.

Prerequisite: None

Textbook:

ENEF802006
HETERO-STRUCTURE DEVICES
3 SKS

Learning Outcomes: Students are able to analyze the physical calculations regarding a hetero-structured device and principles of operations in a comprehensive manner.

Syllabus: Introduction to physical and the properties of the semi-conductor: direct and indirect bandgap; Heterojunctions; The design of the device of hetero-structure; Solar cells; Photo detectors; LEDs.
ENEF802005
SOLID STATE DEVICES
3 CREDITS
Learning Outcomes: After completing the coursework, the students are able to design a simple solid state devices such as: MIS Diode, Charge Couple Devices, Tunnel devices, IMPATT and Related Transit - Time Devices; Transferred Electron Devices
Syllabus: MIS Diode; Charge Couple Devices; Tunnel devices; IMPATT and Related Transit - Time Devices; Transferred Electron Devices
Prerequisite: None
Textbook:

ENEF802004
MICRO ELECTRO MECHANICAL SYSTEM, MEMS DESIGN
3 CREDITS
Learning Outcomes: After completing the coursework, students are able to design and analyze simple MEMS-based device. In addition, students will become acquainted with the process of fabrication of MEMS and micro-sensor and its application in the industry.
Syllabus: Introduction to MEMS; Materials for MEMS; Micromachining Process; The structure and system of MEMS on industrial and automotive applications; Structure and application of Photonic MEMS System; MEMS application in the life sciences; The structure and application of MEMS Structures on the application of RF; Packaging and reliability considerations for MEMS.
Prerequisite: None
Textbook:

ENEF801002
NANOELECTRONICS
3 CREDITS
Learning Outcomes: After completing the coursework, the student is able to evaluate nanoelectronic devices using quantum mechanics principle
Syllabus: Physical limit of IC and expectation of semiconductor nanostructures; basic quantum theory of nanoelectronics; solid state and low dimensional physics; numerical simulation for nanoelectronics; quantum well, wires, dots; nano structure and semiconductor device; tunneling effect and its application; resonance tunneling diodes and superlattice; quantum well laser; nano-photonics; organic electronics; single electron devices
Prerequisite: None
Textbook:
G.W. Hanson, “Fundamental of Nanoelectornics” CRC Press, 2005
BROADBAND COMMUNICATION NETWORK
3 CREDITS
Learning Outcomes: Able to analyze the performance of the latest generation of communication systems.
Syllabus: High Data rates in Mobile Communication, LTE and SAE; OFDM Transmission; Single Carrier Transmission; Scheduling and Link Adaptation, LTE radio access; The LTE radio interface architecture; The downlink and uplink transmission schemes; LTE access procedure; Multipoint Coordination and transmission; Broadband Multimedia and Multicast Services, Spectrum and RF Last; Performance Evaluation
Prerequisite: None

ENET803007
LIGHTWAVE COMMUNICATION TECHNOLOGY
3 CREDITS
Learning Outcomes: After following this course, students are expected to analyze components of Optical network communications and to design optical communication network
Syllabus: Introduction: computer networks and telecommunication; Types of fiber; Physical impairment, DWDM System; Overview of optical communication technology; SONET/SDH: multiplexing, framing, control and management, protection, packet-over-SONET, generic framing procedure; Optical transport network: WDM network elements, optical protection layer and restoration G.709, GMPLS optical control plane; Design of WDM networks: topology design of light path, routing and wavelength assignment, model dimensions maximum load; Optical access network: a network of hybrid fiber-coaxial, optical passive network; Recent Advances: Western Digital my packet switching.
Prerequisite: None
Textbook:

ENET801002
RADAR SYSTEMS AND DESIGN
3 CREDITS
Learning Outcomes: Able to evaluate the performance of the radar system.
Syllabus: Radar Equation; Influence of propagation; Radar-cross section target; Detection of signals in noise and pulse compression; Radar antenna; Short-range radar & cluster; Signal processing techniques of MTI & Pulse Doppler; Tracking & parameter estimation; The transmitter and receiver.
Prerequisite: None
Textbook:
ENET801003
SIGNAL PROCESSING AND APPLICATIONS
3 CREDITS
Learning Outcomes: Students are able to evaluate algorithms of signal processing by using FFT and transformation of signals.
Syllabus: Signal Analysis; Transient and frequency response; FT-Discrete FFT; Z transformation and its application in signal processing; Correlation and convolution; Digital filters: FIR and IIR; Multi-rate Signal Processing; Advanced Transformation (WHT, DCT, Wavelet transform) and its application; Project.
Prerequisite: None
Textbook:

ENET802006
MODERN ANTENNA DESIGN
3 CREDITS
Learning Outcomes: Able to design antennas for variety wireless technologies in particular the use of the micro strip antenna.
Syllabus: Basic theory of electromagnetic interference: Maxwell’s equations, boundary conditions, equations of wave vector, Image theory; The antenna loop and wire; The ideal dipole; Synthesis Of Antennas; Antenna Aperture: the principle of equivalent; The basic parameters of the antenna measurement techniques. Micro-strip antenna includes slot patch antennas, Fractals antennas, bias technique, broadband technique, multiband technique, stacking antenna, miniaturization, EBG (Electromagnetic Bandgap) and Metamaterial. Mikrostrip antenna applications such as on GPS, wireless telecommunications, RFID antenna research and trend nowadays.
Prerequisite: None
Textbook:

ENET802004
WIRELESS MEDICAL SYSTEMS ENGINEERING
3 CREDITS
Learning Outcomes: Able to evaluate the influence of body tissue against wireless communication systems from within and around the human body; Able to identify wearable devices; Able to analyze Body-centric UWB communications; Able to analyze Body-sensor networks; Able to analyze Medical implant communication systems; Able to analyze wireless medical diagnosis.
Syllabus: The introduction of the rankings; Communication Wireless Body-Centric; Electromagnetic properties and modeling of the human body; Wearable device; UWB Communication Body-Centric; Body censor Network; Medical implant communication
system; Diagnosis: Wireless medical Magnetic Resonance Imaging (MRI), MRI safety; Wireless medical diagnosis: computed tomography microwave (CT), Ultrasound, imaging techniques further (PET, SPECT, Hybrid Method); Treatment technology of wireless; Interference Electromagnetic interference (EMI) on medical devices; Technology wireless power for medical implant devices.

Prerequisite: None

Textbook:

ENET802005

ADVANCED RADIO FREQUENCY DESIGN

3 CREDITS

Learning Outcomes: Able to design RF components, able to evaluate the performance of RF devices.

Syllabus: RF radio access networks design and essential: modulation, demodulation and multiple access techniques; LNA and Mixer design; Oscillator; Frequency Synthesizers; Design of Filter; Design of PA; Design of the wireless communication systems; Wireless LAN technology.

Prerequisite: None

Textbook:

ENET803008

SPECIAL TOPIC IN TELECOMMUNICATION

2 SKS

Learning Outcomes: Able to evaluate recent advancements in telecommunications technology

Syllabus:

Prerequisite:

Textbook:

ENEC801001

ANALOG AND DIGITAL CONTROL

3 CREDITS

Learning Outcomes: This course is an introduction to basic modeling, analysis, and feedback control systems design. This will give students insights into the problems of control and intuition about the methods available for resolving a problem. Both the frequency response and the state space method for analysis and design of the system of continuous time and discrete time are considered.

Syllabus: Open-loop control systems and closed loop; Basic concepts and definitions; Block diagrams; Nyquist diagram; Bode diagram design and analysis; Error analysis of steady-state; Root locus analysis and design; State space equations; Observabilities and controllability; The solution of equation of State; Design of controller using the pole placement method; Design observer full orders; The Transformation Of Z; The mapping between the s-plane and z-plane; Discrete-time state space; Design of controller using pole assignment; Design
observer State; Deadbeat controller.

Prerequisite: None

Textbook:

ENEC801002

CURRENT RESEARCH ON SPECIAL TOPICS IN ENGINEERING

3 CREDITS

Learning Outcomes:

Syllabus:

Prerequisite:

Textbook:

ENEC802004

MULTIVARIABLE CONTROL SYSTEM

3 CREDITS

Learning Outcomes: Able to understand the concept of interacting loops in Multivariable system, analyze the stability of multivariable systems and designing a multivariable controller and domain defined and time domain.

Syllabus: Domain is defined: Multivariable system representation, input-output model, the interaction loop, relative gain array, the method of decoupling Bassenbom-Hood, stability; Time domain: model state space, form a diagonal, form handler, form observable, the stability of multivariable systems, controllability and observabilities, Poles and zeros, pole placement, method a method of decoupling Falb-design of Luenberger observer, Wolovich.

Prerequisite: None

Textbook:

ENEC801003

MODELING AND SYSTEMS ENGINEERING

3 CREDITS

Learning Outcomes: Able to simulate, identify and realize some of the physical model on certain software; In the application in the field of management of technology, this lecture also aims to model problems and cases that occur on the system technology so that it can support the ideal strategy design.

Syllabus: The basic Simulation and modeling: Physical Modeling, identification of Non-Parametric Models; Data Analysis: Least Square, Extended Least Square, Generalized Least Square Identification, Validation, Real-time. Modeling and Prototyping; Application Software: Matlab/Simulink, PSpice, A Network Simulator; Modeling For System Technology; Modeling Engineering Systems; Design for improving the performance and quality of Applications technology.

Prerequisite: None

Textbook:

ENEC802005
INTELLIGENT ROBOTICS
3 CREDITS

Learning Outcomes: Provide the knowledge and expertise to students to design robots moving in closed loop controller with sensor fusion. When realized, the simulation model OpenGL followed implementation real-world runs.

Syllabus: The introduction and implementation of sensors and actuators; Introduction to control systems; C programming for ATMEAL AVR Microcontroller; Simulation modeling with OpenGL; Modeling of moving robot with sensors and its simulation with OpenGL; Live recocking, concepts of real-time systems; Advanced control system and communication; Navigation system; Monitoring Command-control; Localization; The concept of a knowledge-based system with the realization on the robot move.

Prerequisite: None

Textbook:

ENEC802006
ADAPTIVE AND OPTIMAL CONTROL
3 CREDITS

Learning Outcomes: Able to design controllers for slow time variation, process uncertainty and is not linear (local description depends on the operating point). This task can be realized with different types of Adaptive controller or controller-optimal where the control stick was replaced by off-line optimization made through limited worldview.

Syllabus: The Adaptive control structure; Online identification for process variation is slow as an extension method of least squares; Self-tuning controller-based estimates of the parameters and the combination of such different pole assignment controller and its variations to a minimum; Realization of adaptive control on Matlab; The realization of the practice: the time of sampling, modeling and supervision order online from loop control; Random processes; The function of the criteria; Robustness; quadratic linear controller; Kalman Filter; quadratic Gaussian linear controller; Reduced order controller.

Prerequisite: None

Textbook:

ENEC803007
CONTROL AND INTELLIGENT SYSTEMS
3 CREDITS

Learning Outcomes: Study of intelligent computing method to build intelligent control system modelled on systems biology and human cognitive ability, adaptability and classification. Real applications on a single input single output systems (ANTENNA) carried out experimentally.
Syllabus: An introduction to pattern recognition; Artificial neural network; Backpropagation; Self-organized map; Vector quantization; Identification system; System control; Experiment Of ANTENNA.

Prerequisite: None

Textbook:

ENEC803008
ADVANCED ELECTRIC DRIVE SYSTEM CONTROL
2 SKS
Learning Outcomes:
Prerequisite:
Textbook:

ENEP801001
THE OPERATION AND CONTROL OF ELECTRIC POWER GENERATION
3 CREDITS
Learning Outcomes: After completing the coursework, the student is able to operate the power plants geothermal and hydro power, distribution and power control systems and building electric power production cost models.
Syllabus: the properties of the power generation units; Economic Dispatch of Thermal Units; The influence of the transmission system; Unit Commitment; Generation with energy supply is limited; Hydrothermal Coordination; The model of production costs; Control generation; The exchange of power and energy.
Prerequisite: None
Textbook:

ENEP802004
DYNAMICAL SYSTEMS AND MODELING
3 CREDITS
Learning Outcomes: The student is able to design a dynamic model based on variable and determine parameters-owned model and compare the model obtained with various other models.
Syllabus:
Introduction to dynamical systems, cycle feedback, model Multivariable complex and multiobyektif, modeling and simulation, design models, dynamic urban changes, developments
Prerequisite: None
Textbook:
QUALITY AND QUALITY POWER ELECTRIC POWER SYSTEMS

3 CREDITS

Learning Outcomes: Able to analyze power system operating conditions, steady state on the condition and disrupt due to voltage swell/sag voltage and harmonic distortion.

Syllabus: Transient; Overvoltage; Undervoltage; Interruptions; Sags; Swells; Voltage Unbalance; Voltage fluctuations; Distortion of the wave form; Power frequency variation; Harmonic distortion; Current vs. Voltage distortion; Harmonic vs. Transient; Harmonic Control; The Design Of The Filter; Benchmarking the quality of power; Power generation distribution and quality; Wiring and grounding; Checking the quality of the resources.

Prerequisite: None

Textbook:

ENME803006

ELECTRICAL POWER SYSTEM QUALITY

2 SKS

Learning Outcomes: Able to analyze power system operating conditions, steady state on the condition and disrupt due to voltage swell/sag voltage and harmonic distortion.

Syllabus: Transient; Overvoltage; Undervoltage; Interruptions; Sags; Swells; Voltage Unbalance; Voltage fluctuations; Distortion of the wave form; Power frequency variation; Harmonic distortion; Current vs. Voltage distortion; Harmonic vs. Transient; Harmonic Control; The Design Of The Filter; Benchmarking the quality of power; Power generation distribution and quality; Wiring and grounding; Checking the quality of the resources.

Prerequisite: None

Textbook:

ENEP803008

POWER SYSTEM PLANNING

3 CREDITS

Learning Outcomes: Able to analyze the identity request estimates of changes in economic variables and are able to estimate the reliability of the system on the changing economic conditions.

Syllabus: An estimate of the increase in demand for electric power; Electric power supply for the long term; The planning of electric power generation (production); Plant maintenance scheduling of power systems; The factors electricity development strategic Indonesia; The prospect of the development of electricity in Indonesia; The model construction of electric power systems; Methods of optimization.

Prerequisite: None

Textbook:

ENEP802005

ECONOMICS ENERGY AND MANAGEMENT
3 CREDITS

Learning Outcomes: Able to design the energy management system by applying the supply/demand side management-related sources, both fossil and non-fossil.

Syllabus: Fossil and Non-Fossil sources; Power systems management: including generation, transmission and distribution of electric power; Supply management supply management and is known as the Integrated Resource Planning.

Prerequisite: None

Textbook:

ENEP802006

INDUSTRIAL POWER ELECTRONICS

3 CREDITS

Learning Outcomes: Able to design applications in the field of high power semiconductor devices in the field of industry and the military.

Syllabus: Introduction to electric power systems and Power Semiconductor Switches; Diode Rectifier; Controlled Rectifier; Inverters; Resonant Converters and Switching power supply for D.C.; Power Conditioners and Uninterruptible Power Supplies; Introduction To Motor Drives; D.c. Motor Drives; Synchronous Motor Drives; Residential; Industrial and electric utility applications; Optimization system of utility interface with electric power systems.

Prerequisite: None

Text Book:

ENEP801003

ENERGY AND ENVIRONMENT

3 CREDITS

Learning Outcomes: Able to analyze the effects of the use of energy that is friendly to the environment.

Syllabus: global warming caused by the use of fossil and non-fossil energy; Problem solving environment nationally and globally; The implementation of the Kyoto Protocol in the form of a Clean Development Mechanism; CO2 trading.

Prerequisite: None

Textbook:

ENEP803007

TOPIC IN POWER SYSTEM AND ENERGY

2 SKS
Learning Outcomes: Able to evaluate the latest technological developments in the field of electric power and energy as well as provide mitigation over problems that arise.

Syllabus: Fossil and non-fossil energy, renewable energy generation, the reliability of electric power systems, renewable energy penetration into the electricity network, planning the development of the electric power system, the factors that affect the growth of the load, the effect of conventional power generation on the environment, factors that affect the development of the system
Prerequisite: None
Textbook:

ENCN801001
ADVANCED COMPUTER ARCHITECTURES
3 CREDITS
Learning Outcomes: Able to describe the architecture of the computer system; capable of analyzing sequences of instruction set. Students are also able to explain the detailed architecture of pipelining, superscalar and parallel systems and be able to analyze the parallel algorithm in computer systems.
Syllabus: Review instruction set architecture and its influence on performance: execution of the instruction, the influence of micro bus and system clock, system memory, system cache; Pipelining architecture: advantages, data, address and control conflicts, re-ordering instruction; Superscalar architecture: execution of dual stream; CISC and RISC; RISC architecture and its features: the rules of the register, the register of windows engineering and its effect on performance; Parallel architecture: shared memory, distributed memory, loosely coupled and tightly coupled; Cache consistency issues: examples of load balancing algorithms, parallel, message passing, the idea on the performance of a parallel algorithm.
Prerequisite: None
Textbook:

ENCN801002
ADVANCED INFORMATION NETWORKS
3 CREDITS
Learning Outcomes: Able to elaborate on the concept of advanced information networks, the IP Protocol and its relationship with the Quality of Services (QoS). Students are also able to describe wireless network protocols, and explains the characteristics of traffic in real-time and non-real time, analyze the needs of QoS for video, audio and data traffic. Students are also able to analyze the future of the network towards the Next Generation Networks, and being able to analyze the network merger of telecommunications technology now.
Syllabus: The idea of modern information networks, QoS-based networks that rely on IP and IP-like protocols; Wireless and wired backbone network, wireless and wired access network; The characteristics of the traffic, real time traffic, traffic, traffic non realtime class of service; Traffic reservation protocols: SIP, ATM, RSVP, etc.; The idea of Quality of Service (QoS), QoS parameters, implementation of QoS. End to end QoS on the network of the future; Traditional ATM network:
class of services, label swapping, traffic congestion and the issue of reservation; MPLS network: Implementation Class of Services; Wireless networks: WiFi and WiMAX, QoS in WiMAX; Fiber-optic-based networks: IP issues at the top of the DWM; Next Generation Networks (NGN): incorporation of all types of telecommunications technology.

Prerequisite: None

Textbook:

ENCN802003
COMPUTER BASED NETWORK SIMULATION
3 CREDITS

Learning Outcomes: After completing this course, the student is able to describe the role of network simulation research on a new Protocol in the internet and are able to implement and analyze network simulation using NS (Network Simulator) to conduct research in the network.

Syllabus:
- Introduction; Basic network simulation; NS basic: OTCL, an example of a simple simulation (topology, events, marking flows, monitoring a queue), architecture (nodes, links, applications, protocols, packets, loss modules, math support);
- Event Scheduler; Network Components; Packet; Post Simulation: analyze the tracefile, the queue monitor (examples);
- Best Practice in Network Performance Evaluation Techniques; NS topology generation, OTCL and C++, routing (unicast, multicast, network dynamics), multicast transport; NAM network animator;
- Further features (abstraction, multicast, RTP/RTCP, SRM, QoS, Scenario generation, test suites); Developing the NS: Ns structure, OTCL linkage, adding new application and agent, queue; A new Protocol to NS: Header files, C++ code, the necessary changes, the TCL code; The introduction of the NS-3.

Prerequisite: None

Textbook:

ENCN802004
MULTIMEDIA COMPUTING
2 CREDITS

Learning Outcomes: After following this course the students are able to describe and implement the technology in the field of multimedia and forwarded through the network. Students are able to analyze the components of the multimedia files, file compression techniques of multimedia, real time delivery of multimedia files, multimedia QoS in a network of computers, and also capable of analyzing the characteristics of the network to support distribution of multimedia files over the Internet.

Syllabus:
The Concept Of Multimedia Computing; Digital representation of Audio: pictures and videos; The characteristics and requirements of multimedia data; Techniques and digital audio compression standards; Techniques and image and video compression standards; End to end QoS for digital audio and video communication; Multimedia communication network; Transport protocols; Support system for distributed multimedia applications; The terms and mechanisms of synchronization of multimedia network; Information indexing and acceptance of multimedia.

Prerequisite: None

Textbook:

ENCN802005
REMOTE SENSING
3 CREDITS
Learning Outcomes: After completing this course, students are able to describe and analyze the satellite remote sensing data processing using specific algorithms.
Syllabus: Introduction; Acquisition of images; Satellite observations of the land; Active and passive sensors (optical, Radar); Microwave; Analysis of Data: GIS (geographic information systems); The science buildings and land; Land use & land cover; Global remote Sensing.
Prerequisite: None
Textbook:

ENCN803006
NETWORK SECURITY AND RELIABILITY
3 CREDITS
Learning Outcomes: After completing this course, the student is able to describe the protocol and model of a system of security in communications. Students are also able to analyze network vulnerabilities and implement security systems on the network and the web.
Syllabus: Introduction to the issues of security and privacy related information systems; the basics on confidentiality, availability, integrities; Identity and authentication credentials; Protocols and data integrities; control access; The security model; Cryptographic systems and protocols for privacy; Network security & web; Intrusion detection and prevention; Vulnerabilities and attacks; Security risk analysis; Planning for recovery from disasters; Security rules; Audit security and ISO17799.
Prerequisite: None
Textbook:

ENCN803007
OBJECT ORIENTED BASED SOFTWARE ENGINEERING
3 CREDITS
Learning Outcomes: After completing this course, the student is able to describe the concept of software engineering and model used in development of a software. Students are also able to analyze the problem, apply the critical stages of the life cycle of software, create documentation in software development, describes the specifications of the software based on software requirements and implement a verification method, implement the design in the form of programs, test program made, perform maintenance on the system, and generating complete documentation development system to create user instructions for a relatively complex system in the real world.
Syllabus: The concept of object-oriented software engineering; Problems in the development of software; Waterfall model; Approach to prototyping; Evolutionary developmental
model; Estimation of costs; Configuration management; Software metrics; Requirements engineering; Project management and risk; TSP, PSP: analysis, definitions, specifications, documentation of the draft specification of the software; Functional requirements and non-functional; Mastery Of The Unified Modeling Language (UML); Designing for reusability; Adaptability and care; The quality of architectural design software; Implementation of software; Designing and testing its implementation; Data modeling; Software maintenance; Documentation of the system.

Prerequisite: None

Textbook:

ENCN803008
ADVANCED EMBEDDED SYSTEMS
3 CREDITS

Learning Outcomes: At the end of the course students will have the ability to analyze, design and develop an embedded systems.

Syllabus: Introduction to embedded systems; Introduction to the software; Real-time model and scheduling; Recurring tasks/aperiodic; Share resources; Real-time OS; Case study: Mars Pathfinder, system components, communication, low power design, FPGA synthesis architecture, introduction, sample project embedded FPGA-based systems, the design and manufacture of FPGA-based embedded systems.

Prerequisite: None

Textbook:

ENMS801001
INFORMATION NETWORK SECURITY
3 CREDITS

Learning Outcomes: After completing this course, the student is able to describe the protocols and model of a system of security in communications. Students are also able to analyze network vulnerabilities and implement security systems on the network and the web. In addition, students will be able to do the authentication techniques in Cryptography.

Syllabus: introduction to the issues of security and privacy Related information systems; The basics of the confidentiality, integrity, availability, Authentication and Identity; Protocols and Data integrity; Access Control; The Security Model; Cryptographic systems and protocols for privacy; Network Security & Web; Intrusion detection and prevention; Vulnerabilities And
Attacks; Security Risk Analysis; Planning for recovery from Disasters; Security Rules; Audit Security And ISO17799; Introduction To Cryptography; Encryption; Classic Encryption Technique; Standard Data encryption and password block; The Advanced Encryption Standard; Pseudo-Random Generation; Digital Signatures; Two-Party Protocols and Zero-Knowledge.

Prerequisite: None

Textbook:

ENMS801002

INFORMATION NETWORK INFRASTRUCTURE

3 CREDITS

Learning Outcomes: After completing this course, students will be able to design, implement and analyze the design of the server farm. Students will also be able to manage the server farm.

Syllabus:
- Introduction To Server Farms; Server Farm Protocols; Infrastructure Protocols; Security and Server Load Balancing; Data Center Design: Designing The Data Center Infrastructure; Integrating Security Into The Infrastructure; Performance Metrics of Data Center Devices; Data Center Administration and Management; State Of The Art Data Center, Procurement.

Prerequisite: None

Textbook:

ENMS802004

INFORMATION SECURITY MANAGEMENT AND REGULATION

3 credits

Learning Outcomes: At the end of this course the student is expected to understand the principles of information security and is able to apply those principles to design solutions for managing information security risk effectively. Students are expected to understand how to apply the principles of network security management of information in the context of the breadth and immediacy. Finally, the student is able to manage according to information network with the standard of the profession, ethics, regulation and legislation in force.

Syllabus:
- Management and security policy information; Threat management and weak information networks; Incident management and risk; Crisis management and Business Continuity; Cultural awareness and Security of information and information networks; Implementation Aspects Of Network Security Information; Legal aspects and regulations of information security; Certification of information security and information networks; SNI standard ISO/IEC 27001:2009.

Prerequisite: None

Textbook:
ENMS802005
SECURITY RISK MANAGEMENT AND DISASTER RECOVERY
3 CREDITS
Learning Outcomes: After completing this course, students are able to provide a standardized approach to regulating risk on network security through a proper framework to accommodate security strategies and their related costs. Students are also able to perform the recovery steps after the occurrence of the problem of network security information.
Syllabus: Introduction To The Security Risk Management; Risk Analysis; Approach To Risk Management; System Security Engineering; Regulation Of Security; The Issue Of Legality; Organizational Readiness Plan; Responding To The Incident; Plan a Strategy for the continuation of business; Disaster Recovery; Business continuation and crisis management.
Prerequisite: None
Textbook:

ENMS803006
APPLICATION AND MOBILE NETWORK SECURITY
4 CREDITS
Learning Outcomes: After completing this course, the student is able to describe the forms of security attack on the application and the network computer, capable of analyzing the security issues on the application of either desktop based applications as well as web-based, as well as being able to implement the concept of security applications and computer networks.
Syllabus: Introduction to application security and computer networks; Detection Penetration Network; Detection Of The Penetration Of Web-Based Applications; The penetration detection in Wireless network; Secure coding in Java; Secure coding in PHP; Build a secure Database.
Prerequisite: None
Textbook:

ENMS803007
NETWORK AND DIGITAL FORENSIC
4 CREDITS
Learning Outcomes: After following this course, the student is able to identify digital traces on the computer or on the network; being able to recognize forms of attack from the digital traces; able to analyze digital traces as well as being able to gather legal evidence.
Syllabus: Introduction to Digital Forensics and network; A Windows-Based Computer Forensics; The Linux-Based Computer Forensics; Forensics in computer network; Forensics on the mobile device.
Prerequisite: None
Textbook:
ENMT801001
MODERN TELECOMMUNICATIONS ENGINEERING
3 CREDITS
Learning Outcomes: This lecture aims to evaluate the basic principles of telecommunication system that is focused on environmental aspects of the application of modern telecommunications. By following this course, the student is expected to analyze a telecommunication system and calculate its technical aspects.
Syllabus: Digital communication systems; Elements of the technology in the channel transmission; Backbone network and backhaul; Fiber Optic Technology; Wireless Communication Technology; Analysis of the spectrum; Modulation and coding techniques; Multiple Access Techniques; Evolution of 2 g-3 g-4 g Mobile Cellular Technology ; Fading power control Countermeasures; Capacity of Cellular Network; The technology of Broadband Wireless Access more; IP based interconnection; The evolution of mobile moving towards 5 g; Wireless broadband access; Technology platform for the future: Digital TV, Satellite, Cloud Computing, Green IT; Next Generation Network; Content Governance ; Technology for Ubiquitous Network.
Prerequisite: None
Textbook:

ENMT801002
MANAGEMENT OF TELECOMMUNICATIONS SYSTEM
3 CREDITS
Learning Outcomes: The material in this lecture will evaluate the basic concept of telecommunication management system including the concepts of the regulation for the implementation of the national telecommunication system.
Syllabus: Long-range planning; Business Feasibility Analysis; Wide Area Network; Telecommunications Operations - from fraud and disaster prevention to project management; Quality control and Security; Telecommunications Regulation; The Emerging Economics of Telecommunications; Economic Tools for the Telecommunications Strategies; Network and Marketing Plan; Analysis of Indonesian Telecommunications Act; Universal Service Obligation.
Prerequisite: None
Textbook:

ENMT802003
STRATEGIC MANAGEMENT
3 CREDITS
Learning Outcomes: After following this course, the participants of the lecture are expected to recommend the concept of strategic management to generate business excellence and
competitiveness of the industry. Students are expected to understand the applied theories and develop relevant strategies on industrial technology.

Syllabus: The nature of management strategy; *Strategy in Practice*; External factors evaluation; Internal factors analysis; Strategy Analysis and Choices; Strategy Control Review and Evaluation; Quality Management; Strategy Management Of Global Problems; Risk Management; Business Ethics; Corporate Level Strategy; Strategic Leadership.

Prerequisite: None

Textbook:

ENMT802004

TELECOMMUNICATIONS POLICY AND REGULATION

2 SKS

Learning Outcomes: Able to evaluate aspects of national and international law, as well as the process of standardization in the telecommunications industry.

Syllabus: The International Telecommunication Organization; Indonesia’s telecommunication laws and regulations; The making of public policy; Standardization process in it; International standardization body for the telecommunications industry; Universal Service Obligation; Case studies on policy and regulation of telecommunications in Indonesia and the world.

Prerequisite: None

Textbook:

ENMT802005

SPECIAL TOPICS OF INFORMATION AND COMMUNICATIONS TECHNOLOGY

2 SKS

Learning Outcomes: Able to evaluate the various advancements in the field of ICT (information and communication technology).

Syllabus: The topics will focus on the recent technological platform such as 5G mobile communications, engineering multimedia, Wireless Sensor Networks, and other aspects of the technology and innovation. The topic will also cover technological understanding covering from “physical layer” to “application layer”.

Prerequisite: None

Textbook: -

ENMT802006

CAPITA SELECTA

2 SKS

Learning Outcomes: The courses aims to build leadership supporting the telecommunications-related strategic planning. **Syllabus:** It includes strategic planning and holistic insights through a process of sharing knowledge with the stakeholders of telecommunications industry (vendors, operators, government). The topic may also include the areas of innovation, convergence,
macroeconomic, and another related issue.

Prerequisite: None

Textbook:

Handout

ENMT803007

MULTIMEDIA WIRELESS COMMUNICATIONS

3 CREDITS

Learning Outcomes: At the end of the lecture, students are able to design the design aspects of wireless multimedia technologies, including mobile and broadband network capable of calculating technical parameters.

Syllabus: Quality of Service; Compression techniques; Qualitative and Mathematical treatment of existing systems; Traffic Engineering for Wireless Communications; Mobility Management; Multimedia computing; Network Support for Multimedia communications; Interactive Multimedia System; Intersystem operation.

Prerequisite: None

Textbook:

ENMT803008

TECHNOLOGICAL INNOVATION AND COMPETITIVENESS

3 CREDITS

Learning Outcomes: At the end of this lecture, the student will be able to develop a holistic strategy of technological development for policy makers of the country or industry by considering the factors supporting system of innovation. In addition, students will also have insight into the leadership in using information and communication technologies so as to enhance the competitiveness of institutions and countries.

Syllabus: National and Sectoral Innovation System; Macroeconomic Theory and technological change; Evolutionary Theory; Innovation in the telecommunications industry; The management of R & D in telecommunications companies; Diffusion Of Technology; Innovation in ICT Services; Globalization, national competitiveness and economic growth; Science technology is preferred and Innovation Policy; Technological forecasting; Techno economy paradigm; Intellectual Property and Standardization; The Knowledge Economy and ICT paradigm; The Internet and economic policy; Policy and market in the era of the New Knowledge Economy

Prerequisite: None

Textbook:

ENMT803009

FUTURE NETWORK TECHNOLOGY
Learning Outcomes: The lecture aims to form a competency evaluation and design of technically related to telecommunication network System the latest technology both wireless and wireline, and telecommunications network management, management function

Syllabus: The function and role of the important telecommunications networks, modeling telecommunication networks, optical networking technologies, wireless network technology, the convergence of future network covering NGN and IMS, role and function of telecommunications network management,

Prerequisites: None

Textbook:

ENME801002
ELECTRIC UTILITY POWER GENERATION ECONOMICS
3 CREDITS

Learning Outcomes: At the end of the lecture, a student is able to describe the method of operation of hydroelectric utilities efficiently without compromising with the development of the business.

Syllabus: Introduction; The utility of the organization; The principle of accounting accomplished; The value of time and money; Income requirements: fixed charge rate; Economic analysis methods; Electric utility system load; Operating system; The stability of the system: reserves, economic characteristics of generating units; Problems on the analysis of the total system; Renewable energy analysis and storage; A comparison of the unit directly; The development of the future.

Prerequisite: None

Textbook:

ENME802005
STRATEGIC MANAGEMENT AND RISK
3 CREDITS

Learning Outcomes: This lecture aims to instill the concept of strategic management to generate business excellence and competitiveness of the industry. Students are expected to understand the applied theories and develop relevant strategies on industrial technology.

Syllabus: The nature of management strategy; Strategies in practice; Evaluation of external factors; Analysis of internal factors; Analysis of the strategies and options; Evaluation and control strategy; Quality management; Management strategy of global problems; Risk management; Business ethics; Corporate level strategy; Leadership strategies.

Prerequisite: None

Textbook:
DOCTORAL PROGRAM
7. DOCTORAL PROGRAM

FTUI holds Doctoral Program for the six following study programs:
1. Civil Engineering
2. Mechanical Engineering
3. Electrical Engineering
4. Metallurgy & Material Engineering
5. Chemical Engineering
6. Architecture
7. Industrial Engineering

FTUI Doctoral program was officially opened in 2000 with the opening of the Civil Engineering and Electrical Engineering Doctoral program followed by the emersion of the Opto-electrotechnique and Laser Application study program into the Postgraduate Program of FTUI. The Mechanical Engineering study program was officially opened in 2006 while the Metallurgy & Material Engineering and Chemical Engineering followed in 2007. And In 2009, respectively Department of Architecture opened the Architecture Doctoral Program. In 2001, the Opto-electrotechnique and Laser Application was closed and was emerged into the Electrical Engineering study program. Each Doctoral study program is headed by the Head of Study Program which is held ex-officio by the Head of Department in the Faculty of Engineering UI. The Doctoral study programs have one or more focus subjects to give a more specific knowledge on engineering field to all students of the program. Currently, the Doctoral Program is held in two ways: Lecture & Research; and Research.

New Students Selection
Selection process for new students for the FTUI Doctoral Program is as follow:
1. Pre-admission stage: future student is encouraged to informally contact their prospective Promotor or the Head of Department to further discuss his/her desired dissertation topic. This is important to make sure the availability of Promotor in accordance to said research topic. Communication may be done through email or face to face. The Head of Department and future Promotor then would discuss the student’s proposal internally.
2. Future student should register online via http://penerimaan.ui.ac.id and complete the required documents and prerequisites.
3. Future student will then take the entrance examination (SIMAK UI) which consists of: (i) Academic Potential Examination and (ii) English Proficiency Test.
4. The results of the Entrance Examination will then be sent to FTUI by the UI Entrance Examination Committee. These results will then be discussed in a Department Committee Meeting headed by the Head of Department to determine which students accepted, and the proposed research topic approved, and the availability of future Promotor. An interview have to be arrange with the future student to determine the suitability of research topic, with previous study field, and the student’s commitment to participate in the Doctoral program full time. Interview may be done directly or through email or messenger application.
5. The outcome of the Department Committee Meeting will then be submitted to the UI Entrance Examination Committee to be announced.

Academic Counseling
Since the day a student is registered as student for the Doctoral program until the time that he/she passes qualification examination, the student will be under the guidance of an academic advisor who the student expected to be their Promotor or Co-Promotor. Head of Department accepts a proposal of future Promotor/Academic Advisor from a committee in the Department. Once the student pass the qualification examination, the student will earn status as Doctor Candidate and the Academic Advisor’s status will revert to Promotor/Co-Promotor.

Promotor and Co-Promotor
Promotor and Co-Promotor for Doctoral Program are lecturers or experts from related field and are assigned by Head of Department based on a Rector’s Decree to guide and advise a Doctor candidate in
conducting research and dissertation writing. Academic Advisor consist of 1 Promotor and a maximum of 2 (two) Co-Promotors. Promotor is a first chair Advisor who holds an academic degree of Professor or Doctor and a minimum of Senior Lecture academic position; has a relevant expertise in the field which the student’s dissertation topic is; and is acknowledge as a full time faculty at the Universitas Indonesia, and for the last five years has produced at the latest: one scientific paper in an accredited national journal or a reputable international journal; or one other form of scientific product which is acknowledge by a group of experts set up by the Academic Senate of Universitas Indonesia.

Co-Promotors are the Promotor’s companions who act as second and/or third chair advisor who hold academic degree of Doctor or Senior Lecturer, and has a relevant expertise in the field with the student’s dissertation topic. Co-Promotor from outside of the Faculty of Engineering UI must have the approval from the Promotor. Promotor and Co-Promotors are appointed by the Rector based on the proposal submitted by the Dean which are also based on suggestions from the Head of Department after the student has pass the qualification examination. The appointment must be done at the latest 1 (one) semester after the qualification examination. A change of Promotor/Co-Promotor must be proposed by the Dean to the Rector based on a proposal from the Head of Department.
Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Metallurgy & Material Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Chemical Engineering Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Architecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Doctor (Dr.)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Doctoral Program: A Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metallurgy & Material Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architecture Doctoral Program: Accreditation B from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Engineering Doctoral Program: On Accreditation Process</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Language(s) of Instruction</td>
<td>Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirements</td>
<td>Master graduate from study programs in line with study program chosen and pass the entrance examination</td>
</tr>
<tr>
<td>10</td>
<td>Study Duration</td>
<td>Designed for 3 years</td>
</tr>
<tr>
<td></td>
<td>Type of Semester</td>
<td>Number of semester</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Short (optional)</td>
<td>none</td>
</tr>
</tbody>
</table>
Streams:

The Civil Engineering Doctoral Program has six streams as follow:
- Structure
- Construction Management
- Transportation
- Water Resource Management
- Project Management
- Geotechnique

The Mechanical Engineering Doctoral Program has four streams as follow:
- Energy Conversion
- Engineering Design and Product Development
- Manufacture Engineering
- Fire Safety Engineering and Management

The Electrical Engineering Doctoral Program has eight streams as follow:
- Telecommunication Engineering
- Electrical Power and Energy Engineering
- Photonic and Electronic Engineering
- Control Engineering
- Multimedia and Information Engineering
- Security of Information Network Engineering
- Telecommunication Management
- Electrical Power and Energy Management

The Metallurgy & Material Engineering Doctoral Program has two streams as follow:
- Corrosion and Protection
- Material Engineering and Manufacture Process

The Chemical Engineering Doctoral Program has five streams as follow:
- Industry Catalist
- Gas Management
- Product Design and Chemical Process
- Environmental Protection and Work Safety
- Gas Technology

The Industrial Engineering Doctoral Program has two streams as follow:
- Rekayasa Kualitas Manufaktur
- Rekayasa Sistem Jasa

Graduate Profiles:

FTUI Doctoral Program Graduates have the capabilities of demonstrating expansion, novelty breakthrough in research in the engineering or architecture field in accordance to certain stream or sub-stream. The FTUI Doctoral Program prepares student to work in academic and research in accordance to their own stream; dedicate their expertise in research laboratory, industry or government institution; or create a business based on their innovation.

Graduates are able to possess the following skill:
- Be able to show expertise in the engineering or architecture discipline;
- Be able to uphold the academic and research ethics;
- Be able to work collaboratively in research;
- Be able to position themselves as leader in their community;
- Be able to communicate well in their community and build networks;
- Be able to demonstrate individual live skill in connection to human relationship;
- Be able to demonstrate attitude, behavior and way of thinking which support their success in society.
Graduates Competence:
The aim of Doctoral Program in FTUI is in line with the Doctoral Program of Universitas Indonesia, to produce quality graduates with the following competence:
1. Able to independently update their knowledge on science and technology in engineering or architecture through research based innovation breakthrough.
2. Able to show professionalism in their field of study that can be accountable towards the development of science and technology.
3. Able to write a scientific paper in engineering or architecture and convey the result of their research to the public both orally or written in an international scientific activity.
4. Able to recommend a solution for a complex problem faced by society in the field of engineering or architecture through inter, multi and trans discipline approach.
5. Able to lead a working or research team to solve problem in the field of engineering or architecture that can be of benefit for the good of mankind.
6. Able to develop and maintain a network of cooperation with fellow researcher and research community in the field of engineering and architecture both in national and international level.

Classification of Subjects. (Course & Research)

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Course Component</td>
<td>18</td>
<td>34 %</td>
</tr>
<tr>
<td>ii</td>
<td>Research Component</td>
<td>34</td>
<td>66 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Classification of Subjects. (Research)

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Course Component</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>ii</td>
<td>Research Component</td>
<td>52</td>
<td>100 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Total Credit Hours to Graduate

52 CP
Curriculum Structure for FTUI Doctoral Program

The curriculum structure for the Doctoral Program in all study programs are the same, they are only differentiated by their codes for the research component. The code “xx” for each study programs are as follow:
ENCV for Civil Engineering, ENME for Mechanical Engineering, ENEE for Electrical Engineering, ENMT for Metallurgy & Material Engineering, ENAR for Architecture, and ENCH for Chemical Engineering.

The FTUI Doctoral Program is held in two program: Course and Research and Research.

1.1. DOCTORAL PROGRAM (COURSE & RESEARCH)

The following is the curriculum structure for Course & Research Doctoral Program in Table 1.

<table>
<thead>
<tr>
<th>KODE/CODE</th>
<th>MATA AJARAN</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE900001</td>
<td>Metode Penelitian Lanjut</td>
<td>Advanced Research Method</td>
<td>6</td>
</tr>
<tr>
<td>ENEE900001</td>
<td>Kekhususan 1</td>
<td>Special Subject 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>ENGE900002</td>
<td>Analisis Kualitatif & Kuantitatif</td>
<td>Qualitative & Quantitative Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ENEE900002</td>
<td>Kekhususan 2</td>
<td>Special Subject 2</td>
<td>4</td>
</tr>
<tr>
<td>ENEE900004</td>
<td>Proposal Riset</td>
<td>Research Proposal</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>ENEE900006</td>
<td>Publikasi - Konferensi Internasional</td>
<td>Publication - International Conference</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ENEE900007</td>
<td>Ujian Hasil Riset</td>
<td>Research Result Examination</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>ENEE900008</td>
<td>Publikasi II - Jurnal Internasional</td>
<td>Publication II - International Journal</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>ENEE900010</td>
<td>Sidang Promosi</td>
<td>Sidang Promosi</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>

The Lecture Component includes four subjects:
a) Advanced Research Method, 6 sks
b) Qualitative and Quantitative Analysis, 4 sks
c) Special Subject I, 4 SKS.
d) Special Subject II, 4 SKS.

The Research Component includes:
1. Research Proposal, 6 SKS
2. Publication - International Conference, 4 SKS
3. Research Result Examination, 10 SKS
4. Publication - International Journal, 8 SKS
5. Promotion Exam, 6 SKS

1.2. DOCTORAL PROGRAM (RESEARCH)

The following is the curriculum structure for Research Doctoral Program in Table 2.

Table 2. The Curriculum Structure - Doctoral Program in Research

<table>
<thead>
<tr>
<th>KODE/CODE</th>
<th>MATA AJARAN</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE900003</td>
<td>Seminar Berkala Kelompok Ilmu</td>
<td>Research Group Periodic Seminar</td>
<td>8</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Semester 2</td>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE900004</td>
<td>Proposal Riset</td>
<td>Research Proposal</td>
<td>6</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Semester 3</td>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE900005</td>
<td>Publikasi I - Konferensi Internasional</td>
<td>Publication I - International Conference</td>
<td>4</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Semester 4</td>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE900007</td>
<td>Ujian Hasil Riset</td>
<td>Research Result Examination</td>
<td>10</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Semester 5</td>
<td>5th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE900008</td>
<td>Publikasi II - Jurnal Internasional</td>
<td>Publication II - International Journal</td>
<td>8</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Semester 6</td>
<td>6th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE900009</td>
<td>Publikasi III - Jurnal Internasional</td>
<td>Publication III - International Conference</td>
<td>8</td>
</tr>
<tr>
<td>ENEE900010</td>
<td>Sidang Promosi</td>
<td>Sidang Promosi</td>
<td>6</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>
Description of Subjects

ENGE900001
ADVANCED RESEARCH METHOD
6 CREDITS

Learning Objective(s): Course participants are expected to: (a) master the scientific work process based on science philosophy, which is the scientific justification aspects, innovative aspects and scientific ethics aspects, (b) able to write a research proposal and or draft of scientific writing related to the student’s doctoral topic, (c) can map research result from the latest international journal in their field and understand the state-of-the-art from their research topic, and can determine the knowledge gap yet explored in the international level for further research in their Doctoral Program.

Syllabus: (1) Relationship between philosophy and engineering science; (2) Science Philosophy; (3) Epistemology in Engineering Science; (4) Research Method; (5) Problem formulation and hypothesis; (6) Research and state of the art; (7) Research Evaluation; (8) Design Evaluation and research Stages; (9) Introduction to the analysis of the data processing method; (10) Benchmark on research output and conclusion formulation; (11) Various citation method; (12) Finalization of research proposal draft and / or scientific article draft.

Prerequisite(s): None

Textbooks:
Haryono Imam R dan C. Verhaak, Filsafat Ilmu Pengetahuan, Gramedia, Jakarta, 1995

ENGE900002
QUALITATIVE AND QUANTITATIVE ANALYSIS
4 CREDITS

Learning Objective(s): Discuss the qualitative and quantitative in data analysis and exploring specific data analysis areas. After participating in this subject which discuss the qualitative and quantitative approach in analysis data in exploring specific areas of data analysis. Students are expected to be able to build the following learning outcome: (1) awareness to situations requiring qualitative data analysis in the inductive paradigm; (2) awareness to situations requiring quantitative data analysis in the deductive paradigm; (3) appreciation toward various approaches; (4) possessing skills in giving critical appraisal; (5) possessing skills in performing qualitative and quantitative data analysis.

Syllabus: Introduction; Qualitative Analysis; Quantitative Analysis; Non-Parametric Analysis; Uncertainty Analysis; Critical Appraisal; Design of Experiment; ANOVA revisit; Multivariate Techniques.

Prerequisite(s): None

Textbooks:

ENEE900001
Special Subject 1
4 CREDITS

ENEE900002
Special Subject 2
4 CREDITS

Special Subject 1 in the 1st first semester (4 SKS) and Special Subject 2 in the 2nd semester (4 SKS) are determined together with the student’s Academic Advisor to support the student’s research and/or to develop the student’s knowledge with information and knowledge from unrelated field. Academic Advisor is also allowed to propose a special content for the student to Head of Department.

The following are the requirements for the implementation of Special Subject 1 and 2:
For students who do not have in line Master degree educational background from the Faculty of Engineering Universitas Indonesia, they are allowed to take the similar courses of the related field of study available at the Master Program in FTUI during the running semester. Students are also allowed to take courses from other study programs within the Faculty of Engineering Universitas Indonesia or courses from other faculties in UI as stated in the Guidance Book or the Master/Doctoral Program Catalog. Students are allowed to take classes in other Master Program in the Faculty of Engineering Universitas Indonesia or other faculties within the Universitas Indonesia as deemed necessary by their Academic Advisor. In the event where neither conditions is viable for the students, the Academic Advisor is allowed to conduct a class of said course.

ENEE900003
Research Group Periodic Seminar
8 CREDITS

Research Group Periodic Seminar is an early activity of research in the Doctoral Program in Research where students conduct literature study in relation to the materials for their research. This literature study must be done intensively by mapping out the research results from the latest international journals in related field. The final aim was so that students have a state-of-the-art understanding of their research topic, and can determine the knowledge gap previously unexplored in the international level for further research in their Doctoral Program. The result of this literature study is compiled in a literature study report presented in the Research Group Periodic Seminar to be examined by a panel comprises of future Promoter/ Academic Advisor and Examiners from related field of study. Students will passed this Research Group Periodic Seminar if they received a minimum grade of B.

ENEE900004
Research Proposal
6 CREDITS

Research Proposal is the continuous activity of the literature study, where after gaining a state-of-the-art knowledge of their research topic, students can formulize the scope of their Doctoral research and determine which research method will be use. The result of this activity is a comprehensive research proposal which include: goals, background and data analysis from early study or experiments done. Included in this research proposal is plan of work for each semester and its publication goals. At this level, it is expected for students to begin experiment activity or early study which can show the direction of their research is feasible and recent in his field. The early experiment or study result, the literature study and the whole research plan is then compiled in a Research Proposal Report to be presented and examined in a Research Proposal Examination. Students will passed this Research Proposal if they received a minimum grade of B.

ENEE900007
Research Output Examination
10 CREDITS

At this stage, students are expected to have a research output with a minimum of 75% from their research plan. Doctorate candidate are expected to have reach a research outcome which is the main part of the originally planned contribution. The outcome of this research is measured through the Research Output Examination. The examination committee is appointed through the Dean’s Decree based on the Head of Department’s proposal. These examiners consist of experts related in the field of study of the Doctorate candidate with at least one examiner from an institution outside of Universitas Indonesia. Doctor Candidate will passed this Research Output Examination if they received a minimum grade of B. At this stage, a Doctor Candidate are allowed to design a scientific article framework to be published in an indexed International Journal and determine which International Journal they will send the article to.
At this stage, students are expected to have an experiment result or study to focused on in their research topic and clarify their research direction. The result of the experiment must also show innovation or breakthrough, mastery of knowledge on their stream in relation to their research topic, the depth of their research materials, and the mastery of the state of the art development in their field or research interest, originality, and the contribution towards science and/or its implementation. Once presented in front of their promoter and co-promoter, the whole research result at this stage will be deemed worthy for international conference publication.

The scientific publication is an integral part of research activity and a prerequisite in participating in a Promotion Examination. International Journal meant here is an English language journal which its editorial board consists of members from at least three different countries or more. A mandatory publication must have an “Accepted” status before the Promotion Examination. FTUI itself publish their own international journal, the International Journal of Technology (IJTech), which students can utilize as one of the international journal to publish their Doctoral research.

Before deemed fit to participate in a Promotion Examination, Doctor Candidate are required to conduct additional research as a follow up from the Research Output Examination. The inputs and revisions given during the Research Output Examination must be completed and revised through a series of final research. At this stage, the Doctor Candidate must prove the authenticity and originality of their research as new contribution to the scientific world. Thus, at this stage, the Doctor Candidate is required to have an “Accepted” for their international Journal, they are also required to complete their dissertation paper ready to be tested during the Promotion Examination.

Dissertation is an academic scientific paper study output and/or in depth research done independently and contained new contribution to issues that are temporary already known the answer or new questions ask on issues that are seen to have been established in the field of science and technology by the Doctor Candidate under the guidance of his Academic Advisor. A Doctor Candidate that has completed the revision of their dissertation are required to submit a completed version of their dissertation in five hard cover books and original approval form that has been signed by their advisors and submitted to PAF FTUI signifying the end of their study. The format for writing and binding the Dissertation should follow the writing and binding guidelines in the Technical Guidelines of Final Project Writing for Students of
Universitas Indonesia that can be downloaded at http://www.ui.ac.id/download.

Promotion Examination is a scheduled academic activity as a medium of evaluation for the Doctor Candidate Dissertation as a requirement to obtain the highest academic title, Doctor. The requirements and provision for Promotion Examination are as follow:

- Promotion Examination can be done if all the scientific publication requirements are completed by the Doctor Candidate: a minimum of one publication in an International Scientific Journal (in “Accepted” status) in relation to their dissertation research. The Publication is required to state Faculty of Engineering Universitas Indonesia as one of the affiliation institution.
- Promoter and Co-Promoter gave a written approval on the dissertation as a sign that the dissertation can move forward to the Promotion Examination.
- The Promotion Examination is carried out by the Committee of Promotion Examination which is appointed with a Rector’s Decree based on a proposal from the Head of Department and the Dean of the Faculty of Engineering Universitas Indonesia.
- The Committee of the Promotion Examination comprises of: (a) Promoter and Co-Promoter, (b) The Examiners, (c) a minimum of one examiner from outside of Universitas Indonesia.
- Examiners consist of experts from related field of study. In a special circumstances, an expert that is not from the academic community can be invited as part of the examiners team.
- The Promotion Examination is led by the Head of the Examiners Committee that is also a member of the committee outside of the Promoter/Co-Promoter and outside examiner. If the Head of the Examiners Committee is unavailable, his/her position can be replaced by one of the member of the examiner team.
- The Promotion Examination is held as an open session for a period of maximum three hours divided into two stages: the dissertation presentation given by the Doctor Candidate for 15-30 minutes and a question and answer session for 120-165 minutes.
- The Doctor Candidate will pass the Promotion Examination if they received a minimum grade of B with GPA 3.00.

Facilities for Doctoral Program Students
To make sure that student of FTUI Doctoral Program are able to conduct full time research and produce excellent publications as required, FTUI provides the following facilities:

Doctoral Program Students’ Workstation
Compact cubicles in comfortable rooms are available as Doctoral program students’ workstation. The locations for these workstations are located on the 2nd and 3rd floor of the Engineering Center Building. Access to these workstations requires a swipe card to guarantee security. A round the clock wi-fi service is also available. To procure a workstation and access card, students are requested to register to the Associate Dean for General Affairs in the Dean’s building, 2nd floor, FTUI Depok.

International Journal Article Writing Training
These free of charge trainings for the FTUI Doctoral program students are held several times each year. The information regarding these trainings are communicated through an announcement in SIAK-NG, posters at each Department, Doctoral program mailing list and FTUI website (www.eng.ui.ac.id).

Research Proposal Writing Training
These free of charge trainings for the FTUI Doctoral program students are held several times each year. The information regarding these trainings are communicated through an announcement in SIAK-NG, posters at each Department, Doctoral program mailing list and FTUI website (www.eng.ui.ac.id).

Line Editing Draft for International Journal Article
FTUI provides funds for line editing drafts for International Journal Articles. Requirement for applying for this funds are: the article must include the promoter name as part of the writing team and state FTUI as the main affiliation. To be grant this facility, students only needs to send a draft of their article through email to the FTUI Associate Dean of Academic and Research (risetft@eng.ui.ac.id). The time required for line editing is 2-4 weeks.
Doctoral Program Mailing-List
The Doctoral Program mailing list is used as a communication tool between the Dean's Faculty Heads, the Faculty Center Administration staff and all Doctoral program students in FTUI. Information regarding trainings, seminars, grants or other academic matters is announced through this mailing list. Complaints and suggestions are also accommodated by this mailing list. The mailing list address is: programdoktorft@group.eng.ui.ac.id

Research and Incentive Grants for Master and Doctoral Program
Research funds including consumables and tests for research as part of the thesis and dissertation writing is the responsibility of the student. There are a number of competitive research grants, incentive research grant schemes available from which Master and Doctoral program students may propose to finance his/her research. Complete guidance and research proposal examples are available at the Associate Dean for Research and Community Development secretary at the Dean’s Building, 2nd floor or through http://research.eng.ui.ac.id.

International Journal Writing Incentive
This incentives are given to lecturer of State of Private Universities that have published an article in an international journal. Each proposer must be the first writer of the article and include an institution affiliation in Indonesia.