CHAPTER 1
PROFILE OF FTUI AND DEPARTMENTS
1. PROFILE OF FTUI AND DEPARTMENTS

1.1 History of FT UI

The history of the Faculty of Engineering, Universitas Indonesia (FTUI) began with an offer made from young engineers belonging to the Society of Engineers Indonesia (PII), to the first President of the Republic Indonesia, Bung Karno, for the renovations of the heavily damaged main streets of Jakarta. At that time Jakarta was preparing for the International Sports Event, the GANEFO. This bid was welcomed by President Soekarno. The young engineers were granted permission to start the renovations under the condition that all work must be completed within two weeks period. Headed by Ir. Bratanata, Ir. Roosseno, Ir. Sutami, and Ir. A.R. Soehoed, the project was completed on time. After successful accomplishment of the street renovation project, these young engineers with their iron will felt that there was more that they could do to serve our country. But what? Then they thought of a brilliant idea: “Why not establish an engineering faculty in Jakarta as an alternative to the one in Bandung? This way those residing in the country’s capital would not need to travel far to Bandung for an engineering education”.

During the ceremonial event of Lenso dancing at the Pembangunan Building (formerly known as Pola Building) to welcome the GANEFO guests of honor, the young engineers brought their idea to President Soekarno to which he responded by inviting them to the Presidential Palace the next day. During the meeting in the Presidential Palace, the President wholeheartedly approved of the idea and even directly appointed Prof. Ir. Rooseno as the first Dean of the Faculty of Engineering. The President also instructed that the new Faculty of Engineering would be part of the University of Indonesia under the leadership of its Rector, dr. Syarief Thayeb.

The Establishment of Faculty of Engineering UI

Once dr. Syarief Thayeb served as the Minister of Higher Education and Science, he issued Decree No. 76 dated July 17, 1964 regarding the establishment of the Faculty of Engineering. Faculty of Engineering was officially established in Jakarta without any official ceremony or celebration, under the banner of the University of Indonesia as youngest faculty. And so the history of the Faculty of Engineering Universitas Indonesia began with the first three Study Programs with their respective Head of Study Programs: Ir. Sutami as Head of Civil Engineering Study Program, Ir. Ahmad Sayuti as Head of Mechanical Engineering Study Program and Ir. K. Hadinoto as Head of Electrical Engineering Study Program.

The Metallurgy and Architecture Study Programs were opened the following year with their respective Head of Study Programs: Dr.Ing. Purnomosidhi H. and Ir. Sunaryo S.. Ir. Roosseno as Dean was assisted by Ir. Sutami as Vice Dean for Academic Affairs, Ir. Slamet Bratanata as Vice Dean for Administration and Finance and Dr. Ing Purnomosidhi H. as Vice Dean for Student Affairs and Alumni. In its early activities in 1964, Faculty of Engineering UI was supported by 30 lecturers and 11 non-academic employees offering a 32 course subject curriculum. The first class of Faculty of Engineering UI consisted of 199 students. In five and a half years, 18 of them had successfully completed their study and graduated as certified Engineers.

In 1985, the study program Gas Engineering (originally under the Metallurgy Study Program) joined the study program Chemical Engineering (originally under the Mechanical Study Program) and formed the Gas and Petrochemical Engineering Study Program with its first Head of Study Program, Dr. Ir. H. Rachmantio. The Industrial Engineering Study Program, the youngest Study Program in Faculty of Engineering UI, was opened in 1999 with its first Head of Study Program, Ir. M. Dachyar, M.Sc. The term Study Program was later changed to Department and is still used today.
1.2. VISION AND MISSION OF FTUI

FTUI Vision
Faculty of Engineering Universitas Indonesia as excelled nation’s pride and able to compete in South East Asia.

FTUI Mission:
• Prepare Undergraduate, Master and Doctoral graduates with international insight by using Cutting-Edge Engineering Education & Management which is the benchmark of higher education system in South East Asia region.
• Organize research for the development of the nation’s technology and science by focusing on Applied Engineering Research. Applied Engineering Research is a type of research that can compete in the international scene but also benefited the Indonesian’s people, without disregarding researches that have been the back bone of Faculty of Engineering Universitas Indonesia.
• Encourage the professional and adaptive Engineering Enterprises system and community engagement towards the need of the society and industry. Engineering Enterprises must have an active role in solving the global demand with the support towards sustainable and humane development.
• Building and preparing engineering institution based on Integrated Information Technology (Integrated IT Based Institution) with efficiency and professionalism demand that is the national benchmark. Integrated IT Based Institution must be able to keep up with the trend in FTUI or future technology development.

1.3. UI and FTUI Administration

UI
Rector:
Prof. Dr. Ir. Muhammad Anis. M. Met.

Deputy Rector for Academic and Student Affairs:
Prof. Dr. Bambang Wibawarta, S.S., M.A.

Deputy Rector for Finance, Logistic and Facilities:
Prof. Sidharta Utama, Ph.D, CFA.

Deputy Rector for Research, and Innovation
Prof. Dr. rer. nat Rosari Saleh

Deputy Rector for for Human Resources, Development and Cooperation
Prof. Dr. Ir. Dedi Priadi, DEA.

FTUI
Dean of Engineering:
Dr. Ir. Hendri D.S. Budiono, M.Eng

Vice Dean I:
Dr. Ir. Muhamad Asvial, M.Eng

Vice Dean II:
Prof. Dr.-Ing. Nandy Putra

Associate Dean for Academic and Head of Faculty Administration Center:
Dr. Eng. Arief Udhiarto, ST., MT, IPM.

Associate Dean for Research & Community Engagement
Dr. Eng. Muhamad Sahlan, S.Si, M. Eng
Associate Dean for Students Affairs & Alumni
Dr. Badrul Munir, ST., M.Eng.Sc
Associate Dean for Human Resource & General Administration
Jos Istiyanto, S.T., M.T., Ph.D
Associate Dean for General Affairs & Facilities
Dr. Dwi Marta Nurjaya, ST., MT
Associate Dean for Cooperation & Venture
Dr. Ir. Imansyah Ibnu Hakim, M.Eng
Head of Development and Management System Assurance Unit and Academic Quality Assurance Unit
Dr. Ir. Rahmat Nurcahyo, M.Eng.Sc
Course Coordinator of FTUI Salemba Campus
Prof. Ir. Sutrasno Kartohardjono, M.Sc, Ph.D

Departments
The following are list of Head of Department, and Vice Head of Department:

Civil Engineering:
Ir. R. Jachrizal Sumabrata, M.Sc., Ph.D
Dr. Cindy Rianti Priadi, ST., M.Sc
Mechanical Engineering:
Dr. Ario Sunar Baskoro, ST., MT., M.Eng
Dr. Agus Sunjarianto Pamitran, ST., M.Eng
Electrical Engineering:
Dr. Ir. Aries Subiantoro, M.Sc
Dr. Abdul Halim, M.Eng
Metallurgical & Materials Engineering:
Prof. Dr. Ir. Akhmad Herman Yuwono, M.Phil.Eng
Nofrijon Sofyan, Ph.D
Architecture:
Dr. Ing. Ir. Dalhar Susanto
Joko Adianto, ST., M.Ars., Ph.D
Chemical Engineering:
Dr. Ir. Asep Handaya Saputra, M.Eng
Dr. Bambang Heru Susanto, ST., MT
Industrial Engineering:
Dr. -Ing. Amalia Suzianti S.T., M.Sc.
Dr. Komarudin, ST., M.Eng

BOARD OF PROFESSORS
Prof. Dr. Ir. Budi Susilo Soepandji
Prof. Dr. Ir. Bambang Suharno
Prof. Dr. Ir. Sutanto Soehodo, M. Eng
Prof. Dr. Ir. Bondan T. Sofyan, M.Si
Prof. Dr. Ir. Tommy Ilyas, M.Eng
Prof. Ir. Triatno Yudo Harjoko, M.Sc., Ph.D
Prof. Dr. Ir. Irvan Katili, DEA
Prof. Dr. Ir. Abimanyu Takdir Alamsyah, MS
Prof. Dr. Ir. I Made Kartika, Dipl. Ing.
Prof. Dr. Ir. Widodo Wahyu P, DEA
INTERNATIONAL ADJUNCT PROFESSOR
Prof. Dr. Fumihiko Nishio, fnishio@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Snow and Ice), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.
Prof. Dr. Josaphat Tetuko Sri Sumantyo, jtetukoss@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Microwave Remote Sensing), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.
Prof. Dr.-Ing. Axel Hunger, axel.hunger@uni-due.de (Adaptive e-Learning, adaptive instructional systems, e-course and its applications, pedagogical analyses of on-line course), University of Duisburg Essen, Germany.
Prof. Dr. Koichi Ito (Printed Antenna, Small Antenna, Medical Application of Antenna, Evaluation of Mutual Influence between Human Body and Electromagnetic Radiations), Chiba University, Japan.
Prof. Masaaki Nagatsu, tmnagat@ipc.shizuoka.ac.jp, (Plasma Science and Technology) Research Institute of Electronics, Shizuoka University
Prof. Michiharu Tabe, tabe.michiharu@shizuoka.ac.jp, (Nano Devices) Research Institute of Electronics, Shizuoka University
Prof. Hiroshi Inokawa, inokawa06@rie.shizuoka.ac.jp, (Nano Devices), Research Institute of Electronics, Shizuoka University
Prof. Hidenori Mimura, mimura.hidenori@shizuoka.ac.jp, (Vacuum Electron Devices) Research Institute of Electronics, Shizuoka University
Prof. Chit Chiow (Andy) Tan, School of Mechanical, Manufacturing and Medical Engineering, Queensland University of Technology, Australia, Mechanical Engineering
Prof. Kozo Obara, Dept. of Nanostructure and Advanced Materials, Kagoshima University, Japan, Nanomaterial dan Energi.
Prof. Freddy Y.C. Boey, Nanyang Technological University, Singapore, Nanomaterial dan Biomedical.
1.4. ACADEMIC PROGRAMS AT FTUI

FTUI consists of seven Departments and thirteen Undergraduate Study Programs:

(1) Civil Engineering
(2) Environmental Engineering
(3) Mechanical Engineering
(4) Naval Architecture and Marine Engineering
(5) Electrical Engineering
(6) Computer Engineering
(7) Metallurgical & Materials Engineering
(8) Architecture
(9) Interior Architecture
(10) Chemical Engineering
(11) Bioprocess Engineering
(12) Industrial Engineering
(13) Biomedical Engineering

Nine Master Programs:

(1) Civil Engineering
(2) Mechanical Engineering
(3) Electrical Engineering
(4) Metallurgical and Material Engineering
(5) Architecture
(6) Chemical Engineering
(7) Industrial Engineering
(8) Biomedical Technology
(9) Energy System Engineering

and seven Doctoral Programs:

(1) Civil Engineering
(2) Mechanical Engineering
(3) Electrical Engineering
(4) Metallurgical and Material Engineering
(5) Architecture
(6) Chemical Engineering
(7) Industrial Engineering

and two Professional Program:

(1) Professional Program for Engineers
(2) Professional Program for Architect

Accreditation of FTUI Academic Programs

The National Board of Accreditation for Higher Education (BAN-PT) has awarded the following accreditation level for all study program in the Faculty of Engineering:

for Bachelor Programs:

Civil Engineering : A
Industrial Engineering : A
Mechanical Engineering : A
Electrical Engineering : A
Metallurgical & Material Engineering : A
Architecture : A
Chemical Engineering : A
Naval Architecture & Marine Engineering : A
Computer Engineering : A
Environmental Engineering : A
Architecture Interior : A
Bioprocess Engineering : A

Accreditation for Master Program is as follows:
Civil Engineering : A
Mechanical Engineering : A
Electrical Engineering : A
Metallurgical and Materials Engineering : A
Architecture : A
Chemical Engineering : A
Industrial Engineering : A
Biomedical Technology : B

Accreditation for Doctoral Program is as follows:
Civil Engineering : A
Mechanical Engineering : A
Electrical Engineering : A
Metallurgical and Materials Engineering : A
Architecture : A
Chemical Engineering : A
Industrial Engineering : B

In 2008 & 2010, the Departments of Mechanical Engineering, Civil Engineering, Electrical Engineering, Metallurgical and Materials Engineering, Architecture and Chemical Engineering have been accredited by the Asean University Network (AUN), in 2013 Departments of Industrial Engineering have been accredited by the ASEAN University Network (AUN).

In 2016 Department of Civil Engineering have been re-accredited by AUN.

In 2017 Technology Bioprocess and Naval Architecture & Marine Engineering Study Program have been accredited by AUN.

In 2017 Department of Chemical Engineering have been accredited by JABEE (Japan Accreditation Board for Engineering Education) & in 2018 Chemical Engineering & Bioprocess Engineering Study Program have been accredited by IABEE (Indonesian Accreditation Board for Engineering Education).

In 2018 Environmental Engineering Study Program have been accredited by AUN.

In 2019 Computer Engineering Study Program have been accredited by AUN.

Undergraduate Regular Class Program
The Undergraduate Program in Universitas Indonesia is focused on producing graduates with the following qualifications:
- Have knowledge of the basic science and skill in certain field of study.
- Able to implement the science, knowledge and skill possessed in accordance with their field of study.
- Able to follow the development and growth of science and technology.

The aim of Undergraduate Program in FTUI is to produce graduates with competencies set by the Accreditation Board for Engineering and Technology (ABET) and Washington Accord Based as follow:
- Able to implement the basic science, the engineering basic science, and technology.
- Able to design and conduct experiments and data analysis.
- Able to design system and its components.
- Understand the professional responsibility and ethics.
- Able to work together in a multi discipline group.
- Able to identify, formulate and solve engineering problems.
- Able to communicate effectively.
- Have broad knowledge and understand the technological impact in a local and global scale.
- Have the motivation and ability to continue learning.
- Have knowledge of the latest engineering problems.
- Able and skilled in using the latest engineering methods.
- Produce graduates from the Architecture Study Program with the competence in accordance to the National Architectural Accrediting Board (NAAB).
Undergraduate Parallel Class Program
To improve the capacity usage for educational purposes, Universitas Indonesia has opened the Undergraduate Parallel Class Program. This program is given the same facilities and curriculum as those given to the Undergraduate Regular Program. However only eight out of thirteen study programs are available for future students to choose from.

The classes are held in FTUI Depok from morning through night time, different than classes of regular program which are held from morning through to early evening.

The Undergraduate Parallel Program allows all high school graduates from any years to register to the program. This differ from the Undergraduate Regular Program which limit registration to students with a maximum of three years of graduation time. Thus making this program available to all graduates of high school from any years to get their Bachelor Degree.

In term of Educational Fees, the Undergraduate Parallel Program will pay full in accordance to the listed fees, students are not allowed to apply cost reduction for the Biaya Pendidikan Berkeadilan (BOP-B) as their Regular Program friends.

Graduation requirements and accreditation of the Undergraduate Regular Program also applies to the Undergraduate Parallel Program.

International Undergraduate Program (Double-Degree & Single Degree)
Since 1999, Faculty of Engineering has established an international undergraduate program in engineering (double-degree program) with the following renowned Australian higher education institutions: Queensland University of Technology (QUT), Monash University, Curtin University of Technology, Deakin University, and The University of Queensland. Students can also continue their study to University of Duisburg Essen (UDE), Germany. Graduates from this international undergraduate program will be awarded both a Bachelor of Engineering degree from our University partner and a Sarjana Teknik degree from Faculty of Engineering UI when they return to FTUI and fulfill certain requirements. The double degree cooperation with QUT involves the study programs Civil Engineering, Mechanical Engineering, Electrical Engineering and Architecture. The double degree cooperation with Monash University involves the study programs Metallurgical & Material Engineering and Chemical Engineering. The double degree cooperation with Curtin University involves the study programs Chemical Engineering, Architecture, Metallurgical & Material Engineering and Electrical Engineering, with other study programs to follow. The double degree cooperation with the University of Queensland involves the study programs Civil Engineering, Mechanical Engineering, Chemical Engineering and Metallurgical & Materials Engineering. The double degree cooperation with UDE involves the study program of Electrical Engineering and Metallurgical & Materials Engineering. This international undergraduate program provides high quality engineering education in the international level.

Before continuing their study at our partner university, students should fulfill the minimum English proficiency in accordance to our partner university’s requirement as stated in the Dean’s Decree No.740/D/SK/FTUI/IX/2018.

Since 2011, students will also have a choice to continue their final two years at FTUI as part of the newly opened Single Degree International Program. The undergraduate international single degree program was launched as a result of an increasing demand to provide an international quality education locally. Students in this program are not obligated to continue their last four semester of study at one of our partner universities like their classmates who wishes to pursue a double degree. However, students of single degree program are required to do Study Abroad for at least one semester at an overseas university with academic link or cooperation with Universitas Indonesia. The list of universities can be found here: http://international.ui.ac.id/international-engagement.html. The aims are to widen the international perspective of the students, to have experience to study in an overseas university, to enhance language capability, to enhance cross-cultural adaptability. Study Abroad can be conducted during regular semesters.

Before finishing their study, students should fulfill the minimum English proficiency as follow: achieved a minimum IELTS score of .0 with no bands lower than 5.5 or TOEFL iBT score of 75 with no bands lower than 17, according to Dean’s Decree No.3 year 2019.
Undergraduate Parallel Class Program (Diploma Track)

The Undergraduate Parallel Program (Diploma Track) in FTUI was initiated in 1993 it was named Extension Program. At the beginning, the program was held for only four Study Programs (Civil, Mechanical, Electrical and Metallurgy Engineering). In 1995 the program was also opened for the Chemical Engineering Study Program (Gas and Petrochemical Engineering) followed by Industrial Engineering in 2002. Starting in 2011, the Undergraduate Extension Program of FTUI was closed. However, the faculty still give the opportunity for future FTUI students that are graduates from Diploma Program who wishes to continue their study into the FTUI Undergraduate Program. Students are now able to apply through the Undergraduate Parallel Program (Diploma Track) by using the Credit Transfer System. The number of credits acknowledge will be decided by their respective Departments.

The Undergraduate Parallel Program is a full time program where students are expected to be a full time students in campus. This is due to the schedule set for the program which started from the morning period and well into the afternoon. There are six Study Programs available to choose from: Civil Engineering, Mechanical Engineering, Electrical Engineering, Metallurgy & Material Engineering, Chemical Engineering, Industrial Engineering.

Professional Program

Professional Program for Architects

This one-year professional program intended to provide graduates who have the ability to design in a professional manner based on policies (code compliance) to fulfill the needs of competence as the architect. Graduates of this program may work in various fields in the construction industry, as executive architect or construction supervisor. Graduates may also work as are searcher and lecturer at educational institutions associated with the architecture. Besides graduates may also work in the field of urban design, real estate, building maintenance, assessor for project feasibility studies, building managers, housing and settlements and the environment, working in the industry of building materials and elements, and working in the government sector in matters of urban design, building and development related to built environment.

Professional Program for Engineers

The aim of this Professional Program for Engineer is to realize the need for graduates with “Engineer” competence in accordance to the Engineer Law decree.

The Professional Program for Engineer is aimed to produce engineers with the following characteristics:

• Have an understanding of ethics code and engineer’s code of conduct
• Have the skill of engineer’s technical including consultation service, creation of pre-design, licensing process, the development of design and completion of various technical and bidding documents.
• Have an understanding of code of compliances whether it is service to client, suitability to regulation and engineering problems such as those related to building construction, mechanical, and electrical.

Professional Program for Engineer Study Program is a higher education program after finishing undergraduate program to build engineering competence. The existence of the Professional Program for Engineer is a prerequisite to acquire the title of Engineer and to submit an application for professional certification. This program is a continuation of the existing undergraduate bachelor degree where graduates have academic abilities: critical thinking (analytical and synthetic), and the ability to do creative design. The undergraduate bachelor degree is design to be completed in 4 years (8 semesters) with 144 credits. To fulfill the graduate qualification to be granted the title of Engineer, the graduate is required to continue with a professional education for a minimum of 1 year with 24 credits to complete. The composition of curriculum structure of the Professional Program for Engineer is 84% of engineering practices including internship in any industry, case studies, problem solving, and 16% of face to face class room lectures.
In the Ministry of Research, Technology and Higher Education’s Regulation, it is stated that the Professional Program for Engineer is a higher education program as a continuation of the undergraduate bachelor program to build Engineering Competency. Graduates of this Professional Program for Engineer Study Program will be awarded with an Engineer Professional Certificate from the university and is entitled to use the professional engineering degree, “Ir.”

A person with a Professional Engineer Certificate is eligible to take the Professional Engineer Competence Examination held by professional certification institution. Engineers that have passed their Professional Engineers Competence Examination will be awarded Competence Certificate as professional engineer. Competence Certificate is a recognition of competence document to practice as an Engineer, this is also the requirement to obtain the Engineer Registration Certificate issued by Persatuan Insinyur Indonesia (PII).

Master Program
The Master Program of Faculty of Engineering Universitas Indonesia was opened in 1992 with four study programs: Civil Engineering, Mechanical Engineering, Electrical Engineering and Metallurgy Engineering. In 2000, the faculty opened the Master Program for Chemical Engineering (from Gas Engineering Study Program in Metallurgy Engineering Department), Industrial Engineering (from Industrial Management Study Program in Mechanical Engineering Department) and Architecture.

Each Study Program in the Master Program is headed by a Head of Study Program held in ex-officio by the Head of Department. Each Department have one or more specialization to give a more in-depth and specific engineering knowledge to each student of said study program.

Types of Classes for Master Program:
- Regular Class Program is held full time from Monday - Friday in FTUI Campus, Depok.
- Special Class Program is held especially with the following details:
 - Special Class program for Metallurgy & Materials Engineering: Saturday (08.00 am - 07.00 pm) in FTUI Campus, Depok.
 - Special Class program for Industrial Engineering: Friday (05.00 pm - 09.00 pm) and Saturday (08.00 am - 05.00 pm) in FTUI Campus, Salemba.
 - Special Class program for Energy System Engineering, Biomedical Technology, and other Special Class program: Monday - Friday (05.00 pm - 09.30 pm) in FTUI Campus, Salemba.

Doctoral Program
FTUI Doctoral program was officially opened in 2000 with the opening of the Civil Engineering and Electrical Engineering Doctoral program followed by the emersion of the Opto-electrotechnique and Laser Application study program into the Postgraduate Program of FTUI. The Mechanical Engineering study program was officially opened in 2006 while the Metallurgy & Material Engineering and Chemical Engineering followed in 2007.

And In 2009, respectively Department of Architecture opened the Architecture Doctoral Program. In 2011, the Opto-electrotechnique and Laser Application was closed and was emerged into the Electrical Engineering study program. Each Doctoral study program is headed by the Head of Study Program which is held ex-officio by the Head of Department in the Faculty of Engineering UI. The Doctoral study programs have one or more focus subjects to give a more specific knowledge on engineering field to all students of the program.
1.5.1. DEPARTMENT OF CIVIL ENGINEERING

GENERAL
The Civil Engineering Department previously known as Civil Engineering Study Program was established together with the Faculty of Engineering Universitas Indonesia (FTUI) at 17 July 1964. In the initial stage of development, Civil Engineering Department - FTUI offered one study program, Civil Engineering, with two majors, structural engineering and water resources engineering. Following the demand and development of science and technology, it was then expanded with four additional majors, i.e. transportation engineering, geotechnical engineering, sanitary engineering and construction management. With the improvement of human resources and facilities, Postgraduate Program for master degree (S2) and doctoral Degree (S3) were established in 1992 and 2001, respectively. In 2006, the Department established the undergraduate program on Environmental Engineering. Previously, Environmental Engineering is one of the majors in Civil Engineering. There are eight specializations for Master and Doctoral Program in Civil Engineering, structural engineering, geotechnical engineering, water resources management, transportation system & engineering, construction management, environmental engineering, project management and infrastructure management.

To ensure the quality, the Department is regularly accredited by the national accreditation board, BAN-PT (Badan Akreditasi Nasional Pendidikan Tinggi) since 1998. All study programs of Civil Engineering, undergraduate, master and doctor reach the highest grade of “A”. The Environmental Engineering Study Program of was nationally accredited in 2010. The under graduate program of Civil Engineering was accredited internationally in 2001 by The Joint Board of Moderators of the Engineering Council consisting of Institution of Structural Engineers (ISE), Institution of Civil Engineers (ICE), and Chartered Institution of Building Service Engineers of the United Kingdom. However, due to changes in their policy, reaccreditation was discontinued. In 2008, undergraduate program of Civil Engineering was assessed by ASEAN University Network - Quality Assurance Program (AUN-QA). In order to maintain the quality in education, AUN-QA reassessment was conducted in 2015. The Environmental Engineering S1 program assessments was assessed by Asean University Network (AUN) in 2018 and deemed Better than Adequate.

Civil Engineering is the oldest engineering discipline and encompasses many specialties. Civil engineering can be described as the application of engineering to civil society. It applies the principles of engineering to meet society’s fundamental needs for housing, transportation, sanitation, and the other necessities of a modern society. The engineers deal with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, and buildings, as well as other challenges such as deteriorating infrastructures, complex environmental issues, outdated transportation systems, and natural disasters. Civil engineering education is to prepare students to be master planners, designers, constructors, and managers of various civil engineering works. The graduates can work in all levels: in the public sector from municipal through to national governments, and in the private sector from individual homeowners through to international companies.

Environmental engineering is defined as branch of engineering concerned with the application of scientific and engineering principles for protection of human populations from the effects of adverse environmental factors; protection of environments both local and global from the potentially deleterious effects of natural and human activities; and improvement of environmental quality. Tasks of environmental engineers include evaluation of environmental quality of water, air and soils by developing strategies and methods, design of facilities or programs, evaluation of results and assessment of the economics and efficiency of processes. The Environmental Engineering Study Program provide graduates with professional and competence in planning, designing, constructing and managing environmental infrastructure for: drinking water treatment, liquid and solid waste management, drainage, environmental sanitation, water resources, air pollution, pollution prevention & environmental impact assessment.
Corresponding Address
Departemen Teknik Sipil
Fakultas Teknik Universitas Indonesia
Kampus UI Depok 16424, Indonesia
Telp: +62-21-7270029, 7871786
Fax: +62-21-7270028
Email: civil@eng.ui.ac.id
http://www.civil.ui.ac.id/en US/
http://instagram.com/ceeftui

VISION and MISSIONS

VISION
“To become a center of knowledge and technology in Civil Engineering and Environmental Engineering and to play an important role in global market”

MISSIONS
• To improve the quality of graduates in mastering Civil and Environmental Engineering knowledge with solid foundation, internationally standardized with environmental insight
• To actively contribute ideas through research including direct involvement in community service that is oriented to the development of facilities and infrastructure in Civil and Environmental Engineering discipline, yet reflect upon the balanced relationships of humans and nature.
• To shape and build students that conveys leadership and independent personality, along with the ability to socialize, effective communication and uphold profession ethics.

STAFFS OF THE DEPARTMENT OF CIVIL ENGINEERING

Head of Department:
Ir. R. Jachrizal Sumabrata, M.Sc., PhD
Head of Civil Engineering Study Program:
Ir. R. Jachrizal Sumabrata, M.Sc., PhD
Head of Environmental Engineering Study Program:
Dr. Nyoman Suwartha, S.T., M.T., M.Agr.
Vice Head of Department:
Dr. Cindy Rianti Priadi, S.T., M.Sc.

Head of Laboratory

Head of Structure and Materials Laboratory:
Dr. Ir. Elly Tjahjono S, DEA
Head of Soil Mechanics Laboratory:
Erly Bansan, ST, Mkomp
Head of Hydraulics, Hydrology and River Laboratory:
Ir. Siti Murniningsih, MS
Head of Transportation Laboratory:
Ir. Tri Tjahjono, M.Sc., Ph.D
Head of Mapping and Surveying Laboratory:
Ir. Alan Marino, MSc
Head of Sanitation & Environment Laboratory:
Ir. Gabriel S. Boedi Andari, M.Eng., Ph.D

BOARD OF PROFESSORS

1. Prof. Dr. Ir. Budi Susilo Soepandji, DEA, budisus@eng.ui.ac.id (Ir, UI; DEA, Dr, Ecole Centrale Paris; Prof, UI) Geotechnic
2. Prof. Dr. Ir. Tommy Ilyas, M.Eng., t.ilyas@eng.ui.ac.id (Ir, UI; M.Eng, Sheffield University; Dr,
PROFILE OF FTUI & DEPARTMENTS

UI; Prof. UI) Geotechnic

3. Prof. Dr. Ir. Irwan Katili, DEA, irwan.katili@gmail.com (Ir, UI; DEA, Dr, Universite Technique de Compiégne; Prof. UI) Structure

4. Prof. Dr. Ir. Sutanto Soehodho, M.Eng., tanto@eng.ui.ac.id (Ir, UI, M.Eng, Dr, Tokyo University; Prof. UI) Transportation

5. Prof. Dr. Ir. Yusuf Latief, MT., latief73@eng.ui.ac.id (Ir, UI; MT, Dr, UI; Prof. UI) Project Management

6. Prof. Dr. Ir. Djoko M. Hartono, SE., M.Eng., djokomh@eng.ui.ac.id (Ir, ITB; M.Eng, Asian Institute of Technology; Dr, UI; Prof, UI) Environmental

7. Prof. Dr. Ir. Sigit Pranowo Hadiwardoyo, DEA., sigit@eng.ui.ac.id (Ir, UI; DEA, Ecole Centrale de Lyon; Dr, Ecole Centrale Paris; Prof. UI) Transportation

8. Prof. Ir. Widjojo Adi Prakoso, M.Sc., PhD. wprakoso@eng.ui.ac.id (Ir, UI; MSc, PhD, Cornell University; Prof. UI) Geotechnic

9. Prof. Dr.-Ing. Ir. Dwita Sutjiningsih, dipl. HE, dwita@eng.ui.ac.id (Ir, UI; Dipl.HE, Institute of Hydraulics Engineering (IHE); Dr.-Ing, Institut fur Wasserwirtshaft, Univ. Hannover) Water Resources Management

FULL-TIME FACULTY

Alan Marino, alanmarino@eng.ui.ac.id (Ir, UI; M.Sc., Wisconsin Madison Univ., USA) Transportation

Alvinsyah, alvinsyah_2004@yahoo.com (Ir, UI; M.S.E., University of Michigan, Ann Arbor, USA) Transportation

Andryka Kusuma, andyka.k@eng.ui.ac.id (ST, UI; MSc, Kungliga Tekniska Hogskolan, Swedia; PhD, University of Leeds) Transportation

Ayomi Dita Rarasati, ayom@eng.ui.ac.id (ST, MT, UI; Ph.D, QUT Australia) Construction Management; Project Management

Budi Susilo Soepandji, budisus@eng.ui.ac.id (Ir, UI; DEA, Dr, Ecole Centrale Paris; Prof, UI) Geotechnic

Cindy Rianti Priadi, cindy.priadi@eng.ui.ac.id (ST, ITB; MSc, University Paris-7-Paris12-ENPC; Dr, Univ. Paris Sud, 2010) Environmental

Djoko M. Hartono, djokomh@eng.ui.ac.id (Ir, ITB; M.Eng, Asian Institute of Technology; Dr, UI; Prof, UI) Environmental

Dwita Sutjiningsih, dwita@eng.ui.ac.id (Ir, UI; Dipl.HE, Institute of Hydraulics Engineering (IHE); Dr.-Ing, Institut fur Wasserwirtshaft, Univ. Hannover) Water Resources Management

Ellen SW Tangkudung, ellen@eng.ui.ac.id (Ir, UI; M.Sc, ITB) Transportation

Erly Bahsan, erlybahsan@eng.ui.ac.id (ST, M.Kom, UI; Kandidat Dr, NTUST) Geotechnic

Firdaus Ali, firdaus108@hotmail.com (Ir, ITB; MSc, PhD, University of Wisconsin) Environmental

Gabriel Sudarmini Boedi Andari, andari@eng.ui.ac.id (Ir, ITB; M.Eng, RMIT; PhD, Texas Southern University) Environmental

Henki Wibowo Ashadi, henki@eng.ui.ac.id (Ir, UI; Technische Hochschule Darmstadt; Dr-Ing, TH Darmstadt) Structure

Herr Soeryantono, herr@eng.ui.ac.id (Ir, UI; MSc, PhD, Michigan State University) Water Resources Management

Heru Purnomo, herupur@eng.ui.ac.id (Ir, UI; DEA, Universite’ Blaise Pascal; Dr, Universite’d”Orleans) Structure

Irma Gusniani, irma@eng.ui.ac.id (Ir, ITB; MSc, University of Colorado) Environmental

Irwan Katili, irwan.katili@gmail.com (Ir, UI; DEA, Dr, Universite Technique de Compiégne; Prof. UI) Structure

Jessica Sjah, jessicasjah@eng.ui.ac.id (ST, UI; MT, UI; MSc, Ecole Centrale de Lyon; Dr, Ecole Centrale de Lyon) Structure

Josia Irwan Rastandi, jrastandi@eng.ui.ac.id (ST, MT, UI; Dr-Ing, Technische Universtat Munchen) Structure

Leni Sagita, isagita@eng.ui.ac.id (ST, MT, UI; Ph.D., NUS, Singapore) Construction Management: Project Management

Martha Leni Siregar, leni@eng.ui.ac.id (Ir, UI; MSc, Univ.of Southampton) Transportation

Mohammed Ali Berawi, maberawi@eng.ui.ac.id (ST, Unsri; M.Eng.Sc, University of Malaya; Ph.D,
Oxford Brookes University) Construction Management: Project Management

Mulia Orientalize, mulia@eng.ui.ac.id (ST, UI; M.Eng, Nanyang Technological University) Structure

Nyoman Suwartha, nswartha@eng.ui.ac.id (ST, MT, UGM; M.Agr, Dr, Hokkaido University) Environmental

R. Jachrizal Soemabrata, rjs@eng.ui.ac.id (Ir, UI; MSc, Leeds Univ; Dr, Melbourne University) Sustainable Urban Transport

RR. Dwinanti Rika Marthanty, dwinanti@eng.ui.ac.id (ST, MT, UI; Dr, UI, Université Lille 1) Water Resources Management

Setyo Sarwanto Moersidik, ssarwanto@eng.ui.ac.id (Ir, ITB; DEA, Dr, Universite’de Montpellier II) Environmental

Sigit Pranowo Hadiwardoyo, sigit@eng.ui.ac.id (Ir, UI; DEA, Ecole Centrale de Lyon; Dr, Ecole Centrale Paris; Prof. UI) Transportation

Siti Murningsih, titik_winarno@yahoo.com (Ir, Undip; MS, ITB) Water Resources Management

Sutanto Soehodho, tanto@eng.ui.ac.id (Ir, UI, M.Eng, Dr, Tokyo University; Prof. UI) Infrastructure Management

Toha Saleh, toha@eng.ui.ac.id (ST, UI; MSc, University of Surrey) Water Resources Management

Tommy Ilyas, t.ilyas@eng.ui.ac.id (Ir, UI; M.Eng, Sheffield University; Dr, Prof. UI) Geotechnic

Tri Tjahjono, tjahjono@eng.ui.ac.id (Ir, UI; MSc, Ph.D, Leeds University) Transportation

Widjojo Adi Prakoso, wpakoso@eng.ui.ac.id (Ir, UI; MSc, PhD, Cornell University) Geotechnic

Wiwik Rahayu, wrahayu@eng.ui.ac.id (Ir, UI; DEA, Dr, Ecole Centrale de Paris) Geotechnic

Yuskar Lase, yuskar@eng.ui.ac.id (Ir, UI; DEA, Dr, Ecole Centrale de Lyon) Structure

Yusuf Latief, latief73@eng.ui.ac.id (Ir, UI; MT, Dr, UI; Prof. UI) Project Management

PART-TIME FACULTY

Prof. Ir. Suyono Dikun, M.Sc., Ph.D, suyonodikun@gmail.com (Ir, UI; MSc, PhD, University of Wisconsin; Prof. UI) Infrastructure Management

Ir. Sjahril A. Rahim, M.Eng, syahril@eng.ui.ac.id (Ir, UI; M.Eng, Asian Institute of Technology) Structure

Dr. Evi Anggraheni, S.T., M.T., evi.anggraheni@yahoo.com (S.T., UB; M.T., UI; Dr. (UI-Ecole Centrale de Nantes), Water Resources Engineering

Dr. Eng. Mochamad Adhiraga Pratama S.T., M.T., adhiraga@eng.ui.ac.id (S.T., ITB; M.T., ITB; Dr. Eng., Kyoto University), Environmental Engineering

Dr. Bastian Okto Bangkit Sentosa, S.T., M.T. M.Rech., bastian.sentosa@ui.ac.id (S.T., UI; M.T., UI; M.Rech.; INSA Lyon, Dr. Université Savoie Mont Blanc), Structural Engineering

Dr. Ir. Damrizal Damoerin, damrizal@eng.ui.ac.id (Ir, UI; MSc, ITB; Dr, UI) Geotechnic

Elly Tjahjono, elly@eng.ui.ac.id (Ir, UI; DEA, Insa de Lyon, Perancis; Dr, UI) Structure

Fadhilah Muslim, S.T., M.Sc., Ph.D., DIC, Fadhilah.muslim@gmail.com (S.T., UI; M.Sc., Ecole Nationale des Ponts et Chaussées (ENPC), Ph.D., Imperial College London), Structural Engineering

Ir. Essy Ariyuni, Ph.D., essy@eng.ui.ac.id (Ir, ITS; MSc, University of Wisconsin; Dr, Queensland University of Technology) Structure

Ir. Iwan Renadi Soedigdo, Ph.D, irs1210@yahoo.com (Ir, UI; MSCE, The George Washington University; Ph.D, Texas A&M University) Structure

Ir. Hedy Rohandi Agah, M.Eng, agah@eng.ui.ac.id (Ir, UI; M.Eng, Asian Institute of Technology) Transportation

Ir. Madsuri, M.T, madsuri@eng.ui.ac.id (Ir, MT, UI) Structure

Ir. Setyo Supriyadi, M.Si, setyosupriyadi@yahoo.com (Ir, Msi, UI) Structure

El Khobar Muhaemin Nazech, elkhobar@eng.ui.ac.id (Ir, UI; M. Eng, Asian Institute of Technology) Environmental

Dr. Imam Jauhari Maknun, S.T., M.T., M.Sc., jauhari.imam@gmail.com (S.T., UI; M.T., UI; M.Sc., University of La Rochelle; Dr, University of La Rochelle), Structure

Dr. Dipl.-Ing. Nuraziz Handika, S.T., M.T., M.Sc., nuraziz.handika@gmail.com (S.T., UI; M.T., UI; M.Sc., National Taiwan University of ScZience and Technology; Dipl.-Ing, Ecole Centrale de Nantes; Dr., INSA de Toulouse)

Dr. RM. Sandyanto Adityosulindro, S.T., M.T., rm.sandy.ui@gmail.com (S.T., UI; M.T., UI; M.Sc., Université Lille 1; Dr., Institut National Polytechnique De Toulouse)
1.5.2. DEPARTMENT OF MECHANICAL ENGINEERING

GENERAL
The Department of Mechanical Engineering, previously known as Mechanical Engineering Study Program. The department was established together with the launch of the faculty of engineering Universitas Indonesia in November 27, 1964 at Salemba, Jakarta. Nowadays there are 2 study programs within the department, which are: Mechanical Engineering Study Program and Marine Engineering Study Program. The mechanical engineering study program provides the knowledge which focused into Energy Conversion, Product Design, Manufacturing Process and also the basic of Industrial operational and managerial. The Marine Engineering study program provide the education which focused into Ship design, Ship manufacturing process, ship maintenance, ship machinery installation and also the rules and laws of marine. The graduates of the mechanical engineering have worked in several areas such as automotive industry, oil and gas industry, heavy duty engine, educational institution, research institution and other industries. The department of mechanical engineering organized several programs, which are: Bachelor Degree (Regular, Parallel, and International class) Master Degree and Doctoral Degree. Since August 2007, the department of mechanical engineering received the ISO 9001: 2000 for quality management system in Mechanical Engineering Study Program. In 2011, The Department of Mechanical Engineering once again received the ISO 9001: 1008 for quality management system. Certification by international agencies is one of management’s commitments in quality management, to ensure and enhance academic quality and stakeholder satisfaction. The mechanical engineering study program also received the highest academic accreditation point according to the National Accreditation Board in 2005. In 2008, the Department of Mechanical Engineering has also gained international recognition in the form of accreditation of the ASEAN University Network (AUN). This again shows the commitment the Department of Mechanical Engineering to develop international education and excel in their fields, as stated by the firm through the vision, mission and goals.

Developing nations are very dependent of human resource development. Resource is people who set the direction, goals, implement and develop the nation’s life. With good human resources are expected to achieve the life of prosperous and affluent nations. Therefore, the developments of human resources become the key of national development. Higher education in Indonesia is part of the National Education System which aims to develop the intellectual life of the nation through the development of human resources to carry out three main activities of the so-called “Tridharma Universities”, namely :

- Hold a higher level education
- Conduct the scientific research
- Perform the Community service

In order to develop human resources for the life of the nation, the Department of Mechanical Engineering has set a goal of three main activities is to be a reference to any academic activity. In education, has a goal to produce graduates who are able to analyze and synthesize the characteristics of mechanical systems, designing and planning systems and mechanical equipment as well as managing the production installation, and be able to analyze and solve any scientific problem, work together in teams, and develop themselves and their knowledge, with a lofty intellectual attitude, pattern of systematic thinking, logical and integrated. In the field of research, Department of Mechanical Engineering has a goal to contribute and play a role in the development of mechanical science and technology and a continuous intake of the educational process. While the field of devotion and service to the community, aims to provide ideas and direct involvement in quality improvement and enhancement of community and industry.

To answer the demand of graduate academic programs that have the character of leadership and excellence in academic and professionalism in the field of Mechanical Engineering, both at the
level of Bachelor, Master, or PhD, the Department of Mechanical Engineering, developed the design of competency-based academic curriculum is implemented through the student centered teaching activity (student centered learning). According to the degree, in the curriculum design the research activity become the major aspect in the Doctoral Degree.

In the 2012 curriculum design, the integration of the design between bachelor degree, master degree and doctoral degree curriculum has been pursued, so it is possible for a student with an excellent academic record to take courses from a higher degree (Master and Doctoral) by using the credit transfer regulation through the Fast Track Program.

A more detailed explanation of each of the courses organized by The Mechanical Engineering and Marine Engineering Study Program, the description of the main academic competence, and other supporters of the graduates of each program of study, are given in the following section.

Vision and MISSION

Vision
“Become the center of the excellent research and education service in Mechanical Engineering”

Mission
“To conduct research and research-based education for the development of science and technology in the field of mechanical engineering, and to conduct research and education and use it to improve the quality of life and humanity”

Head of Department:
Dr. Ario Sunar Baskoro, ST., MT., M.Eng

Vice Head of Department:
Dr. Agus S. Pamitran, ST., M.Eng

Head of Mechanical Engineering Study Program:
Dr. Ario Sunar Baskoro, ST., MT., M.Eng

Head of Naval Architecture and Marine Engineering Study Program:
Dr. Agus S. Pamitran, ST., MEng

Assistant to Vice Head for Academic Affairs:
Dr. Radon Dhelika, B.Eng, M.Eng

Assistant to Vice Head for Non-Academic Affairs:
Dr.Eng. M. Arif Budiyanto, ST., MT.

Cooperation Relationship Coordinator:
Dr. Yudan Whulanza, ST., MSc.

Research Coordinator:
Sugeng Supriadi, ST., MS.Eng., Ph.D

Venture Coordinator / Director of P2M:
Ardiyansyah, S.T, M.Eng, Ph.D
Head of Laboratory

Head of Mechanical and Biomechanic Design Laboratory:
 Dr. Ir. Wahyu Nirbito, MSME.

Head of Mechanical Technology Laboratory:
 Prof. Dr. Ir. Danardono A.S., DEA, PE

Head of Thermodynamics Laboratory:
 Prof. Dr. Ir. Yulianto S. Nugroho, MSc, PhD.

Head of Heat Transfer Laboratory:
 Dr. Ir. Engkos A. Kosasih, MT

Head of Fluid Mechanics Laboratory:
 Dr. Ir. Warjito, M.Eng.

Head of Manufacture and Otomatization Laboratory:
 Dr. Ario Sunar Baskoro, ST., MT., M.Eng

Head of Air-conditioning Engineering Laboratory:
 Prof. Dr. Ir. M. Idrus Alhamid

Head of Ship Design Laboratory:
 Prof. Dr. Ir. Yanuar, M.Eng. MSc.

Head of Research Cluster- Kelompok Ilmu (KI)

Head of KI. Energy Conversion:
 Prof. Dr. Ir. Harinaldi, M.Eng

Head of KI. Design, Manufacture and Automation:
 Dr. Ir. Gandjar Kiswanto, M.Eng.

Head of KI. Naval Architecture and Marine Engineering:
 Prof. Dr. Ir. Yanuar, M.Eng., M.Sc

BOARD OF PROFESSOR

1. Prof. Dr. Ir. Adi Suryosatyo adisur@eng.ui.ac.id (Ir. UI, 1996; M.Sc., UTM-Malaysia 1999; Dr., UTM-Malaysia, 2002) Gasification, Power Generation, Wind Power

2. Prof. Dr. Ir. Bambang Sugianto, M.Eng bangsugi@eng.ui.ac.id (Ir. UI, 1985; M.Eng, Hokkaido Univ., Japan, 1991; Dr. Eng, Hokkaido Univ., Japan, 1994) Internal Combustion Engine

3. Prof. Dr. Ir. Budiarso, M.Eng mfmbd@eng.ui.ac.id (Ir. UI, 1977; M.Eng, NUS, 1996, Dr. UI) Fluid Mechanics, Energy System Optimization

4. Prof. Dr. Ir. Gandjar Kiswanto gandjar_kiswanto@eng.ui.ac.id (Ir. UI, 1995; M.Eng, KU Leuven Belgium, 1998; Dr., KU Leuven Belgium, 2003) Intelligent Manufacturing System, Automation, Robotics, Advanced CAD/CAM, Multi-axis Machining

5. Prof. Dr. Ir. Harinaldi, M.Eng harinald@eng.ui.ac.id (Ir. UI, 1992; M.Eng, Keio Univ. Japan, 1997; Dr.Eng, Keio Univ. Japan, 2001) Thermofluids Engineering, Reacted System Fluid Dynamics, Engineering Statistics

6. Prof. Dr. Ir. I Made Kartika Dhiputra, Dipl-Ing dhiputra_made@yahoo.com (Ir. UI, 1977; Dipl.-ing Karlsruhe University, 1983; Dr. UI, 1988) Thermodynamics

7. Prof. Dr. Ir. M. Idrus Alhamid mamak@eng.ui.ac.id (Ir. UI, 1978; Dr. K.U. Leuven Belgium, 1988) Refrigeration and Air Conditioning, Solar Thermal Energy, Energy Conversion

8. Prof. Dr.-Ing Nandy S. Putra nandyputra@eng.ui.ac.id (Ir. UI, 1994; Dr.-Ing. Universität der Bundeswehr Hamburg Germany, 2002) Heat Transfer, Energy Conversion

9. Prof. Dr. Ir. R. Danardono Agus S., DEA danardon@eng.ui.ac.id (Ir. UI, 1984; DEA Ecole Centrale de Lyon, 1989; Dr. Univ. d’Orleans France, 1993) Engineering Drawing, Automotive Engineering

10. Prof. Dr. Ir. Raldi Artono, DEA koestroer@eng.ui.ac.id (Ir. UI, 1978; DEA Univ.de Poitier, 1980; Dr. Univ. Paris XII France, 1984) Heat Transfer

11. Prof. Dr. Ir. Tresna P. Soemardi tresdi@eng.ui.ac.id (SE. UI, 1987; Ir. ITB, 1980; MSi UI, 1985; Dr. Ecole Centrale de Paris France, 1990) Product Design, Composite

12. Prof. Dr-Eng. Ir. Yanuar, M.Eng., MSc yanuar@eng.ui.ac.id (Ir. UI, 1986; M.Eng. Hiroshima Univ.
Japan, 1992; MSc Tokyo Metropolitan Univ. 1996; Dr. Eng. Tokyo Metropolitan Univ. Japan, 1998)
Fluid Mechanics, Ship Resistance and Propulsion
13. **Prof. Dr. Ir. Yulianto S. Nugroho, M.Sc** yulianto@eng.ui.ac.id (Ir. UI, 1992; MSc Leeds Univ., UK, 1995; Ph.D. Leeds Univ., UK, 2000)
Energy and Combustion Engineering, Spontaneous Coal Combustion, Fire Safety Engineering
14. **Prof. Dr. Nasruddin** nasruddin@eng.ui.ac.id (ST, UI, 1995; M.Eng, KU Leuven Belgium, 1998; Dr.-Ing, RWTH-Aachen, 2005)
Refrigeration Engineering, Energy Conversion, Energy System Optimization
15. **Prof. Dr. Ir. Sunaryo** naryo@eng.ui.ac.id (Ir. UI, 1981; Dr., Strathclyde Univ. Scotland, 1992)
Manajemen Produksi Kapal, Tata Galangan Kapal, Teknik Pembangunan Kapal

INTERNATIONAL ADJUNCT PROFESSOR

Prof. Dr. Tae Jo Ko
tjko@yu.ac.kr (BSc. Pusan National University; MSc. Pusan National University; Ph.D Pohang Institute of Technology)
Micromachining, Nontraditional Manufacturing, Machine Tools

Prof. Dr. Keizo Watanabe
keizo@tmu.ac.jp (MSc. Tokyo Metropolitan University, 1970; Dr-Eng. Tokyo Metropolitan University, 1977)
Drag Reduction, Fluid Mechanics

Prof. Dr. Kiyoshi Saito
saito@waseda.jp (B.Eng. Waseda Univ, 1992; M.Eng. Waseda Univ, 1994; Dr.Eng. Waseda Univ, Japan, 1997)
Heat Pump, Refrigeration & Air Conditioning

FULL-TIME FACULTY

Agung Shamsuddin
ashamsuddin@eng.ui.ac.id (ST. UI, 2004; MSEng. Yeungnam Univ., 2007; Ph.D - Yeungnam Univ., 2015)
Microfabrication, Manufacturing Engineering

Agus Sunjarianto Pamitran
pamitran@eng.ui.ac.id (ST, UI, 1999; M.Eng. Chonnam University, 2004; Dr. Chonnam University, 2009)
Multiphase Flow, Refrigeration

Ahmad Indra Siswantara
a_indra@eng.ui.ac.id (Ir. UI, 1991; Ph.D, UTM - Malaysia, 1997)
Computational Fluid Dynamics (CFD), Fluid Mechanics

Ardiyansyah
ardiyansyah@eng.ui.ac.id (ST. UI, 2002; MEng. Chonnam Univ. 2007; Ph.D, Oklahoma State Univ, USA, 2015)
Heat Transfer, Refrigeration

Ario Sunar Baskoro
ario@eng.ui.ac.id (ST. UI, 1998; MT. UI 2004; MEng - Keio University 2006; Dr., Keio Univ, 2009)
Welding Engineering, Robotics, Mechatronics

Engkos Achmad Kosash
kosri@eng.ui.ac.id (Ir. UI, 1991; MT. ITB, 1996; Dr. UI, 2006)
Heat Transfer, Drying Engineering, Numerical Method, Control Engineering

Firman Ady Nugroho
firman_ady@eng.ui.ac.id (ST. UI, 2011; MT. UI 2013)
Konstruksi Kapal, Material Kapal

Gatot Prayogo
gatot@eng.ui.ac.id (Ir. FTUI, 1984; M.Eng Toyohashi Univ. of Technology-Japan, 1992; Dr. UI, 2011)
Fracture Mechanics, Strength of Materials

Gerry Liston Putra
gerry@eng.ui.ac.id (ST. UI, 2011; MT. UI, 2013; Cand Doctor, Kyushu Univ, Japan)
Ship Material
Gunawan
gunawan_kapal@eng.ui.ac.id (ST, UI, 2010; MT, UI, 2012; Cand. Doctor - Hiroshima Univ. Japan),
Ship Machinery, Resistance and Propulsion System

Hadi Tresno Wibowo
hadi.tresno@yahoo.com (Ir, UI, 1982; MT, UI, 2010) Ship Structure, Machining Process

Hendri Dwi Saptioratri Budiono
hendri@eng.ui.ac.id (Ir, UI, 1985; M.Eng, Keio Univ. Japan, 1992; Dr. UI, 2014) Mechanical
Design, Design for Manufacture and Assembly

Henky Suskito Nugroho
gagah@eng.ui.ac.id (Ir, UI, 1987; MT, UI; Dr, UI, 2014) Manufacturing System Design, Manufactur-
ing Performance Assessment & Improvement

Imansyah Ibnu Hakim
imansyah@eng.ui.ac.id (Ir, UI, 1993; M.Eng. Kyushu Univ., 2000; Dr. UI, 2012) Heat Transfer,
Energy Conversion

Jos Istiyanto
josist@eng.ui.ac.id (ST, UI, 1998; MT, UI, 2004; Dr. Yeungnam Univ, 2012) CAD/CAM, STEP-
NC, Microfabrication

Mohammad Adhitya
madhitya@eng.ui.ac.id (ST, UI, 2000; MSc FH Offenburg, 2004; Doctor - Technische Universi-
tät Braunschweig, 2017) Dynamic, Otomotive System

Prof. Nasruddin
nasruddin@eng.ui.ac.id (ST, UI, 1995; M.Eng, KU Leuven Belgium, 1998; Dr.-Ing, RWTH-

Radon Dhelika
radon@eng.ui.ac.id (B.Eng. Nanyang Tech. Univ., 2008; M.Eng. Tokyo Inst. of Tech., 2012;
Dr.Eng. Tokyo Inst. of Tech., 2015) Electrostatics, Electromechanical System

Sugeng Supriadi
sugeng@eng.ui.ac.id (ST, UI, 2004; MEng, Yeungnam Univ. 2007; Dr - Tokyo Metropolitan
Univ, 2012) Microfabrication, Fabrication Process Control, Engineering Materials

Wahyu Nirbito
bito@eng.ui.ac.id (Ir, UI, 1982; MSME, Univ. of Minessota USA, 1987; Dr. UI, 2011) Vibration
Engineering, Gas Turbine, Condition Monitoring

Warjito
warjito@eng.ui.ac.id (Ir, UI, 1988; M.Eng, Hokkaido Univ., 1999; Dr. Eng, Hokkaido Univ.,
2002) Fluid Mechanics, Piping System, Maintenance Engineering

Yudan Whulanza
yudan@eng.ui.ac.id (ST, 2000; M.Sc. FH-Aachen, 2005; Dr. Univ. Pisa, 2011) Microfabrica-
tion

PART-TIME (NON-TENURED) FACULTY

Prof. Dr. Ir. Bambang Suryawan
suryawan@eng.ui.ac.id (Ir, UI, 1972; MT, UI, 1994; Dr., UI, 2004) Thermofluid

Agung Subagio
agsub@eng.ui.ac.id (Ir, UI, 1977; Dipl.Ing. Karlsruhe- Germany,1981) Power Generation

Budihardjo
budihardjo@eng.ui.ac.id (Ir, UI, 1977; Dipl.Ing. Karlsruhe, 1981; Dr., UI, 1998)
Refrigeration Engineering, Air Dryer, Thermo Dynamics

Marcus Alberth Talahatu
marcus@eng.ui.ac.id (Ir. Unhas, 1982; MT, UI, 2003; Dr. UI, 2013)
Merancang Kapal, Menggambar Kapa

Muhammad Arif Budiyanto
arif@eng.ui.ac.id (ST, UI, 2011; MT, UI, 2012; Dr., Kyushu University, 2016) Energy
Management for Maritime Industry

Ridho Irwansyah
ridho@eng.ui.ac.id (ST, UI, 2010; MT.UI, 2012; Dr. - Universität der Bundeswehr
München) Heat Transfer Engineering, Non-intrusive Temperature and Flow
Measurement
Rusdy Malin
rusdi@eng.ui.ac.id (Ir. UI, 1980; MME, UTM Malaysia, 1995) Building Mechanical System, Ventilation System

Tris Budiono M
tribuma@eng.ui.ac.id (Ir. UI, 1980; MSi, UI, 1996) Engineering Drawing, Engineering Materials
1.5.3. DEPARTMENT OF ELECTRICAL ENGINEERING

GENERAL
The Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia was established at the same time with the establishment of Faculty of Engineering on July 17th, 1964. Even though the classes had been started since October 17th, 1964. At the beginning of the establishment, the Department of Electrical Engineering (DTE) was named as “Jurusan Listrik” consisted of two fields of studies: Electrical Power and Electronics & Telecommunication. Since 1984, “Jurusan Listrik” has been changed to “Jurusan Elektro”, which has been named again as The Department of Electrical Engineering in 2004. Initially there are five streams available in this department, namely: (1) Electrical Power Engineering, (2) Electronics Engineering, (3) Telecommunication Engineering, (4) Control Engineering, (5) Computer Engineering. Since 2006, computer engineering stream became a new study program: Computer Engineering Study Program (CESP) in the Department. In 2016, DTE added a new specialization, Biomedical Engineering. In 2017, based on Rector’s Decree No. 0230 / SK / R / UI / 2017, Master Program in Biomedical Technology which is previously held under the University Post Graduate Program was transferred under DTE, and in 2018 DTE opened the Undergraduate Biomedical Engineering Study Program.

THE OBJECTIVE OF EDUCATION
Bachelor of Engineering who is able to design hardware and / or software as the solution of a problem in the field of electrical engineering in accordance with professional ethics.

VISION AND MISSION
The department has the vision to become a high standard of excellence in education and research in the field of electrical engineering. In order to achieve such vision, the department has defined its mission to produce Electrical Engineering graduates who are able to compete beyond the national labor market. The graduates will be capable to respond to the vast growing engineering technology development though the support of excellent educational process, excellent management and organization, international standard of competence of the teaching staff and international reputation in specific research activities.

THE TARGETS
Bachelor of Electrical Engineering
1. Able to design hardware.
2. Able to design software.
3. Able to handle general issues and specific in electrical engineering.
4. Able to apply the basic principles of mathematics, physics, and statistics in solving electrical engineering.
5. Capable of critical thinking, creative, and innovative and have the intellectual curiosity to solve problems at the level of the individual and the group.
6. Able to identify varieties of entrepreneurial efforts that are characterized by innovation and self-reliance based on ethics.
7. Able to use the language both spoken and written in the Bahasa Indonesia and English for academic or non-academic activities.
8. Able to provide alternative solutions to problems that arise in the environment, society, nation, and country.
9. Able to utilize information communication technology (ICT).

Bachelor of Computer Engineering
1. Able to design system, component, and process based on needs in a variety of areas of life.
2. Able to design information networks.
3. Able to design a computer-based system.
4. Able to make algorithm and implement it into programming.
5. Able to apply the basic principles of mathematics, physics, and statistics in solving computer
6. Able to use the language both spoken and written in the Bahasa Indonesia and English for academic or non-academic activities.
7. Have integrity and are capable of critical thinking, creative, and innovative and have the intellectual curiosity to solve problems at the level of the individual and the group.
8. Able to utilize information technology communication.
9. Able to provide alternative solutions to problems that arise in the environment, society, nation, and country.
10. Able to identify varieties of entrepreneurial efforts that are characterized by innovation and self-reliance based on ethics.

Master of Electrical Engineering

1. Able to model electrical engineering system into mathematical equations
2. Able to formulate the problem solving in electrical engineering with the proper research methods
3. Able to produce innovative independent scientific work
4. Able to apply concepts of professional management in the field of electrical engineering

ELECTRICAL ENGINEERING STAFFS

Head of Department:
Dr. Ir. Aries Subiantoro, M.Sc

Head of Electrical Engineering Study Program
Dr. Ir. Aries Subiantoro, M.Sc

Head of Computer Engineering Study Program
Dr. Muhammad Salman, ST., MIT.

Head of Biomedic Engineering Study Program
Dr. Basari, S.T., M.Eng.

Vice Head of Department:
Dr. Abdul Halim, M.Eng

HEAD OF LABORATORY

Head of High Voltage and Electrical Measurement Laboratory:
Ir. Agus R. Utomo M.T.

Head of Electrical Power Conversion Laboratory:
Ir. Chairul Hudaya S.T., M.Eng., Ph.D., IPM.

Head of Electrical Power System Laboratory:
Ir. I Made Ardita, MT.

Head of Electronics Laboratory:
Taufiq Alif Kurniawan M.T., M.Sc.

Head of Control Laboratory:
Dr. Abdul Muis S.T., M.Eng.

Head of Digital Laboratory:
I Gde Dharma Nugraha S.T., M.T.

Head of Telecommunication Laboratory:
Ajib Setyo Arifin S.T., M.T., Ph.D

Head of Optoelectronics Laboratory:
Ir. Purnomo Sidi Priambodo M.Sc., Ph.D

Head of Computer Networks Laboratory:
Dr. Muhammad Salman, ST., MIT.

MAILING ADDRESS
Departemen Teknik Elektro FTUI
Kampus Baru UI, Depok 16424.
Tel. (021) 7270078
Fax. (021) 7270077
e-mail: elektro@ee.ui.ac.id
http://www.ee.ui.ac.id

BOARD OF PROFESSORS

1. Prof. Dr. Ir. Harry Sudibyo S, DEA., harisudi@ee.ui.ac.id (Ir., Universitas Indonesia, 1979; DEA., Univ. Paris VI, 1984; Dr. Ing., Univ. Paris VI, France, 1987; Prof., UI, 2007) Microelectronics & VLSI design.

2. Prof. Ir. Rinaldy Dalimi, M.Sc, Ph.D., rinaldy@ee.ui.ac.id (Ir., Universitas Indonesia, 1980; M.Sc., Michigan State Univ., USA, 1989; Ph.D., Virginia Tech., USA, 1992; Prof., UI, 2007) Electrical power system analysis, energy management.

3. Prof. Dr. Ir. Eko Tjipto Rahardjo, M.Sc., eko@ee.ui.ac.id (Ir., Universitas Indonesia, 1981; M.Sc., University of Hawaii, USA, 1989; Ph.D, Saitama University, Japan, 1996; Prof., UI, 2005) Electromagnetic, antenna and wave propagation, microwave.

5. Prof. Dr. Ir. Rudy Setiabudy, DEA, rudy@ee.ui.ac.id (Ir., Universitas Indonesia, 1982; DEA, INPG Grenoble, France, 1987; Dr., Montpellier II USTL, France, 1991; Prof., UI, 2008) Electrical material technology, electrical measurement.

6. Prof. Dr. Ir. Dadang Gunawan, M.Eng, guna@ee.ui.ac.id (Ir., Universitas Indonesia, 1983; M.Eng., Keio University, Japan, 1989; Ph.D., Tasmania University, Australia, 1995; Prof., UI, 2004) Signal processing and compression, multimedia communication.

7. Prof. Dr. Ir. NR. Poespawati, MT., IPM pupu@ee.ui.ac.id (Ir., Universitas Indonesia, 1985, MT., Universitas Indonesia, 1997, Dr., Elektro FTUI, 2004; Prof., UI, 2008) Solar cell devices, laser.

8. Prof. Dr. Ir. Iwa Garniwa, MK., MT., iwa@ee.ui.ac.id (Ir., Universitas Indonesia, 1987; MT., Universitas Indonesia, 1998; Dr., Elektro FTUI, 2003; Prof., UI, 2009) High voltage and current, electrical materials.

9. Prof. Dr.-Ing. Ir. Kalamullah Ramli, M.Eng., k.ramli@ee.ui.ac.id (Ir., Universitas Indonesia, 1993; M.Eng., Univ. of Wollongong, Australia, 1997; Dr.-Ing, Univ. Duisburg-Essen, Germany, 2003, Prof., UI, 2009) Embedded systems.

11. Prof. Dr. Ir. Fitri Yuli Zulkifli, ST., M.Sc yuli@eng.ui.ac.id (ST., Universitas Indonesia, 1997; M.Sc., Univ. Karlsruhe, Germany, 2002, Dr., Universitas Indonesia, 2008) Antenna and microwave communications.

INTERNATIONAL ADJUNCT PROFESSORS

Prof. Dr. Fumihiko Nishio, fnishio@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Snow and Ice), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.

Prof. Josaphat Tetuko Sri Sumantyo, Ph.D, jjtetukoss@faculty.chiba-u.jp (Fundamental Research Field of Remote Sensing: Microwave Remote Sensing), Center for Environmental Remote Sensing (CEReS), Chiba University, Japan.

Prof. Dr. James-Holm Kennedy, jhk@pixi.com (Electronic & optical beam management devices, micromechanical sensors, chemical & biochemical sensors, novel electronic devices, force sensors, gas sensors, magnetic sensors, optical sensors.), University of Hawaii, USA.

Prof. Dr.-Ing. Axel Hunger, axel.hunger@uni-due.de (Adaptive e-Learning, adaptive instructional
systems, e-course and its applications, pedagogical analyses of on-line course), University of Duisburg Essen, Germany.

Prof. Dr. Koichi Ito (Printed Antenna, Small Antenna, Medical Application of Antenna, Evaluation of Mutual Influence between Human Body and Electromagnetic Radiations), Chiba University, Japan.

Prof. Masaaki Nagatsu, tmnagat@ipc.shizuoka.ac.jp, (Plasma Science and Technology) Research Institute of Electronics, Shizuoka University

Prof. Michiharu Tabe, tabe.michiharu@shizuoka.ac.jp, (Nano Devices) Research Institute of Electronics, Shizuoka University

Prof. Hiroshi Inokawa, inokawa06@rie.shizuoka.ac.jp, (Nano Devices), Research Institute of Electronics, Shizuoka University

Prof. Hidenori Mimura, mimura.hidenori@shizuoka.ac.jp, (Vacuum Electron Devices) Research Institute of Electronics, Shizuoka University

FULL-TIME FACULTY

Abdul Halim, ahalim@ee.ui.ac.id (Bachelor, Keio Univ., Japan, 1995; M.Eng., Keio University, Japan, 1997; D.Eng., Tokyo Institute of Technology, Japan, 2000) control system engineering, mathematical modeling and simulation, data science

Abdul Muis, muis@ee.ui.ac.id (ST., Universitas Indonesia, 1998; M.Eng., Keio Univ., 2005; Dr., Keio Univ., Japan 2007) Robotics, control software engineering.

Agus Rustamadji Utomo (Ir., Universitas Indonesia, 1985; MT., Universitas Indonesia, 2000) Electrical power & energy system.

Agus Santoso Tamsir, tamsir@ee.ui.ac.id (Ir., Universitas Indonesia, 1987; MT., Universitas Indonesia, 1996; Dr., UKM, Malaysia 2008) Optical communication, III-V compound devices, MEMS.

Aji Nur Widyanto, aji.n.widyanto@gmail.com (ST., Universitas Indonesia, 2004; MT., Universitas Indonesia, 2009) Electrical power measurement.

Ajib Setyo Arifin, ajib@ee.ui.ac.id (ST., Universitas Indonesia, 2009; MT., Universitas Indonesia, 2011) Telecommunication, information theory, wireless sensor network.

Alfan Prasekal, Alfanpresekal@gmail.com (ST., Universitas Indonesia, 2014; M.Sc(DIC), Imperial College London, 2016) Secure Software System / Cyber Security

Amien Rahardjo, amien@ee.ui.ac.id (Ir., Universitas Indonesia, 1984; MT., Universitas Indonesia, 2004) Electromagnetic, electric power energy conversion.

Anak Agung Putri Ratna, ratna@eng.ui.ac.id (Ir., Universitas Indonesia, 1986; M.Eng., Waseda University. Japan, 1990; Dr., FTUI, 2006) Computer network, web-based information system.

Arief Udhiarto, arief@ee.ui.ac.id (ST., Universitas Indonesia, 2001; MT., Universitas Indonesia, 2004; Dr.Eng, Shizuoka University Japan) Nanoelectronics Devices, Organic Electronic Devices

Aries Subiantoro, biantoro@ee.ui.ac.id (ST., Universitas Indonesia, 1995; M.Sc. Univ. Karlsruhe, Germany, 2001; Dr. UI, 2013) Expert control system, system identification.

Basari, basyarie@ee.ui.ac.id (ST., Universitas Indonesia, 2002; M.Eng., Chiba University, 2008; D.Eng., Chiba Univ., Japan, 2011) Antenna for Biomedical applications (Communications, Imaging Treatment), Microwave Engineering, Mobile Satellite Communications.

Budi Sudianto, budi@ee.ui.ac.id (ST., Universitas Indonesia, 2001; MT., Universitas Indonesia, 2005; Dr, UDE Germany, 2017) High voltage and current, electrical measurement)

Catur Aprino, catur@eng.ui.ac.id (ST., Universitas Indonesia, 2009; MT., Universitas Indonesia, 2011, Ph.D., Shizuoka University, Japan, 2015, Dr.,Universitas Indonesia, 2016) Antenna, microwave, terahertz technology.

Chairul Hudaya, c.hudaya@eng.ui.ac.id (ST., Universitas Indonesia, 2006; M.Eng., Seoul National University, 2009; Ph.D., Korea Institute of Science and Technology - University of Science and Technology, Korea, 2016; IPM, 2016) Electric materials, electrical power systems, energy storage and conversion, energy management.

Dodi Sudiana, dodi.sudiana@ui.ac.id (Ir., Universitas Indonesia, 1990; M.Eng., Keio University, Japan, 1996; D.Eng., Chiba Univ., Japan, 2005) Image processing, remote sensing.

Eko Adhi Setiawan, ekoas@ee.ui.ac.id (Ir., Elektro Trisakti University; MT, Universitas Indonesia, 2000; Dr.-Ing., Universität Kassel, Germany, 2007) Virtual power plant, electrical power supply, electrical energy conversion.

Faiz Husnayain, S.T., M.T., M.Sc. faiz.husnayain@gmail.com (S.T., Universitas Indonesia, 2010; MT, Universitas Indonesia,2013; M.Sc. NTUST, 2013).
F. Astha Ekadiyanto, fasthae@yahoo.com (ST., Universitas Indonesia, 1995; M.Sc., Univ. Duisburg Essen, Germany, 2005) Distributed Peer-to-Peer Systems, Content/Data Centric Network, Cyber Physical Systems.

Feri Yusiviar, yusiviar@ee.ui.ac.id (Ir., Universitas Indonesia, 1992; M.Eng. Waseda University, Japan, 2000; D.Eng., Waseda University, Japan, 2003) Control systems, motor control.

Fitri Yuli Zulkifli, yul@eng.ui.ac.id (ST., Universitas Indonesia, 1997; M.Sc., Univ. Karlsruhe, Germany, 2002, Dr., Universitas Indonesia, 2008) Antenna and microwave communications.

Gunawan Wibisono, gunawan@ee.ui.ac.id (Ir., Universitas Indonesia, 1990; M.Eng., Keio Univ., 1995; Ph.D. Keio Univ., Japan, 1998) Coding & wireless communications, optical communications, telecommunication regulation.

I Gde Dharma Nugraha, i.gde@eng.ui.ac.id (ST., Universitas Indonesia, 2008; MT., Universitas Indonesia, 2009) Embedded Systems Web Application Technology, Database optimization

I Made Ardita, made@eng.ui.ac.id (Ir., Universitas Indonesia, 1985; MT., Universitas Indonesia, 2000) Electro-mechanical conversion, power system planning.

Mia Rizkinia, mia@ee.ui.ac.id (ST., Universitas Indonesia, 2008; MT., Universitas Indonesia, 2011) Image processing, remote sensing.

Muhammad Suryanegara, suryanegara@gmail.com, m.suryanegara@ui.ac.id (ST., Universitas Indonesia, 2003; M.Sc., UCL, UK, 2004; Dr., Tokyo Institute of Technology, Japan, 2011; IPM, 2016) Telecommunication, Mobile Wireless, Technological Innovation and Policy.

Muhammad Asvial, asvial@ee.ui.ac.id (Ir., Universitas Indonesia, 1993; M.Eng., Keio Univ., Japan, 1998; Ph.D., Surrey Univ. UK, 2003) Spread spectrum, mobile communication, multimedia system, satellite communication.

Muhammad Salman, salman@ee.ui.ac.id (ST., Universitas Indonesia, 1995; M.Info Tech, Monash University, Australia, 2002;Dr. Universitas Indonesia,2015) Computer networks, multimedia.

Prima Dewi Purnamasari, prima.dp@ui.ac.id (ST., Universitas Indonesia, 2006; MT., Universitas Indonesia, 2009; M.Sc., Univ. Duisburg Essen, Germany, 2008; Dr, Universitas Indonesia, 2017) Distributed system, computer supported collaborative work, EEG Pattern Recognition

Purnomo Sidi Priambodo, pspriambodo@ee.ui.ac.id (Ir., Elektro UGM, 1987; M.Sc., Oklahoma State Univ., 1996; Dr., Texas-Arlington, USA, 2003) Semiconductor laser, photonic, physics.

Retno Wigajatri Purnamaningsih, retno@ee.ui.ac.id (Ir., ITB, 1985; MT., Opto PPSUI, 1992; Dr., Universitas Indonesia, 2006) Photonic devices, Optoelectronic Sensor System

Ruki Harwahyu, ruki.hwyu@gmail.com (S.T., M.T., M.Sc., Ph.D. (S.T., Universitas Indonesia, 2011; M.T. Universitas Indonesia, 2013; M.Sc., National Taiwan University of Science and Technology, 2013; Ph.D., National Taiwan University of Science and Technology, 2018)

Taufiq Alif Kurniawan, taufiq.alif@ui.ac.id (ST., Universitas Indonesia 2009; M.Sc.Eng, NTUST, Taiwan, 2011) Radio frequency integrated circuit, analog integrated circuit and VLSI.

Tomy Abuzairi, tomy@ee.ui.ac.id (ST., Universitas Indonesia 2009; M.Sc., NTUST, Taiwan, 2012; Ph.D., Shizuoka University,2016) Thin film nano-technology, optoelectronic device, biotechnology device.

Wahidin Wahab, wahidin@ee.ui.ac.id (Ir., Universitas Indonesia, 1978; M.Sc., UMIST, 1983; PhD, UMIST, UK, 1985) Control engineering, robotics & automation.

Yan Maraden Sinaga, maradens@eng.ui.ac.id (ST., Universitas Indonesia, 2004; MT., Universitas Indonesia, 2009; M.Sc., Univ. Duisburg Essen, Germany, 2009) Computer Networks and Protocols, Artificial Intelligence, Computer Vision

BOARD OF EMIRITUS FACULTY

Prof. Dr. Ir. Djoko Hartanto, M.Sc., djoko@ee.ui.ac.id (Ir., Universitas Indonesia, 1971; M.Sc., University of Hawaii, USA, 1989; Dr., Elektro FTUI, 1993; Prof., UI, 1996) Microelectronic devices, sensor devices.

Prof. Dr. Ir. Bagio Budiarjo, M.Sc., bbdui@ee.ui.ac.id (Ir., Universitas Indonesia, 1972; M.Sc., Ohio State Univ., USA, 1980; Dr., Elektro FTUI, 2002; Prof., UI, 2005) Computer architecture, protocol engineering, pervasive computation.

Prof. Dr. Ir. Djamhari Sirat, M.Sc., djsirat@ee.ui.ac.id (Ir., Universitas Indonesia, 1972; M.Sc., UMIST; PhD, UMIST, UK, 1985) Telecommunication regulation.

Dr. Ir. Ridwan Gunawan, M.T., ridwan@eng.ui.ac.id (Ir., Universitas Indonesia, 1978; MT., Universitas Indonesia, 1994; Dr., Universitas Indonesia, 2006) Electrical power transmission and reliability.
Dr. Uno Bintang Sudibyo, DEA uno@ee.ui.ac.id (Ir., Universitas Indonesia, 1972; DEA, INPG Grenoble, France, 1987; Dr., Univ. Montpellier II USTL, France, 1991) Electrical power conversion.
Ir. Endang Sriningsih, MT, endangs@ee.ui.ac.id (Ir., Universitas Indonesia, 1976; MT., Universitas Indonesia, 1995) Digital system

PART-TIME FACULTY
Boma Anantasatya Adhi, S.T., M.T. (S.T., Universitas Indonesia, 2010; MT, Universitas Indonesia, 2013)
Muhammad Firdaus Syawalludin Lubis, S.T., M.T. (S.T., Universitas Indonesia, 2010; M.T., Universitas Indonesia, 2013)
Victor Widiputra, S.T., M.T. (S.T., Universitas Indonesia, 2014; M.T., Universitas Indonesia, 2015) Power System
Diyanatul Husna (ST., Universitas Indonesia, 2015; MT., Universitas Indonesia, 2016) Network Security, Big Data
1.5.4. DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

GENERAL

Department of Metallurgy was originally established as a study program under Faculty of Engineering, Universitas Indonesia in 1965. Due to the lack of qualified lecturers and infrastructure, the first academic activity was only attended by 25 students. For almost 6 years since 1969, the department had stopped accepting new students and focusing the activity to the existing students. In 1975, the department began to accept students again, and in the same year produced the first 7 graduates. Ever since, the department kept continuing and developing its academic activities.

As the science and technology progress, especially for the engineering materials-based industries, also considering the availability of resources within the department, Department of Metallurgy consolidated its resources and studied the need to add “materials” to the name. Following the idea, on November 5th 2002, Rector of Universitas Indonesia then decreed Department of Metallurgical and Materials Engineering as one of the departments within the Faculty of Engineering.

The curriculum in Metallurgical and Materials Engineering is structured to address problems associated with the metallurgy and design of materials and materials processing to meet the specific needs for a variety of industries. Emphasis is on the basic sciences and principles of engineering with applications of these principles to metallurgical and materials behaviors. The students must obtain a broad foundation in chemistry, physics, and mathematics, which is applied in engineering courses. Within metallurgical and materials engineering courses, students obtain a foundation in the major areas of metallurgical and materials science and to the major classes of engineering materials, which is applied in courses in materials properties and selection, computational methods and in capstone design course. Students gain in-depth experience in another engineering discipline through coordinated technical elective sequences.

In 2018, the department has totally graduated almost 2500 graduates with a degree in bachelor of engineering, 200 graduates with a degree in master of engineering, and 30 graduates with a doctoral degree. At the beginning of first semester of 2018/2019, the department has actively 500 undergraduate students from regular and parallel program, 57 students from undergraduate international program, 71 master students, and 24 doctoral students. Considering the high demand to produce qualified graduates and following current trends toward the global competition, Department of Metallurgical and Materials Engineering is committed to continuously improve its academic activities including teaching and learning process as well as research activities. As a part of national education system, which has the objective to develop the intellectual life of the nation through human resources development by conducting three main activities known as tridharma (“three duties”), the department is committed to carry out higher level educations, to conduct scientific research, and to provide community services.

During its development stage, the Department of Metallurgical and Materials Engineering has achieved several milestones, such as:

- Grade A Accreditation for Undergraduate Program from National Accreditation Board, Ministry of National Education (Year 2013 and 2018).
- Grade A Accreditation for Master Program from National Accreditation Board, Ministry of National Education (Year 2014 - 2019)
- Grade A Accreditation for Doctoral Program from National Accreditation Board, Ministry of National Education (Year 2012 and 2017)
- Establishment of "Dual-degree" International Program with Monash University (2003); Queensland University of Technology, Australia; and Duisburg Essen, Germany
- Grant awards from the Government of Republic Indonesia for:
Internationalization of academic and research activities in information technology, energy and nonmaterial - PHKI (2010-2013)
- Establishment of Center for Materials Processings and Failure Analysis (CMPFA), a venture unit to support the materials engineering community and industry (2001).
- Intensive academic and research collaborations with international institutions, such as Monash University (Australia), Kagoshima University (Japan), Nanyang Technological University (Singapore), Yeungnam University and KITECH (Korea) (since 2006).
- Materials Testing Laboratory was accredited ISO 17025 (2011)

Contact Address
Department of Metallurgical and Materials Engineering, Faculty of Engineering,
Universitas Indonesia
Kampus UI Depok 16424, Indonesia
Phone: +62-21-7863510
Fax: +62-21-7872350
Email: info@metal.ui.ac.id
http://www.metal.ui.ac.id

VISION AND MISSION OF THE DEPARTMENT OF METALLURGICAL & MATERIALS ENGINEERING

Vision
In line with the vision and mission of Universitas Indonesia and Faculty of Engineering, the vision of the Department of Metallurgical and Materials Engineering is “As a research-based center of excellence, as well as referral center and solution provider for problem in the field of metallurgical and material engineering both nationally and globally.”

Mission
To achieve such a vision, Department of Metallurgical and Materials Engineering put its mission:
- Providing broad access to education and research for the public and industry society
- Producing high quality graduates with strong academic background and comprehensive skills in process technology, material engineering and design, and are capable of playing active and dynamic role in national, regional and international communities
- Conducting quality Tridharma (three duties) relevant to the national and global challenges
- Creating conducive academic environment to support the vision of Department of Metallurgical and Materials Engineering

STAFF OF THE DEPARTMENT OF METALLURGICAL & MATERIALS ENGINEERING

Head of Department
Prof. Dr. Ir. Akhmad Herman Yuwono, M.Phil.Eng

Associate Chair
Nofrijon Sofyan, Ph.D

Head of Venture Unit
Dr. Deni Ferdian, ST., M.Sc

HEAD OF LABORATORY

Head of Chemical Metallurgy Laboratory:
Muhammad Chalid, S.Si., M.Sc., Ph.D
Head of Physical Metallurgy Laboratory:
Wahyuaji Narotama Putra, ST., MT
Head of Mechanical Metallurgy Laboratory:
Ir. Rahmat Saptono, M.Sc., Ph.D

Head of Processing Metallurgy Laboratory:
Dr. Ir. Donanta Dhaneswara, M.Sc

Head of Metallography & Heat Treatment Laboratory:
Dr. Ir. Myrna Ariati, M.Si

Head of Corrosion & Metal Protection Laboratory:
Dr. Ir. Yunita Sadeli, M.Sc

BOARD OF PROFESSORS

1. Prof. Dr. Ir. Eddy Sumarno Siradj, M.Eng., siradj@metal.ui.ac.id (Prof., Ir, UI; M.Eng, University of Birmingham - UK; Dr, University of Sheffield - UK), Metallurgical Eng., Metallurgical Manufacturing Process & Management, Thermo-mechanical Control Process.

2. Prof. Dr. Ir. Johny Wahyuadi Soedarsono, DEA., jwsono@metal.ui.ac.id (Prof., Ir, UI; DEA & Dr., École Européenne de Chimie, Polymères et Matériaux de Strasbourg – France), Metallurgical Engineering, Corrosion & Protection, Metallurgy Extraction, Mineral Processing.

3. Prof. Dr. Ir. Anne Zulfia, M.Phil.Eng., anne@metal.ui.ac.id (Prof., Ir, UI; M.Phil.Eng., & Dr., University of Sheffield - UK), Metallurgical Engineering, Composite Materials & Advance Material.

4. Prof. Dr-Ing. Ir. Bambang Suharno, suharno@metal.ui.ac.id (Prof., Ir, UI; Dr-Ing., RWTH Aachen - Germany), Metallurgical Engineering, Metal Casting and Alloy Design, Iron & Steel Making, Mineral Processing.

5. Prof. Dr. Ir. Bondan Tiara, M.Si., bondan@eng.ui.ac.id (Prof., Ir, UI; M.Si, UI; Dr, Monash University - Australia), Metallurgical Engineering, Metallurgy of Aluminum Alloy, Nano Technology, Materials Processing and Heat Treatment.

6. Prof. Dr. Ir. Dedi Priadi, DEA., dedi@metal.ui.ac.id (Prof., Ir, UI ; D.E.A. & Dr, Ecole des Mines de Paris - France), Metal Forming.

7. Prof. Ir. Muhammad Anis, M.Met., Ph.D., anis@metal.ui.ac.id (Prof., Ir, UI ; M.Met &Ph.D, University Sheffield - UK), Welding Metallurgy and Metallurgy Physic.

8. Prof. Dr. Ir. A. Herman Yuwono, M. Phil. Eng ahyuwono@metal.ui.ac.id (Prof., Ir, UI; M.Phil. Eng, Univ. of Cambridge - UK, PhD, NUS - Singapore), Nanomaterial.

9. Prof. Dr. Ir. Winarto, M.Sc., winarto@metal.ui.ac.id (Prof., Ir, UI; M.Sc (Eng), Technical Univ. of Denmark - Denmark; Ph.D, Univ. of Wales, Swansea - UK), Welding Metallurgy & Technology, Failure Analysis of Materials.

INTERNATIONAL ADJUNCT PROFESSORS

Prof. Kyoo-Ho Kim, School of Materials Science and Engineering, Yeungnam University (Korea), Energy & nano-materials

Prof. Kozo Obara, Department of Nano-structured and Advanced Materials, Kagoshima University (Japan), Energy & nano-materials

Prof. Freddy Y.C. Boey, School of Materials Science and Engineering, National Technological University (Singapore), Nano-materials & Biomedical Engineering

Prof. Philippe Lours, École nationale supérieure des mines d’Albi-Carmaux, (France) Superalloys, aerospace material
FULL-TIME FACULTY

Ahmad Zakiyudin, zakiyuddin.a@gmail.com (ST, Univ. Indonesia, M.Eng., PhD. Chonnam National University, Korea), Advanced Corrosion

Badru'l Munir, bmunir@metal.ui.ac.id (ST, UI, M.Sc. Chalmer University - Sweden, PhD, Yeunghnam University - Korea), Electronic Material

Bambang Priyono, bpriyono@metal.ui.ac.id (Ir, UI; MT, UI, Dr. Candidate, UI), Catalyst Material, Energy Materials.

Deni Ferdian, deni@metal.ui.ac.id (ST, UI; M.Sc, Vrije Universiteit Amsterdam - The Netherlands; Dr, Institut National Polytechnique de Toulouse - France), Failure Analysis, Casting & Solidification, Phase Transformation

Donanta Dhaneswara, donanta.dhaneswara@ui.ac.id (Ir, UI; M.Si, UI; Dr, UI), Metal Casting and Alloy Design, Ceramic Materials and Membran Technology.

Dwi Marta Nurjaya, jaya@metal.ui.ac.id (ST, UI; MT, UI; Dr., UI), Material Characterization and Geo-Polymer Materials

Jaka Fajar Fatriansyah, (S.Si; M.S; UGM, Dr. Tohoku University, Japan) Soft Materials

Muhammad Chalid, chalid@metal.ui.ac.id (SSI, UI, M.Sc, TU Delft - The Netherlands, Ph.D, University of Groningen, The Netherlands), Polymer Technology, Bio-Polymers & Material Chemistry

Myrna Ariati Mochtar, myrna@metal.ui.ac.id (Ir, UI ; MS, UI; Dr, UI), Thermo-Mechanical Treatment & Powder Metallurgy

Nofrijon Sofyan, nofrijon@metal.ui.ac.id (Drs, Universitas Andalas; M.Si, UI; M.Sc, Auburn University - USA; Ph.D, Auburn University - USA), Nanomaterial, Electronic Ceramic

Rahmat Saptono, saptono@metal.ui.ac.id (Ir, UI, M.Sc.Tech, Univ. of New South Wales, Australia, Ph.D, Univ. of Texas Arlington (UTA) - USA), Metal Forming, Mechanical Behaviour of Materials in Design, Manufacture and Engineering Applications

Reza Miftahul Ulum, S.T ., M.T. Univ. Indonesia, Dr.-ing. Universitat Duisberg Essen, Germany, Extractive Metallurgy

Rini Riastuti, riastuti@metal.ui.ac.id (Ir, UI ; M.Sc, University of Manchester Instute of Science & Tech., -UK, Dr, UI), Electro-Cemical & Corrosion.

Sotya Astutiningsih, sotya@metal.ui.ac.id (Ir, UI; M.Eng, Katholieke Universiteit Leuven - Belgium; PhD, UWA - Australia), Mechanical Metallurgy & Geo-polymer.

Sri Harjanto, harjanto@metal.ui.ac.id (Ir, UI, Dr. Eng, Tohoku University - Japan), Chemical Synthesis of Materials, Mineral & Waste Materials Processing, Extractive Metallurgy.

 Wahyuaji Narotama Putra (ST, MT, Ph.D Candidate of Nanyang Technological University - Singapore) Electrical Material

Yudha Pratesa, yudha@metal.ui.ac.id (ST, UI; MT, UI), Biomaterial, Material Degradation & Protection, Chemical Metallurgy

Yunita Sadeli, yunce@metal.ui.ac.id (Ir, UI; M.Sc, University of Manchester Instute of Science & Tech., - UK, Dr, UI), Corrosion & Total Quality Management.

PART-TIME FACULTY

Prof. Ir. Sutopo, M.Sc., Ph.D, sutopo@metal.ui.ac.id (Ir, UI ; M.Sc & Ph.D, University of Wiscounsin - USA), Composite Material & Thermo-metallurgy.

Sari Katili, sari@metal.ui.ac.id (Dra, UI; MS, UI), Chemical Metallurgy.

Alfian Ferdiansyah, alfian@metal.ui.ac.id (ST, Universitas Indonesia; MT., Universitas Indonesia; Dr.-Ing, Freiburg University -Germany) Solar cell materials and renewable energy

Ghiska Ramahdita, ghiska@metal.ui.ac.id (ST., MT., Universitas Indonesia; M.Sc., INSA de Lyon - France Bio-materials and nanostructured materials)
STUDY PROGRAM

- Department of Metallurgical & Materials Engineering manages the course program as follows: Undergraduate Program (S1 Program) of Metallurgical & Materials Engineering.
- Master’s Program (S2 Program) of Metallurgical & Materials Engineering
- Doctoral Program (S3 Program) of Metallurgical & Materials Engineering
1.5.5. DEPARTMENT OF ARCHITECTURE

GENERAL

Department of Architecture at the Universitas Indonesia (formerly known as Architectural Engineering Major) was established in 1965 under the UI Faculty of Engineering (FTUI) in Jakarta (established a year earlier through Presidential Decree No. 76 dated July 17, 1964). In the early days, education at the FTUI Architectural Engineering was done through a system of per-level or per-year full professional education. The average completion time was 7 years with an Engineer (Ir.) degree. Then in 1978, the Semester Credit System (SKS) went into effect with a minimum number of acquired semester credit units of 160 credits. The average duration of the study was five years, and the title was still Engineer (professional education). Since 1996, a four-year bachelor’s education program was implemented with a total of 144 credits, producing an academic degree Bachelor of Engineering (ST). In the same year, after 31 years of existence, Architecture Program of Study at UI received its decree by the Directorate General for Higher Education No. 215/DIKTI/ KEP/1996 dated July 11, 1996.

In 2000, Department of Architecture streamlined the 1996 curriculum by publishing the 2000 Curriculum along with the application of problem-based learning method, collaborative and student-centered learning. The 2000 Curriculum stated clearly, that the direction for bachelor’s architecture education is pre-professional.

In the same year, Master of Architecture program was established with 2 streams, namely Architectural Design and Urban Design. Over the years, the master’s program has grown into 6 streams, in addition to the two already mentioned earlier, the specialization program of Urban Housing and Settlements, Real Estate, History and Theories of Architecture and Urbanism and Building Technology and Sustainability were established. At this time, through the new curriculum (2012 Curriculum), the six specializations were streamlined into three which are:

- Creative process stream: Architectural Design, Urban Design, Property Development
- Humanities stream: History and Theories of Architecture, Urban Housing and Settlement
- Technology and sustainability stream: Architecture and Technology

In 2004, Architectural Engineering Major changed to Department of Architecture. The degree for its graduates was also altered from Bachelor of Engineering (ST) to Bachelor of Architecture (S.Ars) for the bachelor graduates and Master of Architecture (M.Ars) for the master’s. From 2000 until 2012, the Department of Architecture went through several changes in Curriculum and thus the curriculum is integrated and emphasize several points:

1. Flexibility in following the development of science and technology.
2. Curriculum that responses in fulfilling the demands of professionals within national, regional and also international level.
3. Referring to the National Education System based on Competence. The core of the curriculum is in respect to the profession of architect in collaboration with IAI, and refers to UIA as the international standards.

In 2008 a new study program, Interior Architecture Undergraduate Program is opened, which emphasizes the of interiority aspects of the design in architecture. The opening of this Interior Architecture study program allows the opportunity to explore and develop the field of interior architecture in Indonesia.

In 2009 a Ph.D program and a one-year program of Professional Program of Architect (PPAR) are set. Ph.D program is intended to strengthen the Department of Architecture as a leading architectural research-based institution. PhD student’s research is focused on two areas: major research areas (research based on architectural issues) and minor research area (related to specialized area of study) in which PhD program students have the opportunity to take courses outside the discipline of architectural discipline to specifically support the knowledge, thoughts, and methods of its major. The learning process is conducted through the exploration of the width and depth
aspects of knowledge about the studied issues. Meanwhile, for PPAR, the education is carried in a year to complete graduates with the actuality of professional architecture practice. Graduates of PPAR are also allowed to transfer the credit in UI to continue for a master degree in architecture.

Department of Architecture has also commenced an International Class (KII) of undergraduate degree in architecture, with single degree program (only one semester abroad), or a double degree program (4 semesters in UI and the rest abroad). This program is in collaboration with leading universities in the world such as the Queensland University of Technology (QUT), Curtin University (Australia), University of Florida and Politecnico di Milano (Italy). In addition, S1 students who have excellent academic achievements are able to attain a Fast-Track program (4 years bachelor + 1 year master), a total of 5 years, to accomplish a Master Degree in Architecture.

The Department of Architecture UI has an A accreditation from the Higher Education BAN, Indonesian Ministry of Research and Higher Education.). The Undergraduate Program Department of Architecture program has been also assessed by the ASEAN University Network (AUN) in 2010. For more profiles of FTUI Department of Architecture can be viewed at the website: http://architecture.ui.ac.id.

VISION and MISSION

VISION
Toward an excellent architectural education institution with regional and international recognition.

MISSION
To deliver excellent architectural education that leads the development of architectural knowledge and promotes meaningful application of knowledge for the society.

Corresponding Address
Department of Architecture
Faculty of Engineering, Universitas Indonesia
Kampus UI, Depok 16424
Phone: 021 - 786 3512
Fax: 021 - 786 3514
E-mail: arsitektur@eng.ui.ac.id;architecture@ui.ac.id
http://architecture.ui.ac.id

STAFF OF THE DEPARTMENT OF ARCHITECTURE

Head of Department:
Dr. Ing. Ir. Dalhar Susanto
Vice Head of Department:
Joko Adianto, ST., M.Ars., Ph.D
Coordinator of Interior Architecture Program
Dr.-Ing Dalhar Susanto
Coordinator of Architecture Graduate Program
Ir. Evawani Ellisa, M.Eng., PhD
Head of Fabrication Lab
Mikhael Johanes, S.Ars., M.Ars
Head of Photography Laboratory
Ir. Toga H. Pandjaitan, Grad. Dipl. AA
Head of Building Physics Laboratory
Ir. Toga H. Pandjaitan, Grad. Dipl. AA
Head of Material Workshop
Widyarko, S.Ars., M.Ars

BOARD OF PROFESSORS
1. Prof. Ir. Triatno Yudo Harjoko., Msc, Ph.D (Ir. Architecture Universitas Indonesia, 1978; M.Sc. in Town Planning, University of Wales, UK, 1986; Ph.D in Environmental Design, University of Canberra, Professor in 2008) Architectural Design, Research Methods, Professor of Urban Housing and Settlement

2. Prof. Yandi Andri Yatmo, M.Arch., Ph.D (ST, Architecture Universitas Indonesia; Dip.Arch, Univ.Of Sheffield; M.Arch, Univ. of Sheffield; Ph.D, Univ. of Sheffield) Architectural Design, Urban Architecture

BOARD OF EMERITUS FACULTY

Prof. Dr. Ir. Abimanyu T. Alamsyah, M.Sc

Prof. Dr. Ir. Emirhadi Suganda, M.Sc

Prof. Ir. Gunawan Tjahjono, Ph.D., M.Arch

FULL-TIME FACULTY

Ahmad Gamal
(S.Ars Architecture Universitas Indonesia; MSc, London School of Public Relation; MCP, Urban & Regional Planning, University of Illinois Urbana Champaign, USA); Dr.Phil., Urban & Regional Planning, University of Illinois Urbana Champaign, USA) Architectural Design, Urban and Regional Planning, Community Based Planning

Achmad Hery Fuad
(Ir., Architecture Universitas Indonesia; M.Eng., Waseda University, Japan) Architectural Design, Urban Design, Urban Housing and Settlements.

Antony Sihombing
(Ir. Architecture Universitas Indonesia; MPD. University of Melbourne, Australia; Ph.D. University of Melbourne, Australia) Architectural Design, Urban Housing and Settlements, Building Technology

Azrar Hadi
(Ir. Architecture Universitas Indonesia; Ph.D Universiti Teknologi Malaysia) Project Management, Urban Housing and Settlements, Building Technology, Architectural Design

Dalhar Susanto

Diandra Pandu Saginatari

Dita Trisnawan
Enira Arvanda
(ST, Architecture Universitas Indonesia; Master, Instituto Europeo di Disain, Milan, Italy) Interior Architecture, Ergonomy, Furniture Design

Evawani Ellisa
(Ir. Architecture, Universitas Gajah Mada, Yogjakarta; M.Eng; Ph.D., University of Osaka, Jepang) Architectural Design, Urban Design

Hendrajaya Isnaeni
(Ir. Architecture Universitas Indonesia; M.Sc. University of Surrey, UK; Ph.D, University of Melbourne, Australia) Architectural Design & Professions, Theory of Islamic Architecture, Environmental Behavior

Herlily

Joko Adianto
(ST, Architecture Universitas Trisakti; M.Ars, Architecture Universitas Indonesia) Architectural Design and Professions, Building Technology, Design Theory & Methods, Urban Informality.

Kristanti Paramita
(S.Ars, Architecture Universitas Indonesia; M.A, University of Sheffield, UK) Architectural Design, Communication Techniques in Architecture.

Mikhael Johannes
(S.Ars, Architecture Universitas Indonesia; M.Ars, Universitas Indonesia). Design and Method in Architecture, Digital Design and Communication Technique in Architecture.

M. Nanda Widyarta

Nevine Rafa

Rini Suryantini
(ST, Architecture Universitas Indonesia; M.Sc., Institute for Regional Science & Planning University of Karlsruhe (TH), Germany). Architectural Design, Urban and Regional Planning, Landscape and Sustainability in Architecture.

Rossa Turpuk Gabe Simatupang

Teguh Utomo Atmoko
(Ir. Architecture Universitas Indonesia; MURP, University of Hawai’i, USA) Urban Design, Architectural Design, Real Estate, Heritage in Architecture

Toga H. Pandjaitan
(Ir. Architecture Universitas Indonesia; Grad. Dipl. AA, Inggris) Architectural Design, Building Physics, Photography, Ethnics Architecture

Yulia Nurliani Lukito Harahap
PART-TIME FACULTY

Achmad Sadili Somaatmadja
(Ir., Architecture Universitas Indonesia; M.Si, Environmental Sciences Universitas Indonesia) Building Technology, Architectural Design

AA Ayu Suci Warakanyaka
(S.Ars, Architecture Universitas Indonesia; MFA, Interior Architectural Design University of Edinburgh) Interior Architectural Design

Anna Zuchriana
(S.Sn, Seni Grafis Jakarta Arts Institute/IKJ; MSn, Jakarta Arts Institute/IKJ, Jakarta). Fine Arts, Graphics Arts.

Arif Rahman Wahid
(S.Ars., Interior Architecture, Universitas Indonesia; MA Narrative Environments, Central Saint Martins, UAL, UK) Narrative Environment, Interior Architectural Design

Ary Dananjaya Cahyono
(S.Sn, Seni Patung Bandung Institute of Technology; MFA Glasgow School of Arts) Visual Arts, Sculpture

Azrar Hadi
(Ir. Architecture Universitas Indonesia; Ph.D Universiti Teknologi Malaysia) Project Management, Urban Housing and Settlements, Building Technology, Architectural Design

Cut Intan Djuwita
(Ir. Architecture Universitas Indonesia; Environmental Design, University of Missouri, USA) Interior Design

Diane Wildsmith AIA, RIBA
(B.Arts in Architecture UC Berkeley California, USA; MSc in Architecture Carnegie Mellon University, Pittsburgh, USA; Master of International Policy and Practice George Washington University, USA) Architectural Design, Sustainability in Architecture

Endy Subijono, Ar.
(Ir; Architecture, Bandung Institute of Technology; MPP, Planning and Public Policy, Rutgers University, USA) Professional Ethics

Farid Rakun

Ferro Yudhistira
(ST, Universitas Sriwijaya, Palembang; M.Ars, Architecture Universitas Indonesia) Architectural Design, Communication Techniques in Architecture, CAD/ArchiCAD

Finarya S.Legoh
(Ir, Architecture Universitas Indonesia; M.Sc.& Ph.D University of Salford United Kingdom) Building Physics, Acoustics.

Iriantine Karnaya
(Dra. Senirupa FSRD-Bandung Institute of Technology; M.Ars, Architecture Universitas Indonesia) Fine Art; Real Estate

Joyce Sandrasari
(ST, Architectures, Universitas Tarumanegara); MALD, Lighting Design, Fachochschuele Wismar, Germany). Lighting Design.

Mochammad Mirza Yusuf Harahap
(S.Ars, Interior Architecture, Universitas Indonesia; MDes., Interior Architecture, Monash University, Australia) Interior Architectural Design

Ova Candra Dewi
(S.Ars., Architecture Universitas Indonesia, M.Sc., Urban Management, Technology University of Berlin, Dr.Ing, Technology University of Hamburg Hamburg, Germany) Environmental Engineering and Energy Economics Bioconversion and Emission Control, Architecture and Sustainability

Ratna Djuwita Chaidir
(Dra., Psychology Universitas Indonesia; Dipl. Psyh, Daarmstaat, Germany) Architectural Psychology

Siti Handjarinto
(Ir. Architecture Universitas Indonesia; M.Sc. University of Hawai‘i, USA) Building Technology,
PROFILE OF FTUI & DEPARTMENTS

Architectural Design, Building Physics, Lighting Design and Acoustics.

Siti Utamini

Sukisno

Sri Riswanti
(Dra, Interior Design, FSRD, ISI Yogjakarta; M.Sn, Seni Urban dan Industri Budaya, Jakarta Arts Institute/IKJ) Interior Design, Communication Techniques in Architecture & Interior.

Subandinah Priambodo
(Dra.ITB; MSn, Jakarta Arts Institute/IKJ) Interior Design, Furniture Construction.

Tri Hikmawati
(ST, Architecture Universitas Indonesia; MA, London Metropolitan University, UK). Interior Design

Widyarko
(S.Ars, Architecture Universitas Indonesia; M.Ars, Universitas Indonesia). Building Technology and Materials

Widya Aulya Ramadhani
(S.Ars, Architecture, Universitas Indonesia; M.Arch, University of Illinois at Urbana Champaign, USA) Architectural Design in Health and Well-being
1.5.6. DEPARTMENT OF CHEMICAL ENGINEERING

The main mission of the Chemical Engineering Department is to provide the highest quality education so that graduates have the necessary knowledge, skills, and experience conducting research with current topics in the field of chemical engineering and biochemical engineering. Starting from the opening of the Gas Engineering Program in 1981, Chemical Engineering Department UI is now one of the leading chemical engineering departments in Indonesia having excellent accreditation from National Accreditation Board of Indonesia (BAN), the ASEAN University Network (AUN), Japan Accreditation Board for Engineering Education (JABEE) dan Indonesian Accreditation Board for Engineering Education (IABEE). Chemical Engineering Department has two study programs, Chemical Engineering (PSTK) and Bioprocess Technology (PSTB), 30 permanent academic staff and about 913 undergraduate and graduate students. In order to enhance the role of the department in the era of biotechnology and life sciences, PSTB was opened in 2008.

Chemical engineering department offers five academic programs: undergraduate program (regular, parallel, international), master program (regular and gas management at Salemba campus), and doctoral program. The chemical engineering department has been adhering to competency-based principles starting in curriculum 2000 up to the recently updated curriculum 2016. The present graduate competencies are based on those recommended by ABET and the Bologna Process and on feedbacks from graduates and industry representatives, aiming at producing graduates who are educated and able to contribute effectively to their communities wherever they choose to live and work. The chemical engineering department is conducting international classes in collaboration with three Australian universities: Monash University, Curtin University and University of Queensland. Students in this international class spend their first four semesters at UI, and spend the subsequent four semesters in Australia. At the end of their study, students will get a Sarjana Teknik degree from UI and a Bachelor of Engineering degree from the partner university. Since 2011, international program students may choose to enroll in a single-degree program at UI following a curriculum that is equivalent to the regular undergraduate curriculum. The department also has established double degree master programs with National Taiwan University of Science and Technology (NTUST) and Curtin University. In this double degree programs, students spend their first year at UI and the second year at NTUST or Curtin University. At the completion of their studies, students will be awarded a Master of Engineering degree from NTUST or Curtin University.

The curriculum 2016 is now more streamlined and integrated allowing students to take elective courses previously only available in a study program (PSTK or PSTB) or available for a certain level (undergraduate or graduate). It means that students could choose courses that are more suitable to their interest. For those who qualify, there is a fast-track program that allows undergraduate students to obtain both bachelor and master degrees in ten semesters instead of in twelve semesters. Chemical engineering master’s program has also prepared a special curriculum for those without an educational background not in chemical engineering. By adopting this special curriculum, applicants with a non-chemical engineering degree are recommended to take the chemical engineering undergraduate core courses to master the fundamentals of chemical engineering before taking more advanced core graduate courses. Graduates of doctoral programs are expected to contribute to the development of science by conducting independent research, usually under supervision of a qualified professor.

Chemical engineering department as one of the departments in the Faculty of Engineering, University of Indonesia has taken part in a research effort with the theme “Sustainable chemical and bio engineering for energy and product development”. This research theme is supported by four research groups: chemical and natural product design, sustainable energy, industrial bioprocess technology, and process intensification. Research activities conducted
at the Chemical engineering department has received a lot of government funding to support the research activities of students.

Corresponding Address
Chemical Engineering Departemen
Faculty of Engineering
Universitas Indonesia
Kampus UI Depok 16424, Indonesia
Telp: +62-21-7863516
Fax: +62-21-7863515
Email: dtk@che.ui.ac.id
http://www.che.ui.ac.id

VISION, MISION AND OBJECTIVES OF CHEMICAL ENGINEERING DEPARTMENT UI

Vision
“To become a world class Chemical Engineering Department as center of excellence for education and research in chemical engineering.”

Mision
• To provide the best quality of undergraduate and postgraduate education.
• To provide a broad-based education and design experience, enabling students to address chemical engineering problems.
• To provide students with fundamental elements to develop in the profession in response to rapidly changing technology and societal needs and expectations
• To develop important soft skills such as problem solving, communication, and group skills.

STAFF OF CHEMICAL ENGINEERING DEPARTMENT
Head of Department :
 Dr. Ir. Asep Handaya Saputra, M.Eng
Vice Head of Department :
 Dr. Bambang Heru Susanto, ST, MT
Head of Chemical Engineering Study program :
 Dr. Ir. Asep Handaya Saputra, M.Eng
Head of Bioprocess Engineering Study program :
 Dr. Dianursanti, ST, MT
Coordinator of Special Subjects (Internship, UndergraduateThesis, Master Thesis):
 Dr. Ir. Yuliusman, M.Eng
Head of Academic Venture (UPPM) :
 Dr. Muhammad Ibadurrahman, ST, MT, MScEng

HEAD OF LABORATORY
Head of Chemical and Natural Product Design Laboratory :
 Dr. Ir. Setiadi, M.Eng
Head of Chemical Process Intensification Laboratory:
 Dr. Eva Fathul Karamah, ST, MT

Head of Sustainable Energy Laboratory:
 Dr. Ir. Prawati PDK Wulan, MT

Head of Bioprocess Engineering Laboratory:
 Dr. Tania Surya Utami, ST, MT

Head of Basic Chemical Process Laboratory:
 Ir. Rita Arbianti, M.Si

Head of Chemical Process System Laboratory:
 Dr. rer.nat. Ir. Yuswan Muhamad, MT

Head of Basic Process and Operation Laboratory:
 Dr. Ir. Sukirno, M.Eng

BOARD OF PROFESSORS

Prof. Dr. Ir. Widodo W. Purwanto, DEA
 widodo@che.ui.ac.id (Ir, ITS; DEA and Dr, ENSIGC-INP Toulouse, France):
 Sustainable energy.

Prof. Dr. Ir. Mohammad Nasikin, M.Eng
 mnasikin@che.ui.ac.id (Ir, ITS; M.Eng, Tokyo Institute of Technology, Japan;
 Dr, UI): Catalysis and Heterogenous catalyst

Prof. Ir. Sutrasno Kartohardjono, M.Sc, PhD
 sutrasno@che.ui.ac.id (Ir, UI; MSc, UTM, Malaysia; PhD, University of New
 South Wales, Australia): Gas absorption and desorption in hollow fiber
 membrane contractor, utilization of hollow fiber membrane for efficient
 biomass production.

Prof. Dr. Ir. Anondho Wijanarko, M.Eng
 anondho@che.ui.ac.id (Ir, UI; M.Eng, Tokyo Institute of Technology, Japan;
 Dr, UI): Bioprocess engineering.

Prof. Dr. Ir. Setijo Bismo, DEA
 bismo@che.ui.ac.id (Ir, ITB; DEA and Dr, ENSIGC Toulouse, France): Ozone and
 plasma technology.

Prof. Dr. Ir. Slamet, MT
 slamet@che.ui.ac.id (Ir, UGM; MT, UI; Dr, UI): Photocatalysis.

Prof. Ir. Dr.-Ing. Misri Gozan, M.Tech
 mgozan@che.ui.ac.id (Ir, UI; M.Tech, Massey University, New Zealand; Dr.-Ing, TU
 Dresden, Germany): Environmental bioprocess engineering, waste to energy.

Prof. Dr. Ir. Heri Hermansyah, M.Eng
 heri@che.ui.ac.id (ST, UI; M.Eng and Dr, Tohoku University, Japan): Reaction
 process engineering, bioprocess and biocatalysis.

Prof. Ir. Mahmud Sudibandriyo, M.Sc., Ph.D
 msudib@che.ui.ac.id (Ir, ITB; M.Sc and PhD, Oklahoma State University, USA):
 Thermodynamics adsorption & coalbed methane.
Prof. Dr. Ir. Nelson Saksono, MT
nelson@che.ui.ac.id (Ir, UI; MT, UI; Dr, UI): Electrolysis Plasma Technology

FULL TIME-FACULTY

Abdul Wahid
wahid@che.ui.ac.id (Ir, UI; MT, UI): Modeling and simulation.

Andy Noorsaman S
ansommeng@che.ui.ac.id (Ir, UI; DEA UTC, Prancis; Dr, Ecole Centrale de Paris): Process system engineering.

Asep Handaya Saputra
sasep@che.ui.ac.id (Ir, UI; M.Eng and Dr, Tokyo Institute of Technology, Jepang): Composite material, natural gas transportation.

Bambang Heru Susanto
bambanghs@che.ui.ac.id (ST, UI; MT, UI; Dr, UI): Heterogenous catalysis, biofuel, process computation.

Cindy Dianita
cindydianita@che.ui.ac.id (ST, UI; M.Eng, Ufa State Petroleum Technological University): Komputasi proses dan Pipeline.

Dewi Tristantini Budi
detris@che.ui.ac.id (Ir, UGM; MT, ITB; PhD, Chalmers University, Swedia): Process catalysis.

Dianursanti
danti@che.ui.ac.id (ST, UI; MT, UI; Dr, UI): Biomass production and CO2 fixation of microalgae.

Dijan Supramono
dsupramo@che.ui.ac.id (Ir, ITB; M.Sc, UMIST, Inggris): Fluid mechanics in combustion.

Eva Fathul Karamah
eva@che.ui.ac.id (ST, UI; MT, UI; Dr, UI): Wastewater treatment by advanced oxidation processes.

Eny Kusrimi
ekusrimi@che.ui.ac.id (S.Si, UGM; Dr, USM): Lanthanide, nanocomposites, catalyst.

Kamarza Mulia
kmulia@che.ui.ac.id (Drs, ITB; M.Sc, Colorado School of Mines, AS; PhD, Colorado School of Mines, AS): Controlled release of drug and bioactive compounds, fluid phase equilibria, teaching-learning methods.

Muhammad Ibadurrohman
ibad@che.ui.ac.id (ST, UI; MT, UI; MScEng, NTUST, Taiwan; Dr, Imperial College London, UK): Hydrogen production via photocatalysis.

Muhamad Sahlan
sahlan@che.ui.ac.id (S.Si, ITB; M.Eng dan Dr, TUAT, Jepang): Protein Engineering, protein vehicles for nutraceuticals, and biocatalysis.
Praswasti PDK Wulan
 wulan@che.ui.ac.id(Ir, UI; MT, UI; Dr, UI): Sustainable energy.

Rita Arbianti
 arbianti@che.ui.ac.id(Ir, UI; M.Si, UI): Natural product.

Setiadi
 setiadi@che.ui.ac.id(Ir, ITS; M.Eng, Tokyo Institute of Technology, Jepang; Dr, UI): Reaction engineering, catalyst and catalysis for renewable, hydrocarbon chemicals/petrochemicals.

Sukirno
 sukirnos@che.ui.ac.id(Ir, ITB; M.Eng, Tokyo Institute of Technology, Jepang; Dr, UI): Tribology, lubricant, biolubricant.

Tania Surya Utami
 nana@che.ui.ac.id(ST, UI; MT, UI; Dr, UI): Bioproses.

Yuliusman
 usman@che.ui.ac.id(Ir, UI; M.Eng, UTM, Malaysia): Liquid-liquid extraction, gas and pollutant adsorption, and purification of smoke.

Yuswan Muharam
 muharam@che.ui.ac.id(Ir, UI; MT, UI; Dr.rer.nat, University of Heidelberg, Germany): Modeling and simulation of chemical process.

PART-TIME FACULTY

Prof. Dr. Ir. Roemijati WS., M.Si
 roemws@che.ui.ac.id (Ir, UGM; M.Si, UI; Dr, IPB): Industrial waste management, catalysis, polymer.

Tilani Hamid
 tilanihs@che.ui.ac.id(Ir, ITB; M.Si, UI): Material and corrosion science.

Elsa Krisanti
 elsa@che.ui.ac.id(Dra, ITB; MSc; PhD, Colorado School of Mines): Applied chemistry, biomass conversion, teaching-learning methods.
1.5.7. DEPARTMENT OF INDUSTRIAL ENGINEERING

GENERAL

Industrial Engineering Education is an answer to a growing need of industrial engineers who have the capabilities of managing production or operation processes efficiently and effectively to achieve excellence. Industrial Engineers should be one of the backbones for transforming our national industry to be more competitive and contribute to our nation’s welfare. The scope of the term industry is for both service and manufacturing industries.

Industrial Engineering Program was actually formed in the mid-1970s as a part of the Mechanical Engineering Department. Due to market needs for a specialized mechanical engineer which define the current definition of industrial engineers. In 1998, based on Decree by Higher Education Director No 207/DIKTI/Kep/1998 dated June 30th, 1998, the Industrial Engineering Department was born. With the new status as a department, the program had more autonomy and opportunity to enhance the Industrial Engineering Discipline in Indonesia.

After ten years as an independent Department, Industrial Engineering has been recognized by the national public and industry as one of the forefronts industrial engineering education in Indonesia. This is shown by the high demand and acceptance of our graduates. Today, our graduates have been accepted not only in the manufacturing industry but also in the service industry such as governments, hospital, financial service, consulting, information technology and many others. In the manufacturing area, we have graduates that are in charge of production or operations management, human resource development, maintenance, inventory and logistics, and many more.

Corresponding Address
Department of Industrial Engineering
Faculty of Engineering Universitas Indonesia
Kampus UI Depok 16424, Indonesia
Telp: +62-21-78888805
Fax: +62-21-78885656
Email: ti-ui@ie.ui.ac.id
http://www.ie.ui.ac.id

VISION and MISSION

Vision
“To be a premier industrial engineering higher education institution with good national and international reputation in providing high-quality graduates and researches.”

Mission
- Establishing education to provide high quality graduates accepted by national and international industry
- Fostering researches to answer the needs of national industry
- Harnessing the knowledge of industrial engineering for the welfare of society

STAFF OF THE DEPARTMENT OF INDUSTRIAL ENGINEERING

Head of Department:
Dr. -Ing. Amalia Suzianti S.T., M.Sc.

Vice Head of Department:
Dr. Komarudin, ST., M.Eng
Head of Manufacturing System Laboratory:
Prof. Dr. Ir. T. Yuri M. Zagloel, MEngSc

Head of Human Factors Laboratory:
Ir. Boy Nurtjahyo, MSIE

Head of System Engineering Modeling and Simulation Laboratory:
Dr. Akhmad Hidayatno, ST, MBT

Head of Statistics and Quality Engineering Laboratory:
Prof. Ir. Isti Surjandari P., MT, MA, PhD

Head of Product Development and Innovation Laboratory:
Dr.-Ing. Amalia Suzianti, ST, MSc.

Head of Management Information System and Decision Support Laboratory:
Dr. Ir. M. Dachyar, MSc

BOARD OF PROFESSORS
1. Prof. Dr. Ir. Teuku Yuri M. Zagloel, MengSc, yuri@ie.ui.ac.id (Ir, UI; MEngSc., University of New South Wales, Australia ; Dr, UI), Introduction to Industrial Engineering, Total Quality Management, Lean Operations, Sustainable Manufacturing and Innovation, Manufacturing Facilities Planning and Analysis, Manufacturing System.

2. Prof. Ir. Isti Surjandari P., MT., Ph.D, isti@ie.ui.ac.id (Ir, UI; MT , ITB; MA, Ohio State University, USA; Ph.D, Ohio State University, USA) Introduction to Economics, Industrial Statistics, Multivariate Analysis, Data Mining, Decisions, Uncertainties and Risks, Service Engineering, Advanced Statistics.

FULL-TIME FACULTY
Akhmad Hidayatno, akhmad@eng.ui.ac.id (Ir, UI; MBT, Univ. Of New South Wales, Australia, Dr, UI) System Modelling, Quality System, Industrial Simulation, System Engineering, Technology Management, System Dynamics, Interpersonal Skills, Advance Modelling, System Thinking.

Amalia Suzianti, suzianti@ie.ui.ac.id (ST, UI; MSc., BTU Cottbus, Germany; Dr.-Ing., TU-Berlin, Germany - University of Luxembourg) Product Design, Industrial Engineering Design, Industrial Technology Management, Product Lifecycle Management, Sustainable Manufacturing and Innovation, Knowledge Management, Industrial System Design, Technology Entrepreneurship.

Armand Omar Moeis, armand.omar@ui.ac.id (ST, UI; MSc, TU Delft, The Netherlands; Cand Dr., UI) System Modelling, System Engineering, Industrial Simulation, System Dynamics, Advanced Modelling, System Thinking.

Arian Dhini, arian@ie.ui.ac.id (ST, ITB; MT, UI; Cand Dr, UI) Statistics and Probability, Industrial Statistics, Cost Accounting, Multivariate Analysis, Advanced Statistics.

Arry Rahmawan, arryrahmawan@ui.ac.id (ST, UI ; MT, UI) System Modelling, System Engineering, Industrial Simulation, System Dynamics.

Billy M. Iqbal, billy@eng.ui.ac.id (SDs, ITB ; MT, UI) Cognitive Ergonomics, Human Digital Modelling and Simulation, Human Factors in Industrial Design, Product Design.

Boy Nurtjahyo Moch, boymoch@eng.ui.ac.id (Ir, UI; Wayne State University, USA) Methods, Standards and Work Design, Macro Ergonomics, Cognitive Ergonomics, Human Digital Modelling and Simulation, Human Factors in Industrial Design, Safety Engineering and Management.

Dendi P. Ishak, dendi@ie.ui.ac.id (BSIE ; MSIE, Wayne State University, USA; Cand Dr, Universiti Teknologi Mara, Malaysia) Introduction to Industrial Engineering, Maintenance System, Customer Relationship Management, Competitive Analysis, Information System, Industrial Project Management, Safety Engineering and Management.

Djoko S. Gabriel, dsihono@ie.ui.ac.id (Ir, ITB; MT, ITB; Dr, UI) Plant Layout Design, Industrial Feasibility Analysis, Supply Chain Management, Technology Management.

Erlinda Muslim, erlinda@eng.ui.ac.id (Ir, ITB; MEE, UTM Malaysia) Cost Accounting, Product Design, Industrial Feasibility Analysis, Competitive Analysis, Industrial Psychology and Organization, Industrial Strategic Design, Human Capital Management, Technology Policy, Industrial Policy, Industrial System Design.

Fauzia Dianawati, fauzia@ie.ui.ac.id (Ir, UI; MSI, UI; Cand Dr, ISSTIA, France) Industrial Psychology and Organization, Industrial Project Management, Industrial Strategic Design, Human Capital Management.
CHAPTER 2

ACADEMIC SYSTEM AND REGULATION
2. ACADEMIC SYSTEM AND REGULATION

The educational system in the Faculty of Engineering, Universitas Indonesia refers to the prevailing system of education at Universitas Indonesia.

2.1. GENERAL

Teaching and Learning Activities
One semester is the time of the activity consisting of 16-18 weeks of lectures or other scheduled activities, including various additional activities such 2-3 week assessment activities. These teaching and learning activities are in form of lecture, lab, studio, exams, quizzes, assignments, presentations, seminars, research, practical work, industrial visits, and a thesis.

Semester Credits Units (SKS)
Education in the Faculty of Engineering, Universitas Indonesia is held in a variety of ways such as lectures, assignments (ex: calculation tasks, planning, design), practical work, seminars, lab, studio, and research for thesis writing. All educational activities that must be undertaken by each student to earn a bachelor’s degree are contained within the academic loads and measured in units of semester credit (SKS).

- Semester Credit is a measurement on the learning experiences obtained by students on each semester.
- One Semester Credit in lecture, responses and tutorials, includes: face to face study time for 50 (fifty) minutes per week per semester; structured learning activities with structured assignments for 60 (sixty) minutes per week per semester; and independent study session for 60 (sixty) minutes per week per semester.
- One Semester Credit in seminar or other similar subjects, includes: face to face study time for 100 (one hundred) minutes per week per semester, independent study session of 70 (seventy) minutes per week per semester.
- One Semester Credit in practical training, studio, workshop, on the field training, research and community services, and /or other similar subjects for 170 (one hundred and seventy) minutes per week per semester.
- Activities for one semester consist of 16-18 weeks of lectures or other scheduled activities and its additional activities. Also included in the schedule are one week of midterm examination and another two weeks for final examination.
- All educational activities must be performed by each student to earn a bachelor’s degree is an academic load of 144-145 credits divided into 8 (eight) semesters. Undergraduate students with an average study load of about 18-20 credits per semester are expected to undergo a week of minimal 18 -20 hours of scheduled interaction with a lecturer, 18-20 hours of structured activities, and 18-20 hours of independent learning activities.

Subjects
Subjects in the FTUI’s undergraduate curriculum are grouped into University General Subjects (12,5%), Basic Engineering Subjects (15-20%), Basic Skills Subjects (30-35%), Core Subjects (35-40%). Subjects can be categorized as compulsory subjects and electives. They can be taken across departments or across faculties.

Grade Point Average
Grade Point Average or GPA is used to evaluate students’ performance either for a particular semester in term of Indeks Prestasi Semester (IPS) or Semester Performance Index, or, cumulatively for all of the semester up to the most recent one in term of Indeks Prestasi Kumulatif (IPK) or GPA. The formula used to calculate either IPS or IPK is as follows:
The summation made by multiplying the weight of credits with a letter grade for each course, divided by the number of credits.

Semester Performance Index / Indeks Prestasi Semester (IPS)
The Semester Performance Index is calculated from all subjects taken in each semester, except for subjects with letter grade of BS, I, and TK (BS: Belum Selesai, I: Incomplete, TK: Transfer Kredit). Achievement Index that takes into account all of the subjects for a certain semester is called the Semester Performance Index (IPS) and used to determine the maximum academic load that the student may take in the upcoming semester.

Grade Point Average (GPA/IPK)
If the calculation involves the entire grade point value of subjects taken during the educational program period, the result of the summation is a Grade Point Average (GPA) that is used as a basis for study evaluation. Courses taken into account are the ones listed in the Study Plan Form (FRS). GPA is obtained from the summation of all subjects having a grade of C or higher from the first semester until the last semester, with the exception of subjects with letter grade of BS, I, and TK.

Academic Performance Evaluation
Assessment of academic ability is performed on an ongoing basis by assigning tasks, homework, quizzes, or exams which are given throughout the semester. For each subject, there are at least three components of assessment which may include a midterm exam (UTS), a final exam (UAS) and tasks. A student will be assessed on his academic ability if he meets the following requirements:
- The courses taken have been registered and verified by Academic Advisor during the academic registration period.
- The student has fulfilled all of the administrative and academic requirements for the ongoing semester.
- The student has completed all of the required academic assignments.

Grades
At the end of each semester, students may download Semester Grade Record as a report on their academic performance from SIAK NG (https://academic.ui.ac.id/). Assessment of study efficacy is carried out using letters and academic load in accordance with Table 2.1.

<table>
<thead>
<tr>
<th>Grade Value</th>
<th>Marks</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>85 - 100</td>
<td>4.00</td>
</tr>
<tr>
<td>A-</td>
<td>80 - < 85</td>
<td>3.70</td>
</tr>
<tr>
<td>B+</td>
<td>75 - < 80</td>
<td>3.30</td>
</tr>
<tr>
<td>B</td>
<td>70 - < 75</td>
<td>3.00</td>
</tr>
<tr>
<td>B-</td>
<td>65 - < 70</td>
<td>2.70</td>
</tr>
<tr>
<td>C+</td>
<td>60 - < 65</td>
<td>2.30</td>
</tr>
<tr>
<td>C</td>
<td>55 - < 60</td>
<td>2.00</td>
</tr>
<tr>
<td>D</td>
<td>40 - < 55</td>
<td>1.00</td>
</tr>
<tr>
<td>E</td>
<td>0 - < 40</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 2.1. Grade Value and Point

The highest grade is A with grade point of 4.00 and the minimum passing grade of a course is C with grade point of 2.00. The lecturer may assign the ‘Incomplete’ (I) grade if the student has not made a reasonable attempt to complete major session assignments, laboratory projects and the lecturer has made a reasonable effort to inform the student as early as possible that an important part of session work is incomplete. The ‘I’ mark should be changed to other grade within 1 month, otherwise, it will be automatically changed to ‘E’ grade. The “T” mark is given for no attendance in exam. The “BS” mark is given for Special Lecture (such as Internship, Seminar & Final Project) that has not been completed. These BS courses are not taken into account in the calculation of Semester Study Unit, IPS and GPA.

Length of Study and Academic Load

Undergraduate Program

The academic load a student can take is proposed by the students to get approval from the academic counselor based on the previous Semester Performance Index (IPS) as stated in the Study Plan Form (FRS). Students must take the entire allocated credits of the entire courses in the first and second semester. Academic Load for Undergraduate Program is 144 (one hundred and forty four) credits including final assignment and maximum academic load is 160 (one hundred and sixty) credits including final assignment and can be completed in minimum 7 (seven) semesters and maximum of 12 (twelve) semesters.

As for the second semester, these following rules apply:

- Students can take all credits load allocated for the second semester according to the structure of the applicable curriculum.
- Students can take more credits from the credit load allocated for the second semester if the IPS obtain in the 1st semester is in accordance with the provision of the maximum credit load amounts shall follow the provision in the Maximum Credit Load Table.

From the 3rd semester onwards, the maximum credit loads that may be taken is determined by IPS of the previous semester and follow provisions in Maximum Credit Load as shown in Table 2.2 with respect to course prerequisites (if any). If necessary, Academic Advisor (PA) can add a maximum of 2 credits more than the provision in the Table through the approval of the Vice Dean.

Table 2.2. Maximum study load in a semester for undergraduate program

<table>
<thead>
<tr>
<th>IPS</th>
<th>Maximum SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2.00</td>
<td>12</td>
</tr>
<tr>
<td>2.00 - 2.49</td>
<td>15</td>
</tr>
<tr>
<td>2.50 - 2.99</td>
<td>18</td>
</tr>
<tr>
<td>3.00 - 3.49</td>
<td>21</td>
</tr>
<tr>
<td>3.50 - 4.00</td>
<td>24</td>
</tr>
</tbody>
</table>

Master Program

Academic load in the FTUI’s Master Program curriculum is 40-44 credits after finishing the undergraduate program. The length of study is scheduled for 4 (four) semesters and can be completed in at least 2 (two) semesters and a maximum of 6 (six) semesters.

Academic Load for each semester is proposed by the students to get approval from the academic counselor (PA) based on the IPS of the last semester as stated in the Semester Grade list (DNS). Provisions on the academic load are as follows:

- A semester’s academic load is registered by a student as he carries out online registration according to the pre-determined schedule. Students are required to take all subjects as allocated in the first semester curriculum.
- For students with less than a 2.50 IPS, a provision stating that the number of credits taken for the following semester does not exceed 9 credits is applicable.
- The maximum number of credits that can be taken on Master Program is 18 (eighteen) credits (for Regular Master Program) per semester.
- Exemption from the provisions of academic load should be with the permission of the Vice Dean.
Matriculation for Master
The Matriculation Program is aimed to synchronize the students’ ability to achieve the minimum requirements to continue in the Master Program in the Faculty of Engineering Universitas Indonesia. The Matriculation program is compulsory for students coming from Four Years Diploma Program (D4) or graduates from non-linear undergraduate study program.

Matriculation is done by taking classes of subjects required by each Faculty/Study Program within the Curriculum of Undergraduate Program. The maximum allowed credit load for this Matriculation program is 12 (twelve) credits that can be completed in 2 (two) semesters (6 credits in semester 1 and 6 credits in semester 2). Students are allowed to continue their study in the Master Program only if they passed all Matriculation subjects within the maximum of 2 (two) semesters allowed with a Matriculation GPA of 3.00 (three point zero).

Doctoral Program
Academic load in the FTUI’s Doctoral Program curriculum is 52 credits after finishing the Master Program. A semester’s academic load is registered by the student through online academic registration during a pre-determined schedule. New students are required to take all subjects as allocated in the curriculum for the first and second semesters. Students must re-take research courses with a BS grade from previous semesters. Student’s Academic Load for each semester is proposed by the students to get approval from the academic counselor (PA) or the doctorate Promoter.

The length of doctoral program for all scheduled courses is 6 (six) semesters and in its implementation can be completed in at least 4 (four) semesters and maximum of 10 (ten) semesters. Students in the Doctoral Program may be granted an extension of study period up to a maximum of 2 (two) semesters if their study time have never been extended before, have achieved a minimum grade of B for Research Result Examination, and obtained a recommendation from their promoter and a guarantee that they will complete their study within the granted extended study period. The proposal for such extension is regulated through a Rector’s decree based on proposal from the Dean/ Director of School.

Undergraduate Final Project (Skripsi)
Undergraduate Final Project is mandatory course for undergraduate students of Faculty of Engineering UI. The course is the application of science that has been obtained in accordance with the basic scientific disciplines that the student has studied, in the form of scientific paper, engineering design, assembly or models and accessories. Undergraduate final project is mandatory to complete the requirements in order to earn a degree in the field of engineering. Undergraduate final project status is equivalent to other skill courses is tailored in accordance with the scope of each study program. Undergraduate final project must meet certain requirements, both academic and administrative requirements. Students are allowed to start composing undergraduate final project if:

- The Undergraduate final project has been registered in the Study Plan Form [FRS]
- Students have obtained a minimum of 114 credits with a minimum of grade of C and have passed all mandatory courses both in the faculty and university level.
- Students have fulfilled all prerequisites set by the Study Program.

Undergraduate final project can be taken in both odd and even semester in the running academic year. On SIAK NG system, student must fill out the name of his thesis supervisor and the title of thesis which will be verified by the Vice Head of the Department. At the end of the semester, the Undergraduate final project supervisor will submit the student’s thesis’s grade to SIAK NG and change the title of undergraduate final project (if necessary). The completed undergraduate final project must be submitted in the form of hard-covered book and student must upload their final revision in pdf file to Ul-ana (lib.ui.ac.id/unggah). The undergraduate final project must first be assessed in an undergraduate thesis examination by the supervisor and examiners assigned by the Head of the Department.

Thesis (Master Program)
Thesis is a report of the results of research activities in the form of scientific writing. The thesis topic should be a summary of the subject matter that can be scientifically studied on the basis of the theory and use of certain methods. Thesis should be written in Bahasa with an English abstract. For Master program students who are given the opportunity to conduct research and thesis preparation abroad, they are allowed to write thesis in English with abstracts in the Bahasa, while still following the appropriate format stated in the Final Project Writing Guideline of Universitas Indonesia. Exemption of this rule
applies only to study programs that hold a joint collaboration with university's abroad as stated in the charter of cooperation.

Requirements to start making Thesis are:

- Thesis has been registered in Study Plan Form [FRS] in every semester
- Head of the study program has set lecturer’s name as a thesis supervisor.

Students are responsible for all thesis research costs. Students can actively meet with any of their lecturers as a potential supervisor, to request a thesis topic. In addition, in middle of the second semester, Head of the Study Program can start announcing thesis topics from which the students of the Master program could chose from to prepare the thesis proposal in the form of seminars. The Head of the Study Program announces a list of thesis supervisor who are assigned to guide the students in writing and finishing the approved topic. Thesis examination committee consists of Head of the committee, a minimum 3 or a maximum 7 examiners including the thesis supervisor. Responsible for the implementation of the thesis is the thesis coordinator in each department. Thesis counseling should be carried out with maximum of two people, Supervisor I and Supervisor II. Supervisor I should have a Ph.D or Master degree with a minimum of 5 years teaching experience and have expertise relevant to the student’s thesis. Supervisor II should at least have a minimal master degree & have expertise relevant to the student’s thesis or having profession certificate and qualified equal to level nine (9) of KKNI.

Thesis can be submitted for a thesis examination when the thesis has met the following academic requirements:
- Thesis has been registered in Study Plan Form [FRS] in said semester
- The thesis has been declared eligible for examination by the Thesis Advisor
- The thesis has been declared eligible for examination must be submitted to the Department to be listed in the examination schedule determined by the Head of the Study Program.
- Uploading of Summary of Undergraduate Thesis/Thesis/Dissertation

Dissertation
Dissertation preparation are done under the guidance and evaluation of Promoter with the following qualification: Full Time University Lecture; a Professor or Doctor with an academic title of Associate Professor; Have a relevant expertise with the Dissertation Topic; within the last 5 (five) years have written at least 1 (one) scientific paper published in an accredited national journal or a reputable international journal or 1 (one) other similar scientific work acknowledge by a team of expert appointed by the Academic Senate of Universitas Indonesia. Promoter may be assisted by a maximum of 2 (two) co-promoters from within the university, partner universities, or other institutions in cooperation with the promoter team. Co-promoter must have the following qualification: a full time or a part time lecture or an expert from other institution; hold a minimum title of Doctor/Ph.D with an academic title of a minimum Senior Lecture; Have a relevant expertise with the Dissertation Topic.

Internship for Undergraduate Student
Internship is an out-of-campus activity to apply the scientific knowledge in a real work situation. Requirements for Internship is set up by each department and is part of the total 144 SKS. Students must find the place to carry out their internship themselves and departments will help by issuing a formal letter requesting the on-the-job training position.

For the undergraduate double degree program, students are required to complete internship when they are in the partner universities (except in UDE, Germany). For example in Australia internship is one of the requirements set by the Institute of Engineers Australia (IAust) to obtain accredited B.E. (Bachelor of Engineering) degree. Internship is a good opportunity for students to apply their skills and build networks in the industry. It is strongly suggested that students should do their Internship in partner universities. However, if they cannot do so it in partner universities, they are allowed to do it in Indonesia with prior permission from partner university.

Supplementary Exam
Students are allowed to take a Supplementary Examination for Mid Term and Final Examination the following condition: Sick, Grievance; or representing Universitas Indonesia in a Competition. Students with Sickness excuse are obliged to submit the application for Supplementary Exam signed by their parents/guardian and a Medical Certificate from Doctor or Hospital where they were treated; Students with Grievance or death in the family (death to Father, Mother, Older or Younger Siblings) are obliged to
submit the application for Supplementary Exam signed by their parents/guardian; Students representing Universitas Indonesia in a Competition are obliged to submit a Letter of Assignments/ Letter of Reference stating the Competition which they represented UI in. The Supplementary Exam can only be done by a written consent from the Vice Dean for Academic, Research, and Student Affairs of Faculty of Engineering Universitas Indonesia.

Credit Transfer
Credit Transfer is a recognition process of a number of credits a student may obtained from a university after an evaluation process by a Credit Transfer Team on each Faculty /School in a University. Students who have registered and study at an undergraduate study program or other equivalent education programs, both within the Universitas Indonesia or in any other universities or through a Student Exchange or Study Abroad program, may apply for a Credit transfer, provided that: (i) the transferred credits contain the same material with the courses listed in the curriculum for undergraduate program in FTUI, (ii) the academic record must be dated not more than a maximum of 5 years from the credit transfer application date, (iii) if the academic record are obtained from other universities outside of the Universitas Indonesia, the university should have at least a “B” accreditation from the National Accreditation Board for Higher Education or other international accrediting agencies. The maximum academic load that can be transferred in an Undergraduate Program is a maximum of 50 (fifty) percents of the total academic load that a student is required to complete in accordance to the curriculum of the study program he/she is currently studying. The courses transferred will be indicated with “TK” mark in the academic transcript.

Credit Transfer procedure are as follows: (i) Student submit a letter requesting Credit Transfer to the Head of the designated department, (ii) The Head of the Department will form a team to recommend which courses the student has previously taken can be transferred, (iii) Recommendation will be sent to the Dean of FTUI, (iv) FTUI Dean issues the Credit Transfer Decree, (v) The Faculty’s Center of Administration assigned “TK” marks for all relevant courses in the student’s SIAK NG account.

Credit Transfer for Parallel Class Students of Diploma Graduates
Starting in 2011, all extension programs in FTUI were merged into Parallel Classes in the Undergraduate Program. Diploma graduates who are registered as a student in these parallel classes, credits obtained from the previous diploma program will be transferred in blocks of 36-41 credits. Students begin their study in the third semester by taking all academic load according to package provided for the third semester. Afterward, they can take credits in accordance with their IPS in the following semester.

Study Abroad
There are many opportunities available for undergraduate students, both from Regular and Parallel programs to participate in Student Exchange program abroad, such as in Japan, Korea, Taiwan, Singapore, and many other countries. Student exchange programs generally last for 1-2 semesters and is supported with a full scholarship. Information on Student Exchange program can be obtained from the Universitas Indonesia’s International Office, PAU Building 1st floor. Courses taken during the study exchange program are transferrable when they return to Universitas Indonesia. Thus, students are still able to graduate on time.

In addition, Undergraduate students can participate in Double Degree 2+2 International Undergraduate program with FTUI’s partner universities. Students participating in this program will spend the last two years studying at the partner university abroad and he will earn two degrees once he graduates. However, this Double Degree program offers no scholarships. Thus, participating students should ensure their availability of funds. Student participating in classes outside of the university (in the form of Student Exchange, International Undergraduate Dual Degree Program, Sandwich Program, Joint Degree Program, or other university acknowledge program) for at least one semester will be given an “overseas” or study outside of the university status. Before leaving to continue their study overseas, students must ensure that their status in SIAK NG has been change to “overseas”, and they are obliged to make payment to Universitas Indonesia in the amount stated in the applied Rector’s Decree of “overseas” academic fee. Period of study abroad, either on the Student Exchange program and the Double Degree, is counted as part of the whole study period. The result or grades obtained from this program will not be calculated in determining their GPA and will be given a letter grade of TK in their transcript.

Fast Track
FT UI students, Regular, Parallel or International Undergraduate Program, with brilliant academic achievements can participate in the Fast Track program. In this program, FTUI’s undergraduate students in semesters 7 & 8 are allowed to take several Master program courses. Courses that can be taken and other requirements are specified by the Study Program in a way that the students can directly pursue
Master program in FTUI and complete the program in 1 year. Thus, the total time needed to complete both undergraduate and master programs is 5 years or 10 (ten) semesters.

The Academic load for the Fast Track Program curriculum is as follow:

a. For the undergraduate program is 144 (one hundred and forty four) credits including 16-22 credits of elective subjects taken from the main competence subjects of the Master Program.

b. For the Master Program is 40-44 credits including the 16-22 credits from subjects mentioned in point a above and are acknowledge through credit transfer.

If student is unable to complete his/her Undergraduate Program in 8 (eight) semesters, then the student will be deemed as unable to complete the Fast Track program, making all the subjects of the Master Program he/she has taken will be considered as an elective subjects in their completion of the Undergraduate Program and cannot be acknowledge as part of their credit towards continuing to the Master Program.

Requirements and Procedure for Fast Track Registration
Undergraduate students who are interested in participating in the Fast Track Program must fulfill the following requirements:
- Having a minimum GPA of 3.50
- Having a minimum Institutional TOEFL/EPT score of 500 (students may use the score from the EPT test they took as new student in FTUI)
- Having a high motivation for research

Procedure for Fast Track Program:
1. Fast Track Program is open for all FTUI undergraduate study programs which have the same specialization with the Master programs (for undergraduate study programs that have specialization).
2. Students who are interested in participating in the Fast Track Program are required to fill out the Registration Form.
3. The Fast Track Registration Forms will be evaluated by a team headed by the Head of Department.
4. If the student’s application to participate in the Fast Track scheme is approved, they are required to counsel with his/her academic advisor for the finalization of his/her Undergraduate (S1) and Master (S2) Study Plan. The student’s study plan for semester 7 and 8, especially for the undergraduate Elective Course selection must be in accordance with the Compulsory and Elective Courses in their respective Master study program in line with their specialization.
5. Undergraduate thesis and thesis of the student are expected to be of continuous research to maximize knowledge, experience and quality research result.
6. The funds for the Fast Track Program will be borne entirely by the student.

Registration Form for the Fast Track Program for each running Academic Year may be submitted to each Department Secretariat on March each year at the latest.
2.2. ADMINISTRATIVE AND ACADEMIC REGISTRATION

Academic Calendar

Administrative and academic schedules in FTUI are set in accordance with the administrative and academic schedules in Universitas Indonesia as follows:

Term 1

Administrative registration in Universitas Indonesia
July - August

Academic registration in Universitas Indonesia
August

Course period
August - January

Mid-semester examination
October

End of Semester Examination
December - January
Deadline for grade assignment in SIAK-NG
January

Departmental Judicium
1st: October
2nd: January

Faculty Yudicium
1st: November
2nd: January

Graduation
February

Term 2

Administrative registration in FTUI
January - February

Academic registration in FTUI
January - February

Course Period and examination
February - May

Mid-semester examination
March - April

End of Semester Examination
May

Graduation
August

Short Semester

Administrative Registration
June

Academic Registration
May - June

Course period
June - August

Mid-semester Examination
July

End of Semester Examination

August

Note:
*) Schedules are subject to change

Note:
- Short Semester course period is held for 8 weeks, including mid-semester and final semester examinations.
- 2 credit courses consist of twice 2-hour contact per week, 3 credit courses consist of three times 2-hour contact per week, 4 credit subject consist of four times 2-hour contact per week.
- For regular undergraduate program: Faculty Basic Courses (Physics, Mathematics and Chemistry) are only available for students who wish to retake the course and have attended required lab activities.
- A student can take up to a maximum of 12 credits during the short semester.
- Courses offered are determined by the Department.
- If the number of students registered for a certain course in the Short Semester does not meet the minimum requirement, then the course will be canceled.
- Short Semester’s tuition fee is not included in the normal tuition fee (BOP) and is calculated by the number of credits taken during the short term. Tuition fee for each credit is determined by FTUI.
- Payment for short semester courses must be made before the payment period is closed. Otherwise, the student’s name will be automatically removed and the student is no longer considered as a participant in the short semester.

Registration and Course Guidelines

Before administrative registration takes place, FTUI publishes an academic calendar for one semester listing schedules for courses, mid-term, final-term examinations and other academic activities. The academic calendar and course schedule could be accessed at http://www.eng.ui.ac.id, and SIANG.

Administrative Registration

Administrative Registration includes payments of tuition fee and admission fee. Students are responsible for paying fees by the payment deadline. Students who do not complete the registration process by the payment deadline will not be registered at that particular semester will be included toward student’s allowed length of study. A 50% penalty will be imposed to students who do not make payment on time. Administrative registration are done by paying the tuition fee through the host-to-host system by the ATM (Automated Teller Machine) or bank teller of banks in cooperation with the Universitas Indonesia.

Academic Registration

Students should do online academic registration; consult with his/her Academic Advisor for approval and signing the Course Plan Form or FormulirRencanaStudi (FRS) during the academic registration period. The main duties of Academic Advisor are:
- Helping and directing students in their study plan particularly in selecting courses and in solving their academic problems
- Monitoring and evaluating student’s academic performance during their period of study.

Students should login to https://academic.ui.ac.id using username and password provided by the Office of Direktorat Sistem & Teknologi Informasi (DSTI) UI. Students could get their username and password at PPMT (Pusat Pelayanan Mahasiswa Terpadu) building. Students could also download course schedules and academic calendar from the website.

After completing the online FRS, students should print the form (3 copies) and meet their PA to discuss, verify and validate the courses taken. Students have to check their FRS after registration period to ensure that the courses taken are correct. Fines will be levied to students for late administrative and academic registration, as per the university or the faculty regulation.

Sanctions
1. Students who do not carry out the administrative registration will receive inactive status as a student in the current semester, which is included as their length of study.
2. Students who do not carry out academic registration cannot follow the academic activities in the current semester, which is included as their length of study.
3. Students who are not active as referred to in points (1) are not charged with tuition payments.
4. Students who do not carry out the registration and administration of academic registration for two consecutive semesters, expressed as a university student resigned without notice from the university.

Exception Administrative Registration

When non-active students, with all reason intend to maintain their status as active students, they have to follow the procedure of administrative registration:

- Obtain the approval from FTUI by filling out a form available at PAF (Pusat Administrasi Fakultas/Faculty Administrative Center).
- The students must come to the Directorate of Finance UI to obtain the approval for paying the tuition fee after paying the penalty 50% from the tuition fee on the current semester.
- The approval will be used by the students for paying the tuition fee manually.
- Students must give the copy of the payment record to the Directorate of Finance UI for verification.

Prerequisite Courses

These courses can only be taken if a student is currently taking or has previously taken and passed the prerequisite course with sufficient grade [not T].

<table>
<thead>
<tr>
<th>Partner University</th>
<th>Minimum GPA</th>
<th>Minimum IELTS / TOEFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUT</td>
<td>3.0</td>
<td>IELTS min 6.5 with no band lower than 6</td>
</tr>
<tr>
<td>Curtin</td>
<td></td>
<td>IBT in accordance to partner university’s requirement</td>
</tr>
<tr>
<td>UQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uni Sydney</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Monash</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements for Transfer to Partner Universities in Australia for Double Degree Program

Minimum requirement of GPA and English before transferring to Partner University is listed in Table 2.3. Eligible students can continue their study to partner universities in Australia if they fulfill the following requirements:

1. Achieve minimum GPA as required at the end fourth semester for the 2+2 program;
2. Passed all required subjects as listed in the Study Program curriculum with minimum C with a total of passed credits consistent with the total number of credits listed in the Study Program curriculum for semester 1-4.
3. Achieve minimum IELTS or TOEFL scores as required.
4. If GPA is less than required, the students must stay at UI and repeat some subjects to improve their GPA, while administratively and academically registered at FTUI.
5. If GPA meets minimum requirement, but IELTS or TOEFL scores less than minimum requirement, they are suggested to improve their IELTS or TOEFL score in Indonesia and maintain administrative
registration at FTUI. Other choice is to take English for Academic Purposes (EAP) at the partner university. Information on duration and schedule of EAP can be found at the partner university’s website.

Table 2.3. Minimum requirement of GPA and IELTS or TOEFL for transfer to the Partner Universities

English Language Requirements for Undergraduate International Program Single Degree

Students of the Undergraduate International Program Single Degree are obligated to obtain an English certificate in IELTS (International English Language Testing System) or TOEFL iBT (Test of English as a Foreign Language -internet Based Test) with the following minimum score:

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Overall Minimum Score</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>IELTS</td>
<td>6.0</td>
<td>No bands lower than 5.5</td>
</tr>
<tr>
<td>TOEFL iBT</td>
<td>75</td>
<td>No bands lower than 18</td>
</tr>
</tbody>
</table>

This English Language Certificate is one of the requirements before they may proceed to have their Undergraduate Thesis/ Final Project Exam.

1. Student choose a Partner University
 • Find out list of UI’s Partner Universities
 • Information on Study Abroad/ Student Exchange Information from International Office UI through http://international.ui.ac.id

2. Student contacted the selected partner University for Information on:
 • List of subjects offered and course description
 • List of requirements/documents needed.
 • Application and Tuition Fees.
 • Other Documents needed.

3. Student consulted their Academic Guidance Counselor or the Vice Head of Department to determine the subjects they will take in Partner University that can be credit transferred upon their return.

4. The Head of Department issued a Letter addressed to the Vice Dean stating:
 • Name and Student ID of student participating in the Study Abroad/Student Exchange Program
 • Name of Partner University and length of study of said program
 • List of subjects that the students will take at Partner University.

5. The Vice Dean will assigned the Associate Dean for Academic and Head of PAF to process the student’s status to “overseas” or “student exchange and issued a Reference Letter and Academic Transcript for the student.

6. Student prepare the documents needed for their Study Abroad/ Student Exchange:
 • Application Form
 • IELTS/TOEFL iBT
 • Other language requirement
 • Reference Letter and Academic Transcript from the Faculty.

7. Student sends their application documents to Partnery University.

9. Student makes payment and signed the Letter of Offer

10. Student applies for Student Visa to the Country where the Partner University is located.

11. Departure to Partner University
2.3. GRADUATE PREDICATE

Students are considered to have passed the undergraduate program and earned a Bachelor Degree (S.T or S.Ars) if they are: registered as an active student in Universitas Indonesia during said semester both administratively and academically; have passed all the mandatory courses and acquired a minimum of 144 credits in accordance with the applicable curriculum with “C” as the lowest grade and completed all 8 semesters scheduled academic load within 8-12 semesters; completed all administrative obligation including the return of all borrowed library and laboratory collection; and complete all obligation of their study period and/or all assignments given in accordance to the curriculum of the Study Program (including revised Final Project) with a GPA ≥ 2.00 (two point zero). Honor predicate for graduates are determined by the student’s final GPA as follow: Cum Laude (3.51 - 4.00), Very Satisfactory (3.01 - 3.51), and Satisfactory (2.76 - 3.00). For an undergraduate student to earn the Cum Laude degree, he must finished his study within 8 (eight) semesters time without retaking any courses.

Students are considered to have passed the Master program and earned a Master of Engineering or Master of Architecture Degree if they have passed all the required 40 - 42 credits, a ≥ 3.00 GPA with “C” as the lowest grade and do not exceed study period and have met all administrative requirements. Honor predicate for graduates are determined by the student’s final GPA as follow: Cum Laude (3.71 - 4.00), Very Satisfactory (3.41 - 3.70), and Satisfactory (3.00 - 3.40). For a Master program student to earn the Cum Laude degree, his length of study must not exceed 4 (four) semesters time without retaking any courses.

Students are considered to have passed the Doctoral program and earned a Doctor Degree if they have passed all the required 52 credits, a minimum GPA of 3.00 with a minimum “C” for in-class courses and a minimum “B” for research courses, do not exceed study period and have met all administrative requirements. Honor predicate for graduates are determined by the student’s final GPA as follow: Cum Laude (3.71 - 4.00), Very Satisfactory (3.41 - 3.70), and Satisfactory (3.00 - 3.40). For a Doctoral program student to earn the Cum Laude degree, his length of study must not exceed 8 (eight) semesters time without retaking any courses and without taking any academic leave, except for student with outstanding achievement based on the promotor and examiner team judgement, the length of study must not exceed 10 (ten) semesters time. The mark “BS” is not counted as course repetition. If a student’s final GPA is within the 3.71 - 4.00 range but he fail to meet the other requirements, he will be awarded the “Very Satisfactory” predicate.

2.4. ACADEMIC PERFORMANCE EVALUATION AND DROPOUT CRITERIA

Undergraduate Program

The university also requires that students maintain satisfactory academic performance during their study at FTUI and meet the following evaluation criteria to be able to continue their studies:

- Attain at least 24 credits with a minimum of C at the end of their second semester;
- Attain at least 48 credits with a minimum of C at the end of their fourth semester;
- Attain at least 72 credits with a minimum of C at the end of their sixth semester;
- Attain at least 96 credits with a minimum of C at the end of their eighth semester;
- Attain at least 120 credits with a minimum of C at the end of their tenth semester;
- Attain all required credit with a minimum of C at the end of their twelfth semester;

Or:

- Have the following problem: have an inactive status (empty) for two semesters in a row thus being declared as “resign” automatically from the status of Universitas Indonesia’s student by the Rector’s decree on Status Determination.
- Proven to be in violation of rules or regulations that caused the student to lose his right as
FTUI students.
 • Deemed unfit to continue their study based on consideration from a team of Medical Doctors appointed by the Head of the University.

Student who still maintain satisfactory academic performance and meet the evaluation criteria to continue his study but would like to resign on his own free will may submit a written application to the Dean with a copy to the Head of the Department.

Master’s Program
The Maximum length of study to earn a Master Degree in FTUI is at the latest 6 (six) semesters, starting from registration time to graduation. This provision also applies to students who enroll in the FTUI Master program with a “probation” status. Students will lose their right to continue the study (dropping out) if:
 • Students fail to achieve a 3.00 GPA of at least 14-18 passed credits (for regular Master Program student) or 12-14 passed credits (for non-regular Master Program student) at the end of the second semesters;
 • In the end of the study period evaluation, students fail to achieve the following graduation requirements: registered as an active student in Universitas Indonesia during said semester both administratively and academically; not exceeding the maximum length of study; completed all administrative obligation including the return of all borrowed library and laboratory collection; and complete all obligation of their study period and/or all assignments given in accordance to the curriculum of the Study Program (including revised Final Project) with a GPA ≥ 3.00 (three point zero)
 • Students who do not register academically and administratively for two consecutive semesters.
 • Proven to be in violation of rules or regulations that caused the student to lose his right as FTUI students.
 • Deemed unfit to continue their study based on consideration from a team of Doctors appointed by the Head of the University.

Student who still maintain satisfactory academic performance and meet the evaluation criteria to continue his study but would like to resign on his own free will may submit a written application to the Dean with a copy to the Head of the Department.

Doctoral Program
The Maximum length of study earn a Doctoral degree in FTUI is 10 (ten) semesters, starting from registration time to graduation.

Students of the Doctoral Program (Class and Research) will lose their right to continue to study (dropping out) if:
 • Students who do not register academically and administratively for two consecutive semesters will be automatically considered to have resigned from UI.
 • Failed to obtain a minimum of B for their Research Proposal Examination or similar exam at the end of their fourth semester;
 • Failed to obtain a minimum of 50 (fifty) percent for their Research based on the judgment of the promoter team at the end of their sixth semester;
 • Failed to obtain a minimum of 75 (seventy five) percent for their Research based on the judgment of the promoter team at the end of their eight semester;
 • Failed to obtain the following by the end of their study period of ten semesters: produce 1 (one) scientific paper based on research for their dissertation as main writer that can be accompanied by the promoter team and has been accepted to be published in an indexed international journal (8 credits); submit proof of compliance of requirements as stated before as part of the requirements for promotion exam; submit 1 (one) Dissertation and participate in
Students of the Doctoral Program (Research) will lose their right to continue to study (dropping out) if:

- Students who do not register academically and administratively for two consecutive semesters will be automatically considered to have resigned from UI;
- Failed to obtain a minimum of B for their Research Proposal Examination or similar exam at the end of their fourth semester;
- Failed to obtain a minimum of 50 (fifty) percent for their Research based on the judgment of the promoter team at the end of their sixth semester;
- Failed to obtain a minimum of 75 (seventy five) percent for their Research based on the judgment of the promoter team at the end of their eighth semester;
- Failed to obtain the following by the end of their study period of ten semesters: produce 1 (one) scientific paper based on research for their dissertation as main writer and be presented at an international scientific conference and published in the proceeding as a full paper (6 credits); produce 1 (one) scientific paper based on research for their dissertation as main writer that can be accompanied by the promoter team and has been accepted to be published in an indexed international journal (8 credits); submit 1 (one) scientific paper that has been accepted to be published in a nationally accredited journal; submit proof of compliance of requirements as stated before as part of the requirements for promotion exam; submit 1 (one) Dissertation and participate in a Promotion Exam as the final step of the Doctoral Program (6-8 credits);
- Exceeded the maximum length of study (10 semesters).
- Proven to be in violation of rules or regulations that caused the student to lose his right as FTUI students.

Student who still maintain satisfactory academic performance and meet the evaluation criteria to continue his study but would like to resign on his own may submit a written application to the Dean with a copy to the Head of the Department.

2.5. ACADEMIC LEAVE

Student who wishes to be away from his/her academic endeavors at FTUI for one to two semesters, but intend to return to FTUI are eligible for academic leave of absence. Leave of absence could be only given to student who has studied at least two semesters at FTUI, unless with specific circumstances. Academic leave for special circumstances are academic leave that is given to students for an unavoidable hindrance, such as: state task, university task, or undergoing medication which prohibited said student to participate in academic activity. Academic leave is not counted as part of the length of study.

Procedures of Academic Leave

1. To obtain academic leave, a student must write a letter requesting for academic leave to the Dean before the beginning of the administrative registration period of semester.
2. If the academic leave is approved, PAF will change the status of the student as academic leave before the beginning of the administrative registration period of semester and the amount of tuition fee will automatically be changed.
3. The student must pay 25 % of tuition fee during the period of administrative registration of
the intended semester.

4. If a student has been granted an academic leave but fail to pay the obligated fee due to them during the registration period, the academic leave will be canceled and the student status will revert to inactive (empty).

5. In the situation as stated above, if the student still insist on making payment after the registration period has passed, the student will be charged with a late administration registration fee in the amount stated in the regulation issued in the Rector’s Academic Fee.

6. If the students fail to pay during the prescribed period of administrative registration, Exceptional Administrative Registration will apply.

7. If the Academic Leave is proposed not accordance with point (1) above, or is proposed after the semester is on, the student should pay full amount (100%) of tuition fee.

2.6. FACULTY and DEPARTMENT JUDICIUMS
Judicum is a meeting held at both the Faculty and the Department level to decide whether a student has fulfill all academic requirements and may graduate and earn a degree in engineering based on the Department/Faculty Evaluation.

2.7. SEMESTER GRADE TRANSCRIPT, DIPLOMA and ACADEMIC TRANSCRIPTS
FTUI Central Administration Office is responsible for issuing Semester Grade Transcript, Diploma and Academic Transcript for all FTUI’s graduates. Student Academic History is issued based on student’s request while the diploma and academic transcripts are issued only once at the time of the student’s graduation. Contained within the Student Academic History and Academic Transcript are name, course code and grades of all courses that the students took during their study period. Also included is the student’s Grade Point Average (GPA) which is calculated based on all courses’ grades. Diplomas and Academic Transcripts will be handed to all graduates no later than 2 (two) months from the date of graduation.

The Semester Academic Transcript (DNS) gives the information on the student’s identity (name, student ID and latest education), Academic Advisor, Faculty, Study Program, Specialty, Education Level, Subject Code, Subject Title, Credit, Letter Grade, Semester GPA, and GPA. The Semester Academic Transcript can be issued as hard copy based on a student request as required. A valid DNS is signed by official handling the academic administration in the Faculty level.

Academic Record recorded chronologically all academic activity of a student since they first registered as a student until they are no longer registered, due to graduation, drop out, or resignation. The academic status of a student of each semester is recorded in the Academic Record. The Academic Record is also used as a source of information for student, Academic Advisor, and Study Program to the success of a student study and is issued as required based on the student’s request and validated by the Vice Dean of the Faculty.

Academic Transcript is given to student that has been declared as a graduate from a Study Program which is decided in a graduation determination meeting and contained information on a student identity (name, student ID, place and date of birth), previous education, education level, study program, specialty, list and code number of subjects, letter grade, number of required credits, number of obtained credits, GPA, title of the student’s Final Project, diploma number and year of graduation. All subjects taken by the student, including repeated subjects and transfer credit subjects, are included in the Academic Transcript which is issued in two language, Bahasa Indonesia and English. The Academic Transcript will be given to students with no arrears of tuition fees.

Diploma is given to student that has been declared as a graduate from a Study Program which is decided in a graduation determination meeting. Diploma contained information on the identity of the diploma holder (name, place and date of birth), academic title, name and signature of the Rector and Dean, date of diploma issued, date of graduation, student ID, diploma number and signature and photo of the diploma holder. In the event that the diploma is lost or damaged, the diploma holder is allowed to request a copy of the diploma. Dean/ Vice Dean/ Director of Academic on behalf of the Rector may signed to validate
a copy of diploma. Diploma will be given to students with no arrears of tuition fees.

2.8 OFFENSES AND SANCTIONS
In any particular courses, no students shall engage in any form of unethical or improper conduct, such as but not limited to examination offenses:

- Utilizing unauthorized materials/notes to enhance performance during on examination.
- Attempting to observe the work of another student.
- Taking an examination for another person, or permitting someone else to do so.
- Collaborating improperly by joint effort on discussion in anyway expressly prohibited by lecturer.
- When incidents, as enumerated above occurs, the following sanctions may be imposed (as per FTUI regulation):
 - The student may be assigned E for the subject in question
 - The student may be suspended for one semester
 - The student may be dismissed or expelled by FTUI
 - If necessary, a meeting of Panitia Penyelesaian Pelanggaran Tata Tertib (Offence Settlement Committee) (PT32) may be held.

Academic Sanction for Perpetrators of Academic Cheating In Exams
a. Academic sanction in the form of the cancellation of said exam (E grade) for student caught or proven committing academic fraud in examination process, such as working with other student, copying other student’s work or giving answer to other student;
b. Academic sanction in the form of study period cancellation (for all subjects) for said semester for student caught or proven committing academic fraud in examination process such as opening books, notes or other equipment planned before;
c. Academic sanction in the form of cancellation study period for said semester and one semester suspension for student caught or proven committing academic fraud in examination process due to working together with outside person(s) outside of the examination room;
d. Academic sanction in the form of expulsion from the Faculty of Engineering Universitas Indonesia (expelled) for student caught or proven committing academic fraud in the examination process by replacing other examinee or by having someone else take their place;
e. Academic sanction in the form of expulsion from the Faculty of Engineering Universitas Indonesia (expelled) for student caught or proven committing academic fraud in the examination process for planning and carrying out the plan to help other examinee;
f. Other academic fraud will be handled through a hearing by the Committee of Rules and Conduct Regulation Violation (Panitia Penyelesaian Pelanggaran Tata Tertib (P3T2)) Faculty of Engineering Universitas Indonesia;
g. Student is entitled to an appeal with the help of their Academic Advisor and the Vice Dean for Academic, Research, and Student Affairs Faculty of Engineering Universitas Indonesia, submitted to the Faculty Academic Senate in the quest of justice.

Academic Sanction on Plagiarism and Act of Fraud in the Completion of Final Project

Plagiarism is an act of stealing ideas or thought already available in written and/or someone else’s writing and used them as if it is our own ideas, thoughts and/or writing thus causing harm/loss to the original owner both material or non material, this plagiarism can be in the form of using a word, phrase, sentence, paragraph, or even a chapter of someone else’s writing or book, without stating the source. Included in this is the auto plagiarism.

Auto Plagiarisme is an act of using an idea or thought repeatedly in writing or using someone’s own writing in parts or whole without stating the origin published source as if those ideas or thoughts are a new idea, thought and/or writing.

Plagiarism criteria used as a based to decide a sanction focuses on the amount of idea or phrase
stolen and how similar the writing in phrase, sentence, paragraph, section, chapter, and the writing as a whole. A work can be considered plagiarism if based on the verification result on the writing contained a similarity level of 35% or more with the original work. To prevent plagiarism, student is obligated to check their final work using software of anti plagiarism provided by the Faculty or University before submitting their work to their advisor/promoter/co-promoter. If such software is unavailable, student is required to check existing list of research in connection to the topic of their research and state such research in their reference of research. Student caught and proven of committing plagiarism is entitled to an appeal tried in the Study Program level to the Faculty which the Faculty will later passed on to the university through the P3T2 to be verified and processed.

In case of an active student, early sanction can be in the form of delaying the final project examination or delaying the graduation status for student who has been declared passing the final project examination. Student that has been declared as a graduate but have not received their diploma, with the approval of the Rector, the Dean may hold said student diploma while await the Rector's final decision. Academic sanction on plagiarism for active student is established through the Dean's decree based on the proposal by the Head of the Study Program or recommendation from the Faculty in one month at the latest since the date of the proposal letter was accepted by the Dean. For graduate student is established through the Rector's Decree based on the P3T2 recommendation. The heaviest academic sanction given can be in the form of cancellation of the student final project (for active student) with the obligation to write a new final project with new topic, while for graduate student the sanction is in the form of revocation of academic titles.

The act of fraud in the writing of Final Project, Essay as Exam Substitute, or Assignment, includes the usage of other person’s service/ replacement/ consultant/ or other service to complete assignments in the name of said student and other manipulative act of fraud. This act does not include the usage of service for data collecting, survey, and data processing for the completion of final project of student. Sanction given to the perpetrator of said act of fraud in the completion of final project is established through the Dean's decree issued in one month at the latest since the proposal letter from the Head of Study Program is received by the Dean. The heaviest academic sanction given can be in the form of cancellation of the student final project (for active student) with the obligation to write a new final project with new topic, while for graduate student the sanction is in the form of revocation of academic titles. Active students who consciously act as a ghost writer in writing the final works for other students will be given the equivalent of student academic sanction given to the perpetrators of acts of fraud.

2.9. ACADEMIC REGULATION OF THE UNIVERSITAS INDONESIA
List of Academic Regulations at Universitas Indonesia can be accessed via http://respository.ui.ac.id.

Below is a list of Decrees that functioned as reference for education program at Universitas Indonesia

GENERAL:
Decree of the Board of Trustees Universitas Indonesia
Number: 008/SK/MWA-UI/2004 on the Amendment of Board of Trustees’ Decree Number: 005/SK/ MWA-UI/2004 on the Code of conduct on Campus Life in Universitas Indonesia

EDUCATION:
Decree of the Rector Universitas Indonesia
Number: 285/SK/R/UI/2003 on the Implementation Guidelines for Cross-Faculty Lectures in Universitas Indonesia

Decree of the Board of Trustees Universitas Indonesia
Number: 006 / MWA-UI/2004 on the Universitas Indonesia’s Academic Curriculum
Decree of the Rector of Universitas Indonesia
Number: 491/SK/R/UI/2004 on Universitas Indonesia Education Activities Conclusion Regulations

Decree of the Board of Trustees Universitas Indonesia

Decree of the Board of Trustees Universitas Indonesia
Number 003 / TAP/MWA-UI/2005 on General Guidelines for Implementation on Universitas Indonesia’s Professional Programs

Regulation of the Board of Trustees Universitas Indonesia
Number: 006 / Peraturan/MWA-UI/2005 on Student Learning Outcomes Evaluation at Universitas Indonesia

Regulation of the Board of Trustees Universitas Indonesia
Number: 007 / Peraturan/MWA-UI/2005 on Academic Education Implementation Norms in Universitas Indonesia

Regulation of the Board of Trustees Universitas Indonesia
Number: 008 / Peraturan/MWA-UI/2005 on Professional Education Curriculum Norms in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 838/SK/R/UI/2006 on Administration of Universitas Indonesia Student’s Learning Outcomes

Decree of the Rector of Universitas Indonesia
Number: 012/SK/R/UI/2007 on Implementation of the of Students Learning Activity in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 450/SK/R/UI/2008 on the Implementation of E-Learning in the University Indonesia

Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 290/D/SK/FTUI/VI/2013 on the English Requirements for Undergraduate International Program Single Degree Faculty of Engineering Universitas Indonesia.

Decree of the Rector of Universitas Indonesia
Number: 014 year 2016 on the Implementation of Undergraduate Program in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 015 year 2016 on the Implementation of Master Program in Universitas Indonesia

Decree of the Rector of Universitas Indonesia
Number: 027 year 2016 on the Implementation of Doctoral Program in Universitas Indonesia

Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 622/D/SK/FTUI/IX/2016 on Academic Sanction for Academic Fraud Perpetrator in Faculty of Engineering Universitas Indonesia.
Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 623/D/SK/FTUI/IX/2016 on General Regulation on Supplementary Exam for Mid Term and Final Examination in Faculty of Engineering Universitas Indonesia.

Decree of the Dean of Faculty of Engineering Universitas Indonesia
Number: 624/D/SK/FTUI/IX/2016 on Academic Sanction for Plagiarism and Act of Fraud in the Completion of Final Project in Faculty of Engineering Universitas Indonesia.

735 2016 panduan penilaian publikasi ilmiah
703 2016 transfer credit
740 2018 persyaratan bahasa inggris
05 2018 penyelenggaraan program doktor

RESEARCH

Decree of the Board of Trustees Universitas Indonesia
Number 002/SK/MWA-UI/2008 on University's Research Norms

Decree of the Board of Trustees Universitas Indonesia
Number 003/SK/MWA-UI/2008 on Research Policy at Universitas Indonesia

Decree of the Board of Trustees Universitas Indonesia
Number 009/SK/MWA-UI/2008 on amendment of the Decree of the Board of Trustees of Universitas Indonesia Number 003/MWA-UI/2008 on Research Policy in Universitas Indonesia
CHAPTER 3
FACILITIES AND CAMPUS LIFE
3. FACILITIES AND CAMPUS LIFE

NEW FACILITIES AVAILABLE IN FTUI
1. All classrooms in S building are now having one special chair for each classroom dedicated to left handed students.
2. FTUI has renovated the S405 classroom into a specially design discussion room for students to learn and discuss in groups in the implementation of Student-Centered Learning (SCL). This renovation is partly funded by USAID through their PEER Science research program by providing chairs, computer screen for each discussion group, wireless LCD projector and documented camera. The renovation is completed by the start of the Odd Semester of 2015. The class room will be able to accommodate up to 80 students in groups discussion form as in problem-based learning (PBL) or Collaborative Learning (CL) and up to 100 students in class room form
3. Online Electricity Metering and Monitoring System now help FTUI in monitoring electricity usage of each building and their characteristic. www.ee.ui.ac.id/power; www.eng.ui.ac.id/power
4. Offline Water Metering and Monitoring System prepare FTUI in determining the water usage of each building and help plan the creation of rain water well within the faculty.
5. Smoking is prohibited throughout most of the faculty areas. However, the new and vastly improved Smoking Shelter is now available in the student’s cafeteria area and in front of the S Building.
6. Starting from April 2012, we have started to tests all of our cafeteria vendors for E-Coli. Working together with the Faculty of Public Health, we conducted several Hygiene tests to our vendors. Between these tests we also conducted seminars, socialization, and counseling to all of our food vendors regarding the level of cleanliness and hygiene level expected from them. We also improved the sewer, sink and the vendor’s facilities to achieve the desired effect. By February 2015, all food vendors in our Student’s Cafeteria are 100% free of E-Coli, Salmonella and Borax. Thus, making us proud to say that FTUI’s Students’ Cafeteria is one of the healthiest in the university.

3.1. INTEGRATED STUDENTS SERVICE BUILDING (PPMT)
This building is located at the left of the Rector building with the one door policy in serving the registration process of all Universitas Indonesia students, whether they are vocational, undergraduate, undergraduate extension, master, doctoral, specialist, and professional students. This building consists of three divisions: PPSI division, Student Affairs division, and Academic division.

3.2. FACULTY ADMINISTRATION CENTER (PAF)
Academic administrative services for all academic programs in FTUI are managed by PAF. The services provided for students include academic records, change of grades from lecturers, testamur and academic transcripts, registration, absence of leave, enrollments and letter of reference letter. The working hour is at 08.00 to 18.00 from Monday to Friday, at PAF building.

3.3. UNIVERSITY CENTRAL LIBRARY
Location: Kampus UI Depok
Service hours of UI Central Library

<table>
<thead>
<tr>
<th></th>
<th>Monday - Friday</th>
<th>Saturday & Sunday</th>
<th>Holly Month of Ramadhan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08.30 - 19.00 WIB</td>
<td>08.30 - 15.00 WIB</td>
<td>08.30 - 15.00 WIB</td>
</tr>
</tbody>
</table>

Membership:
Students, lecturers, researchers and employee of the Universitas Indonesia are entitled for membership of the central library with the following requirements:
1. Provide the latest semester payment proof or the latest study card (IRS) or certification letter from any faculty, unit or department within the Universitas Indonesia.
2. Provide a 2x3 photo (one)
3. Provide a cover letter from the faculty (for lecturers)

Lending Procedures:
- General text books can be borrowed for two weeks (max. 3 books) by showing your Student Card. Borrowed books need to be stamped.
- Reference books, magazines, newspaper and thesis can only be read on the spot or photocopied.
- Dissertation and thesis can only be photocopied as many as 10 pages.

UI Central Library Services

Reference Service
This service is provided to help the UI civitas academica in searching information, especially for students who are working on their final assignment or research. Information search request may be submitted in person or via email (reflib@ui.ac.id).

Information Package
Information package is a form of service in the form of certain topics of information packages. Each package consists of several articles and their annotation in accordance to the selected topic. Each article can be obtained by contacting the reference division first (reflib@ui.ac.id) or by direct phone request (+6221-7270751).

Information Search Training
The information search training consists of several packages. They are: basic and advance package. This training is provided to help improve the information skill of library visitors and members. This service is available to all university members, especially new students and students who are in their final year. Request for training can be submitted directly or through the email perpusui@ui.ac.id

Circulation (Borrowing Books)
The circulation services are located in level 1
The library’s collection of reference books, thesis, dissertation, research reports and UI-ana can only be read on the spot at the UI Central Library.

UI Central Library Facilities

OPAC (Online Public Access Catalog)
OPAC is a tool to search the information regarding the available collection of the library by using a terminal computer. OPAC computers are available on every floor of the library.

Internet Access
Internet access connection at the UI central library uses the integrated network (JUITA - Jaringan Terpadu) and can also be accessed by using the UI Hotspot. Internet service is also available at the first floor of the central library. Also available are computers with internet access for the usage of library visitors and members.

Computer, Scanner and Data Backup
Students are allowed to use the provided computers to work on their assignments, picture/photo scanning and to burn the result of their information search to a CD.

Photocopy
A photocopy machine is available at the UI Central Library

Discussion, Class and Seminar Rooms
Discussion, Class and Seminar rooms are available for students’ needs and for classes.
Special Study Rooms
Special study rooms are available and can be used by all university members. These rooms are equipped with a desk, filing cabinet and internet access.

Locker
250 lockers are available for UI Central Library Members.

3.4. COMPUTER SCIENCES & NETWORK
Directorate of Information System Development and Service (PPSI) are responsible for the programmed computer network system designed to help fulfill the students and lecturers needs in computer usage (from academic activities such as programming to internet usage) through the Integrated UI network (JUITA).

Requirements for using the JUITA:
• Registered as a UI student
• Fill out registration form with a reference from the Associate Dean for Students Affairs/Head of Study Program/Academic Counselor of the student.

Place of Registration:
• Depok (Integrated Student Service Center Building)
• Salemba (PUSILKOM Building)

Hotline Service
Users who are experiencing problems in the use of this facility can report or request the help of the Computer Technical Unit through the following PPSI hotline service:
Phone : +6221-7863419
Email : support@ui.ac.id
Web Site : http/cso.ui.ac.id
Office Hours : Monday - Friday
(09.00 - 16.00)

Puskom Services at FTUI
Puskom (Pusat Komputer) provides services related to education and information technology development for students and academic/non-academic staff. The office is located at 2nd floor of GK Building at FTUI, Depok Campus. Main duties of Puskom is to provide education facilities for students, learning and research facilities for lecturers, and services for education administration, students and personnel. Puskom also provides connection services to internet and local area network at the Faculty and the University. Internet can be accessed at all area of FTUI. This facility can be used by students as well as faculties. All computer networks have been connected by fiber optic cables for inter-building and copper cable in the buildings with capacity of 100 Mbps. Besides providing local networks, Puskom also controls 7 computer servers with redundancy backup to minimize troubles in academic and research services. Computers are also available for students at various locations at FTUI i.e. computer laboratory at 2nd floor of GK Building, as well as at FTUI building at Salemba Campus. The service hour is 09.00 to 16.00 from Monday to Friday. For further information please contact Puskom at GK Building, 2nd floor, tel. 021-7863508, 021-2720011 ext. 64, or send email to puskom@eng.ui.ac.id.

3.5. STUDENT WELFARE
3.5.1. UNIVERSITAS INDONESIA MOSQUES
• The Ukhuwah Islamiyah (UI) Mosque Depok located in the UI Depok Campus. Established on 28 January 1987 for the Friday prayer with Prof. H. Moh. Daud Ali, SH as khatib (preacher). This mosque was named Ukhuwah Islamiyah for within this mosque is fostered the Islamic brotherhood within the campus as well as the unity and brotherhood of Moslem from within and outside of campus area.
• The Arif Rahman Hakim (ARH) Mosque Salemba is located in the UI Salemba Campus. Established on 10 November 1967, 27 Rajab 1387 H. Based on the UI Rector Decree dated 16 August
1966, a development committee was established and consist of students. The vision of this mosque is to be the center of Islam education in the campus and produces modern Moslems (equipped with faith and knowledge) that can implement the teachings of Islam and help solve religious problems.

3.5.2. TEKSAS BRIDGE
The Teksas Bridge is a linkage bridge between two faculties in the UI Depok campus, the Faculty of Engineering and the Faculty of Humanities. These two faculties are separated by an 80 meters lake. The Teksas Bridge is hoped to serve as:
- As a connection bridge and “Landmark”
- As a research object for steel application product
- As a promotional tool on “Aesthetics Steel”

The concept of this bridge aims towards two approach:
- The side of the bridge on the Faculty of Engineering UI reflects a powerful and masculine character symbolized with a “Sail” shaped Pylon Bridge soaring to the sky as a symbol of “LINGGA”.
- The side of the bridge on the Faculty of Humanities UI reflects a flexible and feminine character symbolized with a “Hole Gate” shaped Pylon Bridge as a symbol of “YONI”.

3.5.3. CAMPUS BUS
To serve the transportation needs of students within the campus, Universitas Indonesia provides 20 campus busses. These busses will serve inside campus routes from these times: 07.00-21.00 (Monday-Friday) and 07.00-14.00 (Saturday). These yellow campus busses have two different routes:
- Blue: UI Dormitory, Gerbatama, UI Train Station, Faculty of Psychology, Faculty of Social and Political Science, Faculty of Humanities, Faculty of Economics, Faculty of Engineering, KuKel, Student Center Building, Faculty of Mathematic and Natural Sciences, Faculty of Public Health, Balairung, UI Mosque, and Faculty of Law.
- Red: UI Dormitory, Gerbatama, UI Trains Station, Faculty of Law, UI Mosque, Balairung, Faculty of Public Health, Faculty of Mathematic and Natural Sciences, Student Center Building, KuKel, Faculty of Engineering, Faculty of Economics, Faculty of Humanities, Faculty of Social and Political Science, and Faculty of Psychology.

Executive Bus
In order to provide transportation service, especially outside campus transportation, Universitas Indonesia provides Air Conditioned and Non-Air Conditioned busses for rent. These busses are available for various types of activity, such as: UI student organization activities, academic support activities, and many more.

Rental Procedures:
- Written rental request is submitted to:
 Directorate of Student Affairs
 Integrated Student Service Center
 Building, Kampus UI Depok
 Phone : +6221-7867222 (Operator)
 Fax : +6221-7863453
- Payment should be made, at the very latest, one week before the date of use via BNI Bank, Kampus UI Depok Branch, and Account Number: 1273000024 under the name of Universitas Indonesia.
- Proof of payment must be submitted to the Directorate of Student Affairs. Cancellation done 3 (three) days before the date of use will be charge a 10% cancellation fee from the paid rent. Cancellation on the date of use will be charge a 30% cancellation fee from the paid rent.

3.5.4. STUDENT WELFARE AND FACILITY BUILDING (GKFM) / University Health Center
Address : Kampus UI Depok
Phone : +6221-78881019

This building is located in front of the Faculty of Engineering in UI Campus Depok. GKFM / Uni-
versity Health Center Building was built to better serve several important needs of the students, such as:

Polyclinic Unit
Provide a free health service to all students of the Universitas Indonesia. Students only need to provide their Student ID card to process their membership card for future medical record to receive this service. There are several services available:
- a. Public Health Service
- b. Dental Health Service

Service Hours:
Monday - Thursday : 08.00 - 12.30
and 14.00 - 19.00
Friday : 08.00 - 11.00
and 14.00 - 19.00
Saturday : 08.00 - 12.00

Note:
Aside from the above mentioned facilities for students which are funded by the Students Welfare and Facility Fund, GKFM in UI Depok Campus also provide facilities for blood chemistry examinations, x-ray, and cardiac examination for university members with affordable prices.

Pharmacy
The pharmacy provides free medicine for 3 (three) days for UI students who seek treatments in the Polyclinic unit. The pharmacy also provides various other medicines for first aid needs for general public purchase.

UI Student Counseling and Guidance (BKM)
In providing service in the mental welfare of the UI students, the Student Counseling and Guidance is a place where UI students can receive psychological help in dealing with academic, personal or family problems. These psychological help are given in the form of counseling and guidance. Guidance service is the provision of information (to an individual or group) with the purpose of making sure that students are able to learn and build an optimal social relationship. Counseling service is the process of giving help to students and support student in finding a way to solve his problem. Here, a counselor functions as a facilitator.

Services in the UI Student Counseling and Guidance
The routine services provided by the BKM UI are counseling and guidance services daily which are done at:
Service Time : Monday - Friday
Service Hours : 09.00 - 15.00
Place : Student Welfare Center
2nd floor, Student Welfare & Facility Center Building
UI Campus Depok
Phone : +6221-96384797

BKM UI staff of counselors consists of psychologies, psychiatrists, and academic counselors.

Problems handled by BKM UI
Generally, the problems handled by the BKM UI consist of academic, personal, family, and social problems.

BKM UI’s other services:
- Online counseling
- Peer counseling training
- Counseling training for counselor lecturers and BKM management in the faculty level.
• Coordinate meeting between BKM in the university and faculty level.
• Personality development training
• Group therapy

UI Salemba Polyclinic
For students in the UI Salemba Campus, the university also provides similar health service in the polyclinic for public health service.

Service time: Monday - Friday: 08.00 - 12.00 and 14.00 - 18.00

3.5.5. UI STUDENT DORMITORY
Location: UI Campus, Depok
Phone/Fax: +6221-7874414 / +6221-7874271
Capacity: 594 rooms for male students housing, 656 rooms for female students housing (including the VIP - AC rooms)
Facility: TV, cafetaria, public pay phone, public internet shops, computer rental

UI Wismarini Student Dormitory
Location: Jl. Otto Iskandar Dinata No. 38, East Jakarta, Indonesia
Phone/Fax: +6221-8195058
Capacity: 72 rooms for male students housing, 111 rooms for female students housing
Facility: Badminton court, TV, cafeteria, Table Tennis

The UI Wismarini student dormitory is provided to students from the Salemba Campus (Faculty of Medicine & Faculty of Dentistry).

Facility
• Standard housing facility: Bed, table, chair, wardrobe, shoe rack, lamp, bathroom, wash basin.
• Technology facility: Public pay phone shops, public internet shop, photocopy
• Public facility: Cafeteria, praying room, laundry service, sport facility, car/motorcycle parking areas, minimart, dormitory market

Room Specification
• Standard room: Standard bed, table, chair, bookcase, wardrobe, shoe rack, lamp, outdoor bathroom, non AC.
• Standard plus room: Standard bed, table, chair, book case, wardrobe, shoe rack, lamp, outdoor bathroom, air conditioned.
• Bungur and Melati room: Spring bed mattress, table, chair, indoor bathroom, wash basin, small kitchen, living room, air conditioned.
• VIP room: Spring bed mattress, table, chair, indoor bathroom, wash basin, small kitchen, living room, air conditioned.

Other information
• UI Depok dormitory has their own set of rules and regulations which must be obeyed by all dormitory residents as an attempt to create conducive environment for dormitory residents and as an attempt to maintain harmony among the various elements of the UI Depok dormitory residents.
• Each undergraduate student residents of the UI Depok dormitory are entitled to live in the dormitory for one year (semesters 1 and 2).
• Residents will be charged for every electronic device which they brought to their dormitory rooms.
• For further information, please contact UI Dormitory secretariat at +6221-78744144 or by
Registration Process Flow Chart for UI Dormitory

Step 1: Joint Academic Registration where students will receive their student ID number (NPM). Students will then be asked to fill out registration form and enclose:
(1) a copy of ID card
(2) a copy of academic registration proof
(3) a copy of acceptance letter
(4) 3x4 photographs
(5) a letter of statement on impoverished condition
(6) not a smoker statement

Step 2: acquire a recommendation from the Faculty’s Associate Dean for Students Affair --> submit the form package + recommendation --> considered entitled to a room in the dormitory: No --> STOP; Yes --> continue to the next step

Step 3: Make a registration at the UI Depok dormitory by submitting the form package + recommendation, pay the first month rent + security deposit at the dormitory counter.

Step 4: Accepted as dormitory resident for two semesters. Submit proof of payment and receive the room key.

3.5.6. WISMA MAKARA
Phone : +6221-78883670, 78883671
Reservation : +6221-78883672
E-mail : info@makara.cso.ui.ac.id
Website : http://www.wismamakara.com

Wisma Makara, located within the UI Depok campus, is a choice of accommodation for the Southern Jakarta and Depok area. This hotel is very suitable for seminar, training, workshop activities. Surrounded by rubber trees and a lake; the hotel’s cool, calm, and beautiful atmosphere provides the perfect background for your various activities. The hotel’s tranquility also makes it very suitable for those of you who need tranquility to work and rest.

Available facilities:
- 70 fully furnished rooms (AC, TV, refrigerator)
- Restaurant
- Swimming Pool
- Coffee Shop
- Meeting room (up to 100 person capacity)
- Pay phone shop and internet shop
- Photocopy
- Ballroom (with 800 person capacity)
- Parking area

3.5.7. UI STUDENT ACTIVITY CENTER (PUSGIWA)
Location : UI Campus Depok
Phone : +6221-7270201

Pusgiwa UI is a place for various student activities in Universitas Indonesia. Here we can find secretariat offices of various UI student organizations. Pusgiwa also provides many facilities for students’ activities such as an 300-400 person auditorium.
3.5.8. UI STUDENTS HALL
Location: UI Salemba Campus
Capacity: 300 People
Phone: +6221-31901355/56

The UI Salemba Student Hall is one of the facilities in UI under the management of Directorate of Student Affairs and Alumni Relation. This hall is often used for various activities such as meetings, seminars, workshops, and many more. The hall is available for use by the university members and public.

3.5.9. SPORT FACILITIES
A. Stadium
- Football field
- Triple Jump Field
- Athletic Field
B. In Door (Gymnasium)
- Badminton court
- Volleyball court
- Basketball court
C. Out Door
- Hockey field
- Basketball court (3 lines)
- Badminton court (1 line)

Permit form or letter for the use of UI Student Activity Center (Pusgiwa), UI Student Hall, and Sport Facilities must be submitted to the Directorate of Student Affairs and Alumni Relation UI located at the Student Activity Center Building, UI Campus Depok.
Phone: +6221-7866403, 7863453
Fax: +6221-7863453

at FTUI, several sport facilities are available: basket ball court, futsal court and climbing wall.

3.5.10. BIKE TO CAMPUS
As a proof to Universitas Indonesia’s commitment in implementing the “Go Green” program, UI has provided free bicycles as a mean of transportation within the campus area. Started in 2008, this program establishes collaboration with the Bike to Work and Polygon, making UI the first campus in Indonesia with their own Bike to Campus program.

These bicycles, which colors and and form are specially design for UI, are single seat bicycles. By July 2009, there are around 300 units of bicycle available for use and will continue to be added in accordance with the campus development or demand.

How to Borrow:
1. Students simply showed their student ID card (KTM) to officer in charge of each bike shelter.
2. Campus bicycle can only be use on the available bicycle track. It is forbidden to ride them outside of the available track or to take them outside of campus area.
3. Each bicycle is equipped with a trunk with a maximum capacity of 10 kg and is not to be use as a passenger space.
4. Borrowed bicycle is the responsibility of each student until it is returned to the officer in charge of each bike shelter.
5. Students may return the borrowed bicycle at the nearest bike shelter by showing their student ID card (KTM) to the officer of said shelter.

Service time for Bike to Campus is Monday to Friday, 08.00 - 17.00. For usage outside of service day and time, interested party must coordinate in accordance to the existing regulation.
A few points worth noting in cycling:
Once you've received your borrowed bicycle from the shelter officer, please do the following:
1. Make sure that your bicycle are in good order and function well.
2. Make sure that you have both hand on the bicycle handle, put your books/bags on the provided space.
3. Arrange your seat in accordance to your height, the height of your seat determines your comfort in cycling.
4. Each bicycle has three shifter levels, use them in accordance.
5. Ride the bicycle on the provided track, stay at the left side of the track when passing other bicycle.
6. Pay special care to motorcycles at each crossing.
7. Pay special attention to cycling safety.

3.6. STUDENT ORGANIZATION
Students are a nation’s agent of change in making changes towards a fair and prosper independent society. Their power in fighting and struggling toward that goal must always be balanced with moral power as future asset in their fight in realizing the country's objectives. Thus, students need a vessel where all of their independent, family oriented, scientific, society oriented, and open activities can be accommodated. In Universitas Indonesia, this vessel is called Universitas Indonesia Student Society Association (Ikatan Keluarga Mahasiswa Universitas Indonesia - IKM UI).

IKM UI is a formal and legal organization which is the parent organization for all student activities in Universitas Indonesia. IKM UI adopts constitutional values adapted with the need of student lives. Sovereignty of IKM UI lies in the hand of the students and is fully implemented according to Laws and Constitution of IKM UI. The members of IKM UI are registered students in the Universitas Indonesia, consisting of active and regular members. Active members are IKM UI members that have followed active member admission procedures and received recommendation from the faculty. Regular members are IKM UI members that are not registered within the active membership of IKM UI. The symbol of the Universitas Indonesia Student Society Association (IKM UI) is the Makara of Universitas Indonesia with the wording IKATAN KELUARGA MAHASISWA UNIVERSITAS INDONESIA in black.

Student organizations that are incorporated within the IKM UI are:
1. Students Forum
2. Students Representative Council
3. Student Executive Body
4. Financial Audit Agency
5. Student Court
6. Student Element of the Board of Trustees
7. Autonomous Body of the Student Activity Unit
8. Semi Autonomous Body of the Student Activity Unit

Students Representative Council (Dewan Perwakilan Mahasiswa - DPM)
Students Representative Council is the high level body within the Universitas Indonesia Student Society Association (IKM UI) which possesses a legislative power. Members of the DPM UI consist of independent members from each faculties and representatives of legislative bodies of each faculty. Independent members are voted through a general election, while there can only be one representative from each faculty's legislative body. Membership of DPM UI is inaugurated by a student forum decree. Term of office for members of the DPM UI is one year and ended simultaneously with the inauguration of the new members of the DPM. The requirements for becoming a member of the DPM UI are regulated within the IKM UI laws. DPM UI has the authority in term of legislative, supervision, and assessment of Students Representative Council’s (BEM UI) Work Accountability Report, jurisdiction, facility, and designing the admission mechanism and follow up on financial budget plan of each student organizations within the Universitas Indonesia for each
period of management. Members of the DPM UI are entitled to interpellation right, voting right, and the right to convey suggestion and express their opinions.

Secretariat : Student Activity Center
Building (Pusgiwa), 2nd floor
Phone : +6221-94629107,
+6285717884964

Students Representative Council (Badan Eksekutif Mahasiswa - BEM)
Universitas Indonesia Students Representative Council is a student organization within the university level with the executive power. Term of office for UI Students Representative Council is one year, from January to December each year. Chairman and Vice Chairman of BEM UI are elected as a couple directly by members of the IKM UI in a Universitas Indonesia General Election. The elected Chairman and Vice Chairman of BEM UI are later officially inaugurated with a Student Forum Decree. Function and authority of BEM UI are, among other: advocate students in issues relating to funds and facilities at the university level; addressing the external politic policy of IKM UI; serve and coordinate with the Universitas Indonesia Autonomy Body of UKM UI, faculty’s executive body, and student element of the Board of Trustees. BEM UI Board of Administrators is elected based on open and close recruitment mechanism.

Student Activity Unit (Unit Kegiatan Mahasiswa - UKM)
Student Activity Unit of Universitas Indonesia (UKM-UI) is a place of student activities and creations in the Universitas Indonesia in one area of specialization, talent and religious services at the university level. The Student Activity Unit consists of the Autonomy and Semi Autonomy Bodies. Universitas Indonesia UKM Autonomy Body is a UKM in the university level which is deemed qualified and valid by the decree of the Student Forum into an autonomic UKM UI Autonomy Body. While the Universitas Indonesia UKM Semi Autonomy Body is a place of student activities and creations in the Universitas Indonesia in one area of specialization, talent and religious services at the university level under the coordination of the Students Representative Council.

a. Art
1. Krida Budaya Dance League
2. Madah Bahana Marching Band
3. Mahawarditra Philharmonic
4. Paragita Choir
5. Student Theater

b. Sport
1. Badminton
2. Hockey
3. Tennis
4. Soccer
5. Basket Ball
6. Swimming
7. Volley Ball
8. Soft Ball
9. Bridge
10. Futsal
11. Dance Sport
12. Cricket
13. Table Tennis

c. Martial Art
1. Taekwondo
2. Merpati Putih
3. Aikido
4. Wushu

d. Religious Groups
1. Moslem Student Society (Nuansa Islam Mahasiswa - SALAM)
2. Catholic Student Society (Keluarga Mahasiswa Katolik - KMK)
3. Oikumene Civitas Academica Society (Persekutuan Oikumene Sivitas Akademika - POSA)
4. Buddhist Student Society (Keluarga Mahasiswa Budhis)
5. Hindu Student Society (Keluarga Mahasiswa Hindu)

e. Academic Group
 1. Eka Prasetya Student Study Group (KSM EP)
 2. English Debating Society (EDS)

f. Entrepreneurship
 1. Student Voice
 2. CEDS
 3. Student Radio (RTC UI FM) 107.9

g. Others
 1. Wira Makara (Student Regiment)
 2. Students’ Mountaineering Club (Mapala)

3.7. CAREER DEVELOPMENT CENTER (CDC)
Career Development Center is a center with the aim of preparing UI graduates to have more skill and higher level of competitiveness and at the same time channeled UI graduates to the working world. CDC is located in the Student Center Building.
Phone/Fax : +6221-70880577/78881021
Email : cdc-ui@ui.ac.id
FTUI also has a CDC, located at 3rd floor of Engineering Center (EC) Building.
Phone : +6221-78880766

3.8. NATIONAL STUDENT SCIENCE WEEK
The National Student Science Week (Pekan Ilmiah Mahasiswa Nasional - PIMNAS) is a prestigious event for all Universities in Indonesia organized by the Directorate General of Higher Education (DIKTI). The Adikarta Kertawidaya trophy is the award contested at the PIMNAS. PIMNAS is an opportunity to channel the creativity, education and community service of the society in a Student Activities Program. Below is some of the Student Activities Program being contested within the National Student Science Week.

Student Creativity Program – Research (PKM-P)
This program is a research program that aimed to identify the determinants of the quality of the product, find a causal relationship between two or more factors, experimented with a form or equipment, to establish the method of learning, conduct an inventory of resources, modifying existing products, identify the chemical compounds in the plants, testing the efficacy of plant extracts, formulate marketing techniques, a health survey of street children, teaching methods Balinese script in elementary school students, the rate of economic growth in the craft center of Kasongan, superstition factor that characterizes the behavior of the Javanese community and other activities that have such a purpose.

Student Creativity Program - Technology Application (PKM-T)
This program is a technology assistance program (quality of raw materials, prototypes, models, equipment or production processes, waste management, and quality assurance systems and many other) or other micro-or small-scale industries (home industries, small traders or cooperation) as needed by the potential partners in the program. PKMT require students to exchange ideas with their partner in the program first, because the product is a solution of a problem which the PKMT partner prioritizes. Thus, in the proposed program, the student must attach a Statement of Willingness to Work Together with Partner on a paper with Rp. 6000, - seal.

Student Creativity Program – Entrepreneurship (PKM-K)
This program is the where students develop their skills in entrepreneurship and is a profit oriented program. Business commodities produced can be in the form of goods or services which in turn are one of the basic capital students will need in entrepreneurship and to enter the market.
Student Creativity Program - Community Service (PKM-M)
This program is an assistance program in science, technology, and arts in an effort to increase performance, build business skills, structuring and improving the environment, strengthening community institutions, the socialization of rational drug use, exposure to and understanding aspects of customary law, relief efforts on illiterates in the society and other community programs both for formal and non-formal societies.

Student Creativity Program - Writing Scientific Articles (PKM - AI)
This program is a program of writing a scientific article which originated from student activities in education, research, or community service which the student has done himself (case studies, field practice, community development work, student creativity program, internships, and many other).

Student Creativity Program – Written Concept (PKM - GT)
This program is a program of writing a scientific article that originated from ideas or concepts from a group of students. This written idea refers to an actual problem that can be found in the community and require a smart and realistic solution. In each area these programs are subdivided into seven groups of fields of science, namely:

1. Health field, including: Pharmacy, Nutrition, Obstetrics, Medicine, Dentistry, Nursing, Public Health, and Psychology.
2. Agricultural field, include: Veterinary Medicine, Forestry, Maritime, Fisheries, Agriculture, Animal Husbandry, and Agricultural Technology.
3. Mathematic and Natural Sciences field, including: Astronomy, Biology, Geography, Physics, Chemistry, and Mathematics.
4. Technology and Engineering field, including: Information Technology, Engineering, and Agricultural Technology.
5. Social Economy field, including: Agribusiness (Agriculture), Economic, Social and Political Sciences.
6. Humanities field, including: Religion, Language, Philosophy, Literature, and Art.
7. Education field, including: Education Sciences study program under the Faculty of Education.

Submission deadline for PKM-K, PKM-M, and PKM-P proposals are in October of each year, while deadline proposals for PKM-GT and PKM-AI are in March of each year. Almost all of these areas can be followed by students in 12 faculties at UI. PIMNAS is a means to prove the existence of UI as a research university in Indonesia. Win the Adikarta Kertawidya trophy and show the existence of UI as the Research Campus.

For further information:
http://bem.ui.ac.id/
http://mahasiswa.ui.ac.id/info-pkm-2010.html

3.9. SCHOLARSHIP
Universitas Indonesia currently manages approximately 71 scholarships both from the government and the private sector. Information about scholarships can be obtained at the Student Affairs Division of each faculty or through the website of the Directorate of Student Affairs at www.mahasiswa.ui.ac.id.

There are two types of scholarship in UI:
- UI Scholarship
- Donor/Sponsor Scholarship

General requirement procedure for scholarship application from Donor/Sponsor:
- Submit application through the Faculty Head with a recommendation from the Associate Dean of Student Affairs.
- Submit a photocopy of academic transcript stating a GPA corresponding with the requirement given by the donor/sponsor.
- Not a smoker.
• Is not a receiver of similar other scholarship.
• Other requirements as stated by the Donor/Sponsor.

LIST OF NAME OF SCHOLARSHIP DONOR/SPONSOR FOR UNIVERSITAS INDONESIA STUDENTS

1. Bank BNI 46
2. Bank Central Asia
3. Bank Indonesia
4. Bank KEB Indonesia
5. Bank Lippo
6. Bank Mandiri
 - Bank Mandiri
 - Bank Mandiri Prestasi
7. Bank Mayapada
8. Bank Niaga
9. Bank Permata
10. Bank Tabungan Negara
11. Student Special Aid
 - Special Aid for Undergraduate Program Student
 - Special Aid for Vocational Program Student
12. BAZNAS
13. West Java Scholarship
14. BMU Scholarship
15. CIMB Niaga Excellent Scholarship
16. DKI Jakarta Scholarship
 - Jakarta Achievement Scholarship
 - Jakarta Thesis Scholarship
17. BPMIGAS
18. BRI
19. BUMN
20. DIKNAS
 - Diknas (Excellent Activist Scholarship)
 - Diknas (Excellent Master Scholarship)
 - Diknas (Super Excellent Scholarship)
21. Diknas 1 (BBM)
22. Diknas 2 (PPA)
23. Eka 2007 - 2008
25. Eka Cipta (Uang Buku)
26. Exxon MOBIL (For Students from Aceh)
27. Exxon MOBIL (For Students from Aceh) Thesis
28. Indosat
29. Karya Salemba 4 (KS 4)
30. KORINDO
31. LGE
32. MARUBENI
33. MC.DERMONT
34. Part Time Job
35. Posco (Thesis Aid)
36. PPA/BBM Angkatan 2009
 - PPA/BBM DIII
37. PPE
38. PT. BUMA Apparel Industry
39. PT. Coca Cola
40. PT. Indocement
41. PT. Accenture
42. PT. Sun Life Indonesia
43. PT. Thiess
44. Qatar Charity
45. Recapital

Flowchart of Scholarship Application

Start

Sponsors (companies) offer scholarship program to Universitas Indonesia

The information on the scholarship is then posted on www.mahasiswa.ui.ac.id

The information will then be shared with Student Affairs division in each faculty

Interested and qualified students provide all requirements to apply for the scholarship

Associate Dean of Student Affairs provide his/her recommendation on students who will receive the scholarship.

Student pass scholarship selection

Association Dean of Student Affairs recommends students who will receive the scholarship.

Final scholarship selection and selection result submission to the scholarship sponsor

Scholarship recipient announcement is passed on to the Faculty's student affairs division

Confirmation of scholarship recipients by the sponsor company company

Announcement of the scholarship recipients is posted on www.mahasiswa.ui.ac.id or through the Faculty's Student Affairs Division

Finish
3.10. INSURANCE

Each student enrolled in Universitas Indonesia for each running semester (participate in academic activities) will also be registered as an insurance member of PT. Asuransi Jasa Raharja.

For these insured students, they are allowed to submit an insurance claim in accordance with the following provisions:

• Accidents included within the insurance claim are accidents which occurred during the student’s journey from home to UI campus to participate in academic and extracurricular activities whether it is within or outside of Campus area and with the UI/Faculty’s Management’s knowledge and permission.
• Compensation on claim regarding students’ accident is only applicable to those who have paid the DKFM fee for the semester.
• In the event of an accident, student must report the accident no later than 3x24 hours to the office of the Universitas Indonesia Directorate of Student Affairs Sub Directorate of Student Welfare Services or the nearest PT Jasa Raharja Office Branch.
• If after 180 (one hundred and eighty) days, the accident is not reported, insurance compensation shall be canceled.
• Compensation claim (for victims suffering from injuries) must be submitted by attaching the original and valid receipt from doctor/hospital/clinic that treated the student’s injuries.
• Non-medical care or treatment is not compensable.
• Students may send their inquiries regarding any matter that are not listed here directly to the Universitas Indonesia Head of Student Welfare Sub Directorate at the Central Administration Building, Universitas Indonesia Campus, Depok.

Compensation Receivable from the Insurance Claim *)

Death due to an accident :
Rp. 5,000,000,-

Permanent disability due to accident :
Rp. 10,000,000,-

Care / medical Treatment due to accident (maximum payment) :
Rp. 3,500,000,-

*) Subject about to change without notice
Insurance Claims Process

Start

Students Experience an Accounted Peril

Students file a report to UPT PLK/Nearest Police station

Students request a cover letter from Associate Dean of Student Affairs by providing: doctor’s letter, a proof of payment, chronological report of event and report from UPT PLK/Police

Directorate of Students Affairs

Associate Dean of Student Affairs

Directorate of Student Affairs issues the covering letter to PT. Jasa Raharja Putra

Student files his/her claim to Jasa Raharja Putra Mampang Branch Office, South Jakarta

Finish

<table>
<thead>
<tr>
<th>Cause</th>
<th>Condition</th>
<th>Required Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train Accident</td>
<td>Injured</td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Treatment report from the attending doctor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Original receipt from the hospital or the attending physician</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Accident Report from Polsuska (PT. KAI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Autopsy report from the hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Death Certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. A copy of the victim’s birth certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. A copy of Family Card</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Heir certificate letter from the local district office.</td>
</tr>
<tr>
<td>Road Accident</td>
<td>Injured</td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Treatment report from the attending doctor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Original receipt from the hospital or the attending physician and the pharmacy</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>1. A notification letter from the Faculty’s Associate Dean of Student Affairs to the Directorate of Students Affairs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Accident Report issued by the police</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Accident Report from Transportation Agency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Autopsy report from the hospital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Death Certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. A copy of the victim’s birth certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. A copy of Family Card</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Heir certificate letter from the local district office.</td>
</tr>
</tbody>
</table>
3.11. GENERAL INFORMATION
Post Office, Depok Campus
The Depok Campus Post Office offers postage stamp sales, special delivery mail delivery, registered mail, parcel post, money orders, checks and postal giro and savings services such as Batara. Address: Ground Floor Integrated Student Services Center (PPMT) Building, UI, Depok Campus, 16424

Important Phone Numbers
UI Campus Salemba
Phone : +6221-330343, 3303455
Fax : +6221-330343

UI Campus Depok
Phone : +6221-7270020, 7270021, 7270022, 7270023, 7863460

Firefighters : 116
SAR : 55 021
Ambulance
RSCM : 118
Accidents : 119, 334 130
Police (on duty) : 525011

Police station
Central Jakarta : 3909922
North Jakarta : 491 017
South Jakarta : 7206011
West Jakarta : 5482371
East Jakarta : 8191478
Depok : 7520014

3.12. INTERNATIONAL JOURNAL OF TECHNOLOGY
International Journal of Technology (IJTech) is bi-annual international referred journal with the objectives to explore, develop, and elucidate the knowledge of engineering design and technology, to keep practitioners and researchers informed on current issues and best practices, as well as serving as a platform for the exchange of ideas, knowledge, and expertise among technology researchers and practitioners.

International Journal of Technology provides an opportunity to share detailed insights from different understandings and practices associated with technology. It provides an international forum for cross-disciplinary exchange of insights and ideas regarding value and practices for dissemination. International Journal of Technology will publish your work to international society of practitioners and researchers with interest in technology design and development from a wide variety of sectors.

Website: www.ijtech.eng.ui.ac.id

3.13. QUALITY IN RESEARCH (QiR) CONFERENCE
QiR Conference is a bi-annual international conference organized by FTUI since 1998. The 13th QiR was held in Yogyakarta from 25 - 28 June 2013. It was attended by over 400 participants from 16 different countries in the world. This conference provide a chance for students, be it undergraduate, master or doctoral program students, to present their research findings in front of an international audience. The 14th QiR will be held in August 2015. For more detail information on QiR, please visit: http://qir.eng.ui.ac.id.

3.14. INTERNATIONAL OFFICE
International Office is the university division dedicated to support the internationalization goals of the university and to handle international mobility involving the university and the international civitas academica. Their goal is to assist the international students and scholars handle their academic-related matters at Universitas Indonesia and to bridge Universitas Indonesia’s civitas academica with overseas universities. Universitas Indonesia has a worldwide cooperation with various universities all over the
world. These cooperations include not only academic but also research collaborations, giving the international access and exposure to its entire proud member.

The International Office of Universitas Indonesia provides various services such as: Bilateral Cooperation (University to University Cooperation), Regional Cooperation (International Associations & International Forums), Government to Government Cooperation (G to G), International Learning and Teaching, Student Exchange, Double Degree, Sandwich Program, Visiting Scholars, Study abroad, Scholarship Opportunities, International Research and Research Training, International Knowledge Transfer; are some of the services provided by the International Office. These opportunities are open for all university members from lecturers to students, be it in their Bachelor, Master or Ph.D program. Students can benefit from these programs in experiencing a once in a life time chance to study and understand different academic cultures in the world.

For further information, please contact:
Central Administration Building
1st Floor, Universitas Indonesia
Kampus Depok, Jawa Barat 16424
Phone/fax : +62 21 - 7888 0139
Email : intofui@yahoo.com, io-ui@ui.ac.id
Mlist : internationaloffice@yahoogroups.com
Twitter : @intofui
CHAPTER 4
UNDERGRADUATE PROGRAM
4.1. UNDERGRADUATE PROGRAM IN CIVIL ENGINEERING

Program Specification

| 1. Awarding Institution | Universitas Indonesia
Double Degree: Universitas Indonesia and partner university |
|-------------------------|--|
| 2. Teaching Institution | Universitas Indonesia
Double Degree: Universitas Indonesia and partner university |
| 3. Programme Title | Undergraduate Program in Civil Engineering |
| 4. Class | Regular, Parallel, and International |
| 5. Final Award | Sarjana Teknik (S.T)
Double Degree: Sarjana Teknik (S.T) and Bachelor of Engineering (B.Eng) |
6. Accreditation / Recognition	BAN-PT: A - Accredited, AUN-QA
7. Language(s) of Instruction	Bahasa Indonesia and English
8. Study Scheme (Full Time / Part Time)	Full Time
9. Entry Requirements	High school /equivalent, or D3 / Polytechnique / equivalent,
AND pass the entrance exam.	
10. Study Duration	Designed for 4 years
	Regular
Number of Semester	Number of weeks / semester
8	17
	Short (optional)
3	8
11. Graduate Profiles:	A Bachelor Engineer who is able to design and build green civil engineering infrastructures with professional ethics
12. Expected Learning Outcomes:	
2. Identify, formulate, research literature and analyze complex civil engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (C4-WA2/problem analysis)
3. Design solutions for complex civil engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (C5-WA3/design or development of solutions)
4. Conduct investigations of complex civil engineering problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions. (C4-WA4/investigation)
5. Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex civil engineering problems, with an understanding of the limitations. (P3-WA5/modern tool usage)
6. Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional civil engineering practice and solutions to complex civil engineering problems. (C3-WA6/the engineer and society)
7. Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex civil engineering problems in societal and environmental contexts. (C3-WA7/environment and sustainability) |
8. Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (A4-WA8/ethics)

9. Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings. (P3-WA9/individual and team work)

10. Communicate effectively on complex civil engineering activities with the civil engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. (C3, P3/WA10 communication)

11. Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. (C3-WA11/project management and finance)

12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. (C3-WA12/lifelong learning)

13. Propose alternative solutions of several problems occur in society, nation and country. (C3-UI-B)

14. Use knowledge of entrepreneurship to identify an independent business based on creativity and professional ethics. (C3-UI-E)

Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>13%</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>27</td>
<td>19%</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>79</td>
<td>55%</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>12</td>
<td>8%</td>
</tr>
<tr>
<td>v</td>
<td>Internship, Seminar, Undergraduate Thesis, Project</td>
<td>8</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100%</td>
</tr>
</tbody>
</table>

14. Total Credit Hours to Graduate 144 SKS
Learning Outcomes Flow Diagram

Graduates Profile
“A Bachelor Engineer who is able to design and built green civil engineering infrastructures with professional ethics”

1. Propose alternative solutions of several problems occur in society, nation and country (UI)
2. Use knowledge of entrepreneurship to identify an independent business based on creativity and professional ethics (UI)
3. Apply knowledge of mathematics, natural science, engineering fundamentals and civil engineering to the solution of complex engineering problems (WA1)
4. Identify, formulate, research literature and analyze complex civil engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (WA2).
5. Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex civil engineering problems, with an understanding of the limitations (WA5)
6. Communicate effectively on complex civil engineering activities with the civil engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. (WA19)
7. Conduct investigations of complex civil engineering problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)
8. Design solutions for complex civil engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations (WA3)
9. Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments (WA11)
10. Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex civil engineering problems in societal and environmental contexts. (WA7)
11. Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional civil engineering practice and solutions to complex civil engineering problems. (WA6)
12. Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (WA8)
13. Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings. (WA9)
14. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (WA12)

Demonstrate integrity, critical thinking, creative mind, innovative and intellectual curiosity in solving individual and group problems. (UI)

Can operate ICT (UI)
Communicate effectively in Bahasa and English for academic and non-academic purposes. (UI)
CIVIL ENGINEERING UNDERGRADUATE PROGRAM

FAST TRACK PROGRAMME FOR DOUBLE DEGREE

Semester 1 - 8
Compulsory Course Graduate Programme is 132 SRS
Elective Course is 22 Credits (taken from Compulsory Course Graduate Programme and Elective Master Course)

Semester 9 - 10
Single Degree Compulsory Course and Elective Master Course is 22 credits
Double Degree Compulsory Course and Similar Elective Master Course is 22 credits including Thesis
Flow Diagram of Subjects at Regular and Parallel Program

1. Structural Analysis with Stiffness Method
2. Transportation Engineering
3. Global Issue of Environmental Problem
4. River Engineering
5. Hydraulics
6. Courses from other Department
7. Courses at Master Program

1. Wood Structural Design
2. Steel Structural Design
3. Construction Methods in Geotechnic
4. Pollution Prevention
5. Urban System and Utility
6. Rain Management
7. Courses from other Department
8. Courses at Master Program

Technical & Design Elective Core
- Environment Impact Analysis & ISO
- Design of Integrated Solid Waste Process
- Ethics & Construction Law
- Mechanical Earthworks & Heavy Equipments

Nature & Engineering Sciences Electives
- Sustainable Built Environment
- 2) Dynamics
- Integrated Character Building Course A
- Integrated Character Building Course B
- 1st Semester
- 2nd Semester
- 3rd Semester
- 4th Semester
- 5th Semester
- 6th Semester
- 7th Semester
- 8th Semester
Flow Diagram of Subjects - International Undergraduate Program on Civil Engineering

1st Semester
- Calculus 1
- Intro. to Civil Engineering System
- Material Properties (2+1)
- Statics
- Linear Algebra
- Basic Chemistry
- Academic Writing

2nd Semester
- Calculus 2
- Construction Drawing
- Statics
- Linear Algebra
- Advanced Chemistry

3rd Semester
- Advanced Calculus
- Building Construction
- Solid Mechanics
- Soil Mechanics
- Engineering Economics
- Engineering Management
- Construction Management
- Methods & Constr. Equipment
- Health, Safety & Environment Protection

4th Semester
- Numerical Computing
- Surveying
- Structural Analysis
- Hydraulics
- Construction Management
- Methods & Constr. Equipment
- Health, Safety & Environment Protection

5th Semester
- Integrated Character Building Course B
- Integrated Character Building Course A
- Sport/Art
- Steel Structure 1
- Concrete Structure 1
- Foundation Engineering
- Water Engineering 1
- Water Engineering 2
- Capstone Project
- Internship
- Seminar
- Final Project

6th Semester
- Road-Geometric Design
- Pavement Design
- Steel Structure 1
- Concrete Structure 1
- Construction Management
- Methods & Constr. Equipment
- Health, Safety & Environment Protection

7th Semester
- 1) River Engineering
- 2) Concrete Structure 2
- 3) Sustainable Build Environment
- 4) Design of Integrated Solid Manage
- 5) Pollution Prevention
- 6) Courses in other Study Program
- 7) Course in Master Degree Program
- Capstone Project
- Internship
- Seminar
- Final Project

8th Semester
- Single Degree Program Semester 1 to 8 in UI
- Double Degree Program in UI
- Semester 5 to 8 Continue to QUT or other Partner Universities

Elective Courses
- 1) Steel Structure 2
- 2) Construction Methods in Geotechnics
- 3) Rain Management
- 4) Urban Planning & Sanitation
- 5) Environmental Impact Anal. & ISO
- 6) Courses in other Study Program
- 7) Course in Master Degree Program

Academic Writing

CIVIL ENGINEERING
Course Structure of Undergraduate Program in Civil Engineering (Regular/Parallel)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE610002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE610003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCV601001</td>
<td>Intro to Civil Engineering System</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE610020 - UIGE610048</td>
<td>Sport/Art</td>
<td>1</td>
</tr>
<tr>
<td>UIGE610010 - UIGE610015</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGE600009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 603 001</td>
<td>Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 603 002</td>
<td>Material Properties</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 603 003</td>
<td>Construction Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 603 004</td>
<td>Surveying</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 603 005</td>
<td>Statics</td>
<td>4</td>
</tr>
<tr>
<td>ENCV 603 006</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGE600010</td>
<td>Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 604 001</td>
<td>Advanced Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 604 002</td>
<td>Numerical Computing</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 604 003</td>
<td>Building Construction</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 604 004</td>
<td>Solid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ENCV 604 005</td>
<td>Basic Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 604 006</td>
<td>Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGE600012</td>
<td>Health Safety and Environmental Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 605 011</td>
<td>Structural Analyses</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 605 012</td>
<td>Concrete Structure 1</td>
<td>3</td>
</tr>
</tbody>
</table>
UNDERGRADUATE PROGRAM

6th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 605 013</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 605 014</td>
<td>Road Geometric Design</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 605 015</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 605 016</td>
<td>Water Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE600011</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 606 001</td>
<td>Steel Structure 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 606 002</td>
<td>Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 606 003</td>
<td>Pavement Design</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 606 004</td>
<td>Water Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 606 005</td>
<td>Construction Management</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 606 006</td>
<td>Construct Method & Equipments</td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 607 001</td>
<td>Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 600 001</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 600 002</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Students choose 12 credits of elective courses program of Civil Engineering or (2) other study program in Universitas Indonesia

| **Sub Total** | **13** | |

Resume

<table>
<thead>
<tr>
<th>Subject Category</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>27</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>87</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>132</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>12</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 607 002</td>
<td>Civil Engineering System</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 607 003</td>
<td>Sustainable Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 607 004</td>
<td>Steel Structure 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 607 005</td>
<td>River Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 605 001</td>
<td>Urban System and Utility</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 608 003</td>
<td>Concrete Structure 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 608 004</td>
<td>Construction Methods in Geotechnic</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 608 005</td>
<td>Stormwater Management</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 606 004</td>
<td>Environmental Impact Analyses and ISO</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Structure International Undergraduate Civil Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIGE 610002</td>
<td>Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 610009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 610010</td>
<td>Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 611001</td>
<td>Intro to Civil Engineering System</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 611002</td>
<td>Material Properties</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE 610002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 610007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610008</td>
<td>Physics (Electricity, MWO) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENCV 612 001</td>
<td>Advanced Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 612 002</td>
<td>Construction Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 612 003</td>
<td>Statics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE 610011</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 613 001</td>
<td>Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 613 002</td>
<td>Building Construction</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 613 003</td>
<td>Solid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ENCV 613 004</td>
<td>Basic Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENCV 613 005</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENGE610012</td>
<td>Health Safety Environmental Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 614 001</td>
<td>Numerical Method</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 614 002</td>
<td>Surveying</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 614 003</td>
<td>Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 614 004</td>
<td>Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 614 005</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 614 006</td>
<td>Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE610004</td>
<td>Integrated Character Building Course B</td>
<td>6</td>
</tr>
<tr>
<td>ENCV 615 001</td>
<td>Steel Structure 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 615 002</td>
<td>Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 615 003</td>
<td>Road Geometric Design</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 615 004</td>
<td>Water Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 615 005</td>
<td>Ethics and Legal Aspect of Construction Contract</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>6th Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Character Building Course A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE610003</td>
<td>Sports / Arts</td>
<td>1</td>
</tr>
<tr>
<td>ENCV 616 001</td>
<td>Concrete Structure 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 616 002</td>
<td>Pavement Design</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 616 003</td>
<td>Water Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 616 004</td>
<td>Construction Management</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 616 005</td>
<td>Construction Methods & Equipments</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>7th Semester</td>
<td></td>
</tr>
<tr>
<td>ENCV 617 001</td>
<td>Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 610 001</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 610 002</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Students choose 12 credits of elective courses offered by : (1) undergraduate/postgraduate program of Civil Engineering or (2) other study program in Universitas Indonesia</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8th Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE610005-9</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 618 001</td>
<td>Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 610 003</td>
<td>Final Project</td>
<td>4</td>
</tr>
</tbody>
</table>
Students choose 12 credits of elective courses offered by:
(1) undergraduate/postgraduate program of Civil Engineering or (2) other study program in Universitas Indonesia

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sub Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>114</td>
</tr>
</tbody>
</table>

Resume

- University General Subjects: 18
- Basic Engineering Subjects: 27
- Core Subjects: 87
- Sub-Total: 132
- Electives Subjects: 12
- Total Credit Hours to Graduate: 144

Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 617 002</td>
<td>Civil Engineering System</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 617 003</td>
<td>Sustainable Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 617 004</td>
<td>Concrete Structure 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 617 005</td>
<td>River Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEV606004</td>
<td>Environmental Impact Analyses and ISO</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 618 002</td>
<td>Steel Structure 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 618 003</td>
<td>Construction Methods in Geotechnic</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 618 004</td>
<td>Stormwater Management</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 618 005</td>
<td>Urban System and Utility</td>
<td>3</td>
</tr>
</tbody>
</table>

*) Students may choose Elective courses offered by other Department/Faculty or offered by Master Program
UNDERGRADUATE PROGRAM

SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment

Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)

Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method: Active learning, Contextual language learning, small group discussion.

Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
UIGE600003
3 sks
Learning Objectives: After attending this subject, students are expected to capable of use English to support the study in university and improve language learning independently.

Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary, Listening strategies, Extensive reading) Grammar: (Revision of Basic grammar, Types of sentences, Adjective clauses, Adverb clauses, Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking, Reading popular science articles, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article, Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks

Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)

Prerequisites: OBM (New Student Orientation)

Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005
2 sks

General instructional objectives: The cultivation of students who have concern for social, national and country's issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human's basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam's motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)
CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.
Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of these studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society.

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks
General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.
Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

HINDU STUDY
UIGE600013/UIGE610008
2 sks
Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagavadgita, deep understanding of the Sarasamuschaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks
Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture (the responsibility of religious society in the realization of critical thinking (academic), work hard and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)
KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be chosen:
Appreciation of Film (*UIGE600020*), Batik (*UIGE600021*), Photography (*UIGE600022*), Calligraphy (*UIGE600023*), Javanese Karawitan (*UIGE600024*), Balinese Dance and Karawitan (*UIGE600025*), Comic (*UIGE600026*), Painting (*UIGE600027*), Music and Vocal (*UIGE600028*), Theater (*UIGE600029*), Wayang (*UIGE600030*)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be chosen:
Basketball (*UIGE600040*), Volley Ball (*UIGE600041*), Badminton (*UIGE600042*), Futsal (*UIGE600043*), Hockey (*UIGE600044*), Football (*UIGE600045*), Softball (*UIGE600046*), Tennis (*UIGE600047*), Table Tennis (*UIGE600048*)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.

LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermo-
dynamics. Calculus is used as a mathematical helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students' knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill.

Students will also be trained on how to explain and analyse the nature phenomenon and the result of human engineering that exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks

Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks

Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is used as a mathematical helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students' knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be trained on how to explain and analyze the nature phenomenon and the result of human engineering that exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.

PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks

Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry. Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.
STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis. Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties. The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment. Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.
ENCV 601 001 / ENCV611001
Introduction to Civil Engineering System
3 Credits
Learning Outcomes:
1. Students will be able to elaborate the working scope of Civil Engineering with its sub-expertise for a system related to Civil Engineering work;
2. Be able to work in a team;
3. Be able to deliver the ideas in oral or written form.

Competencies in Curriculum: Prior knowledge for WA6 (the engineer and society), WA7 (environment and sustainability), WA9 (individual and team work) and WA10 (communication)

Syllabus: Introducing the system and working scope of Civil Engineering: General description of the system and work scope of Civil Engineering, General Description about the sub-expertise of Transportation Engineering, Geotechnical Engineering, Water Resources Management, Environmental Engineering, Structural Engineering and Construction Management; Components and Functions of buildings/infrastructures in Civil Engineering: Physical and non-physical components of buildings/infrastructures in Civil Engineering, Functions of physical and non-physical of buildings/infrastructures in Civil Engineering; Role of Civil Engineering Bachelors: Roles of Civil Engineering Bachelors in areas of expertise of Transportation Engineering, Geotechnical Engineering, Water Resources Management, Environmental Engineering, Structural Engineering and Construction Management, Relationship between scope of work between areas of expertise.

Prerequisites:

Text Book References:
3. The Little Book of Civilisation

ENCV 604 001 / ENCV612001
Advanced Chemistry
2 Credits
1. Learning Outcomes: Students will be able to derive and use the concept of: ordinary differential equation and calculus vector in order to solve its applied problems. (C2)

Competencies in Curriculum: Prior knowledge of WA1 (Engineering knowledge)

Prerequisites: Calculus 1 and Calculus 2

Text Book References:

ENCV 603 002 / ENCV611002
Material Properties
3 Credits
Learning Outcomes:
1. Students will be able to explain comprehensively the definition of practical and elementary
aspects of materials in the Civil Engineering field related to the tension-strain relationship, elasticity, behavior through time, damping property, atom structures, plasticity, yielding criteria, fatigue, ductility, and corrosion process;

2. Be able to design concrete mix design materials according to the desired concrete compressive strength; able to explain the compression test process of a cylinder concrete sample and the tensile test of steel reinforcement in the laboratory and able to explain the meaning of the test results;

3. Be able to work in a team.

Competencies in Curriculum: prior knowledge for WA 1 (Engineering knowledge), WA 4 (investigation) and WA9 (team work)

Syllabus: Material Particulate, Agregat, Semen Portland dan Beton Semen Portland, Baja struktural, Semen aspalt dan beton aspalt, kayu, polimer dan plastik, Beton Serat, Dasardasar Dasar dasar material dan solid, micro struktur dan surface properties; Rasponse material terhadap stresses; Leleh dan fracture; Rheology dari fluida dan solid; Fatique

Prasyarat: -

Buku Ajar:

ENCV 603 003 / ENCV612002
Construction Drawing
2 Credits

Learning Outcomes:
1. Students will be able to explain engineering drawing symbols in Civil Engineering field and draw it manually or using a software (AutoCAD);
2. Be able to design a one-floor simple healthy house building;
3. Be able to draw the one-floor simple healthy house building according to rules and procedures of engineering drawing such as aperture drawing (plans and appearance) and section view; covering dimension/sizes; foundation drawing, structural beam and column drawing, trestlework drawing, electrical installation and plumbing.

Competencies in Curriculum: Prior knowledge for WA5 (modern tool usage) and WA10 (communication)

Syllabus: introduction to Civil Engineering knowledge discipline scope and Civil Engineering building construction, introduction to engineering drawing, benefit and purpose of drawing in design process; introduction to drawing tools, drawing paper format, drawing head, standards, lettering, leader, and scale; geometric construction; pictorial projection; orthogonal projection; section view drawing; details of the building drawing, construction drawing of wooden and light steel rooftop; beam construction drawing, column and river stone foundation; electrical installation drawing and plumbing drawing

Prerequisites:

Text Book References:
1. Neufret, Ernst, Data Arsitek Jilid 1 dan 2, Penerbit Erlangga, Jakarta, 1989

ENCV 603 004 / ENCV614002
Surveying (2+1)
3 Credits

Learning Outcomes:
1. Students will be able to use various measuring instruments to solve mapping problems and pegs in civil engineering and environmental engineering works, surveying and displaying the results in a form of drawing with integrating various measuring methods and able to read and draw the data from the surveying results done by someone else;
2. Be able to work in team.

Competencies in Curriculum: prior knowledge for WA 4 (experiment) and WA9 (individual and team work)

Syllabus: Explanation of surveying concept in civil engineering and environmental engineering works; introduction to distance measuring equipment, angles and other measuring equipment
usually used in mapping and pegging; Operating levelling equipment and Theodolite in order to
take field’s data and integrating the data into a map or transferring design coordinates into the
field coordinates in civil engineering and environmental engineering activities; carrying out field
measuring with measuring methods of horizontal, vertical distance, and angle measurement; Er-
ror theory; planning of basic concept of mapping and pegging; calculation of area and volume;
displaying the field measuring results in a corresponding map for the needs of civil engineering
and environmental engineering

Prerequisites : Calculus 1, Calculus 2, and Construction Drawing

Text Book References:
 Prentice-Hall, Inc.

ENCV 603 005 / ENCV612003
Statics
4 Credits

Learning Outcomes :
1. Students will be able to apply the mechanics physics concept in calculating responds from
 rigid body as results of working forces (C3);
2. Be able to apply the mechanics physics concept in analyzing simple structure of beam,
 trusses, and three joints arch (C3).

Competencies in Curriculum : Prior Knowledge untuk WA 1 (Engineering knowledge)

Syllabus : Statics of particle; rigid body; equilibrium of rigid body; structural analysis of trusses
with point equilibrium method; influential lines for statically determinate structure caused by
moving loads

Prerequisites : Heat and Mechanics Physics

Text Book References:

ENCV 603 006 / ENCV613005
Fluid Mechanic (2+1)
3 SKS

Learning Outcomes :
1. Students will be able to analyze fluid pressure distribution at a given static situation to be
 applied for load calculation of structure stability of civil building;
2. Be able to analyzed fluid in motion to be applied for calculation of total flow and the induced
dynamic forces;

Competencies in Curriculum : Prior Knowledge untuk WA1 (engineering knowledge).

Syllabus : The most important basic science in civil engineering is mechanics knowledge. This
knowledge can be separated into material mechanics and fluid mechanics. The mechanics of fluid
discuss about the basic formulation of motion and forces of an object that cannot be perceived
as completely integrated fluid, such as wind and water. This knowledge is the basis for all of the
water resources engineering subjects, such as Hydraulics, Hydrology, Design of Water Infrastructure,
Ground Water Resources, Water Surface Management and Development, etc. Until midterms, the
materials that will be discussed is static fluid which covers the definition of pressure, pressure
distribution formulation, and the application of the formula to determine the force as an effect
from the pressure for various civil engineering buildings. The other half of the semester, the materi-
als that will be discussed is flowing fluid, starting from the Eulerian movement conceptualization
and its application in the law of mass, momentum, and energy conservation to calculate the total
flow and dynamic force induced by the law. The total flow and force obtained will be the basis of
particularly hydraulic building design or civil engineering buildings in general.

Prerequisites : Calculus I, Calculus II, Basic Physics I, Basic Physics II, Basic Physics Laboratory I,
Basic Physics Laboratory II

Text Book References:
 Cengage Learning, 2011
ENCV 603 001 / ENCV613001
Advanced Calculus
3 Credits
Learning Outcomes:
1. Students will be able to derive and use the concept of: ordinary differential equation and calculus vector in order to solve its applied problems. (C2)

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge)

Prerequisites: Calculus 1 and Calculus 2

Text Book References:

ENCV 604 002 / ENCV614001
Numerical Computing
2 SKS
Learning Objective: Students will be able to solve mathematics equation on linear algebra and differential equation with numerical method using MatLab software.

Competencies in Curriculum: Prior knowledge for WA1 (Engineering knowledge) and WA5 (modern tool usage)

Syllabus: Introduction to MATLAB (programming basics with MATLAB), Searching for root equation (Bracketing Method & Open Method); Linear System (Solving Simultaneous Linear Algebraic Equation, Gauss Elimination, LU-Factorization, Matrix Inversion, Solution by Iteration, Eigenvalues). Numerical Method in Curve Fitting (Linear Regression & Least Square), Numerical Method in solving: Ordinary Differential Equations (Initial Value Problems, Adaptive Method and Stiff System, Boundary Value Problems)

Prerequisites: Calculus 1, Calculus 2, Advanced Calculus. Linear Algebra

Text Book References:

ENCV 604 003 / ENCV613002
Building Construction
3 Credits
Learning Outcomes:
1. Students will be able to apply the knowledge of engineering drawing symbols in Civil Engineering field for describing a two-story building according to the rules and procedures of engineering drawing such as aperture drawing (plans and appearance) and section view; covering dimension/sizes; foundation drawing, structural beam and column drawing, trestlework drawing, electrical installation and plumbing;
2. Be able to read the construction drawing and explain the parts of water structure (dam), waste treatment building, geotechnical building (foundation, retaining wall), roads, and bridges.
3. Be able to calculate the volume of the building, unit price, and cost estimation.

Competencies in Curriculum: Prior knowledge untuk WA1 (engineering knowledge), WA 10 (communication), dan WA 5 (modern tool usage)

Syllabus: Introduction of the course syllabus, introduction of standards of every building element and room function, plan and appearance drawing of a building, section-view drawing, foundation plan drawing, column and beam construction drawing, rooftop and trestlework plan drawing, platform drawing, stairs drawing, plafond and floor pattern drawing, window and door frames drawing, lighting installation drawing; plumbing system drawing, fire prevention installation drawing; lightning rod installation drawing, solid waste/trash drawing and septic tank drawing. Calculation of the building's volume and cost estimation. Unit Price. Journals.

Prerequisites: Construction Drawing

Text Book References:
technics with other disciplines/civil; topography and geomorphology map; definition and meaning of units in topography and its tools; how to read and analyze mineralogy, stone types, and stratigraphy; introduction to type of minerals forming igneous rock, geological structure and its types; how to identify and understand the effect of coating, stocky, fault, and unconformity for construction; weathering and movement of soil; introduction of types, processes, and identification of weathering; Explanation of classification process; Geological and Geotechnical maps; analyzing basic topography maps; Criteria of geotechnics geological maps; soil properties: soil in three phases; physical characteristics of soil; soil classification, Atterberg Limit; soil compaction theory and CBR test; one flow dimension in soil, permeability and introduction to groundwater seepage, flow diagram stress theory and the effective stress principal; effective stress reaction because of the change of total stress in a fully saturated soil; soil shear strength theory; laboratory soil shear strength test for clay and sand; consolidation theory and test;

Prerequisites : Material Properties

Text Book References :

ENCV 604 006 / ENCV614006

Hydraulic
3 Credits

Learning Outcomes: Students will be able to apply the mass and momentum conservation law to be applied as the fundamental design of water flow under pressure, and water flow in open drainage system.

Competencies in Curriculum: Prior knowledge untuk WA1 (engineering knowledge) dan WA2 (problem analysis)

Syllabus: Hydraulic is an application of the law of mass, energy, and momentum conservation which is applied theoretically in drainage media generally found in civil engineering world. These drainage media cover flows in pipes (under pressure), and flows in open drainage system (the water surface has atmospheric pressure). Until midterms, awareness is built to obtain the formulation that can be used in designing dimension which basically needed in formulating energy lost. This concept is introduced in designing a piping system. After the midterm, the energy lost concept is continued by applying it to an open drainage system. Due to the incapability of obtaining accuracy just by using the theoretical formulation for energy loss, it is introduced that the application for some of the water structures will be forced to use empirical coefficient.

Prerequisites: Fluid Mechanics

Text Book References:

ENCV 605 011 / ENCV614003

Structure Analysis
3 Credits

Learning Outcomes:
1. Students will be able to analyze statically undetermined structural responses of truss, beams, frames and arches affected by external loads and degradation of placement using methods such as slope deflection method and moment distribution (cross-method);
2. Be able to analyze 2D spatial structure using direct stiffness method with computer aid (matrix method);
3. Be able to apply moment distribution principal in analyzing influence line in continuous beam structure.

Competencies in curriculum: Prior knowledge untuk WA2 (problem analysis)

Syllabus: Definition of statically undetermined vs. determined structure, external statically undetermined structure, Slope deflection and moment distribution for continuous beam with various condition of placement, fixed portal and portal that have single/double swinging factors,
gable frame, symmetrical and asymmetrical structure; Influential lines of placement reactions, influential lines of transversal force and flexural moment for continuous beam. Virtual working principals and energies used in structural analysis; Superposition matrix method in structural analysis; Implementation of superposition matrix method for 2D spatial Structure

Prerequisites : Statics, Material Property and Solid Mechanics

Text Books References :

ENCV 605 012 / ENCV616001

Concrete Structure 1

3 Credits

Learning Outcomes :
1. Students will be able to explain design concept of structures, load applied on structures, structural systems;
2. Be able to design structural members from reinforced concrete according to procedures and design standards including beams, T beams, one way and two-way plate, short column and shallow foundation;
3. Be able to describe design results in engineering drawing in accordance to the rules and regulations of engineering drawing.

Competencies in curriculum : Prior knowledge untuk WA2 (problem analysis), WA3 (design/development of solutions) and WA10 (communication)

Syllabus : Introduction to structural system analysis and design; structural systems: purposes, design step; LRFD, reduction factor and allowable stress; loads and loading: Load forms, load types; location of loads, load distribution, load factor and load combination; basic concept of reinforced concrete; Steel and concrete stress-strain properties; Concrete compressive strength characteristic; Concrete compressive strength evolution; Ultimate strength concept, Whitney tensile block simplification, impartial collapse; Reinforcement analysis of single and double reinforcement on a regular beam; analysis of reinforcement for a T-beam section due to internal flexural moment forces; analysis of shear reinforcement for beam and torque reinforcement; analysis of one-way plate reinforcement, two-way plate with method coefficient method, analysis for short column reinforcement; foundation types and local shallow foundation designs with its drawing; able to calculate the deflection of a reinforced concrete structure.

Prerequisites : Construction Drawing, Building Construction, Solid Mechanics and Material Properties

Text Books References :
1. Persyaratan Beton Struktural Untuk Bangunan Gedung, SNI 2847 : 2013
2. Beban Minimum Untuk Perancangan Bangunan Gedung Dan Struktur Lain, SNI 1727 : 2013

ENCV 605 013 / ENCV614004

Soil Mechanics (2+1)

3 Credits

Learning Outcomes :
1. Students will be able to apply basic soil parameter knowledge on calculating soil strength and stability for simple buildings/civil engineering construction;
2. Be able to design soil retaining wall and draw it according to the rules and regulations of engineering drawing;
3. Be able to use SLOPE/W software to analyze slope stability.

Competencies in curriculum : Prior knowledge untuk WA 2 (problem analysis), WA3 (design/development of solutions), WA 4 (investigation), WA5 (modern tool usage) dan prior knowledge untuk WA 4 (experiment) dan WA 9 (individual and team work)

Syllabus : Bearing capacity of the soil: Allowable bearing capacity and Ultimate bearing capacity due to inclination and eccentricity of load; One dimensional elastic settlement and consolidation settlement; Drawing shallow foundation design; Seepage through dam; Stress distribution in the soil: A point load, strip, circle, and square area of footing using Fadum and Newmark theories;
Lateral earth pressure: Rankine and Coulomb theories; Structure design of earth retaining wall, gravity wall, cantilever wall, earth retaining cantilever wall, sheet pile; Slope stability: concept of slope stability, undrained analysis, slice method, introduction of Fellenius method, Bishop method, Soil stability method

Prerequisites: Basic Soil Mechanics

Text Books References:

ENCV 605 015 / ENCV614005

Transportation Engineering

3 Credits

Learning Outcomes: Students will be able to design road segment and intersection using traffic variables, decipher the characteristics of modes of transportations and designing steps of urban transportation.

Competencies in Curriculum: Prior knowledge untuk WA1 (engineering knowledge), WA2 (problem analysis) and WA5 (modern tool usage)

Syllabus: Types, characteristics, and facilities for a single mode and multi-modes of transportations (e.g. transportation modes, parking, and terminal); variables related to the characteristic of traffic and parking flows; measuring and analyzing variables of traffic characteristics; calculating the segment capacity and simple intersection with the rules of Manual Kapasitas Jalan Indonesia (MKJI) and Highway Capacity Manual (HCM); Measuring the variables mentioned in the filed with a traffic control equipment for intersection; Introduction to Four step model (link, nodes, zone)

Prerequisites: Calculus 1, and Statistic and Probabilistic

Text Book References:

ENCV 605 016 / ENCV615004

Water Engineering 1

3 Credits

Learning Outcomes:

1. Students will be able to set the dimension of a channel, culverts, spillway and storage of reservoir/retention pond, in a catchment area with an area not exceeding 50 Km2, based on topographical map with 1:25.000 scale, rain data at the rain station in and/or around the catchment area, domestic water needs survey result and social-economy data in the related district. (C4);
2. Be able to self-organize when working independently or in a group, hence the students can demonstrate the ability to master the course in the form of systematic written documents and an effective and efficient oral presentation (A4).

Competencies in curriculum: Prior knowledge untuk WA 1 (engineering knowledge), WA2 (problem analysis), WA3 (design/development of solutions), WA9 (individual and team work) dan WA10 (communication)

Syllabus: Determining the dimension of a channel, culverts, and reservoir/retention pond spillway based on the calculation of planned flood debit and open channel hydraulics, and determining the dimension of reservoir/retention pond based on water balance calculation. The learning method consists of introductory lecture, individual/group exercises in and out of the class, as well as presentation and writing paper as a group final project. The final project consists of a task to design channel, culvert, spillway and storage of reservoir/retention pond, in a catchment area with an area not exceeding 50 Km2, based on topographical map with 1:25.000 scale, rain data at the rain station in and/or around the catchment area, domestic water needs survey result and social-economy data in the related district/city.

Prerequisites: Hydraulics

Text Books References:

ENCV 606 001 / ENCV615001
Steel Structure 1
3 Credits
Learning Outcomes:
1. Students will be able to analyze the strength of a simple steel structure;
2. Be able to proportionate the simple steel structure building such as steel trestlework or pedestrians bridge with steel trusses structures according to the regulations and standards applied and present the designed structure with a design engineering drawing;
3. Be able to work together in a team.

Competencies in curriculum: Prior knowledge untuk WA2 (problem analysis), WA3 (design/development of solutions), WA9 (individual and team work) dan WA10 (communication)

Syllabus:
Basic steel structural system; Types of steel structure; Mechanical properties; factors which influences the steel’s quality, Stress strain steel curve, Steel material property; Proportion of structural member with LRFD against tensile strength, compressive force, bending strength, and shear force according to the standards; Steel structure element analysis and design: tension rod, compression rod, elastic buckling, inelastic buckling, two-way flexure, shear, lateral-torsion buckling; Design and analysis of steel structural joints; Bolt joints; HTB; Welded joints; Pedestrian bridge/trestle roof design

Prerequisites: Statics, Solid Mechanics, Material Properties

Text Books References:
1. Spesifikasi untuk Bangunan Gedung Baja Struktural; SNI 1729: 2015

ENCV 606 002 / ENCV615002
Foundation Engineering
3 Credits
Learning Outcomes:
1. Students will be able to explain the soil parameters needed for analysis and design process of deep foundation and deep retaining wall system;
2. Be able to explain the basic of deep foundation from analytical, design and construction aspect;
3. Be able to explain the basic of deep foundation load test;
4. Be able to explain the basic of deep retaining wall system from analytical, design and construction aspect.

Competencies in curriculum: Prior knowledge untuk WA2 (problem analysis), WA3 (design/development of solutions), dan WA10 (communication)

Syllabus: Introduction to types and system of deep foundation, methods to determine the axial bearing capacity of deep foundation; Methods to determine the lateral bearing capacity of deep foundation; Methods to determine vertical and lateral deformation of deep foundation; Pile test
method and introduction to types and systems of deep soil retaining structures; Soil retaining system calculation methods, as well as understanding the soil parameters needed; Drawing a deep foundation design

Prerequisites: Soil Mechanics

Text Books References:

Journal References:
1. ASCE, journals in geotechnics and geomechanics
2. Canadian Geotechnical Journal

ENCV 606 003 / ENCV616002

Pavement Design

3 Credits

Learning Outcomes:
1. Students will be able to create a pavement design by recognizing the type of pavement and pavement damage with the ways of handling it, road pavement structure with mixture of asphalt concrete and cement concrete with tests in laboratory;
2. Be able to use HDM (highway design manual) software as a tool in the designing process.

Competencies in curriculum: Prior knowledge for WA 1 (engineering knowledge), WA2 (problem analysis), WA3 (design/development of solutions) and WA5 (modern tool usage)

Syllabus: Introduction to the history and development of highway design technology; Highway construction Norm, Standards, Rules and Manual; Type of pavement construction, Function of each layer of pavement; Basic soil road stabilization, type of material and test method as well as its use; Road pavement material test and quality test method; Mix Design and Mix test plan, paired with test activity in the laboratories; Introduction to asphalt mixing plant (AMP) - Types of and operating procedures; Design criteria and several analytical and empirical design method; Flexible pavement thickness design using AASHTO methods and component analysis (Bina Marga), staged construction and recoating construction; Rigid pavement design, joints method; Highway maintenance strategy, Type of road damages and how to detect it, as well as on how to repair it.

Prerequisites: Material Properties

Text Books References:

ENCV 606 004 / ENCV616003

Water Engineering 2

3 Credits

Learning Outcomes:
1. Students will be able to evaluate the implication of changes in spatial hypothetic of Case-DTA, to the planned flood debit value and the dimension of a related water infrastructure, by using hydrology model of WinTR-20 (C5);
2. Be able to self-organize when work independently or in a group, so the students can demonstrate the ability to master the course in the form of systematic written documents and an effective and efficient oral presentation (A4);
3. Be able to operate ArcGIS geospatial model to prepare data for hydrology model WinTR-20 (P3).
Competencies in curriculum: Prior knowledge untuk WA2 (problem analysis), WA3 (design/development of solutions), WA5 (modern tool usage), WA6 (the engineer and society), WA7 (environment and sustainability), WA9, (individual and team work) dan WA10 (communication)

Syllabus: Using hydrology model assisted with geospatial model to evaluate the impact of spatial changes on a water catchment area with area not exceeding 50 Km², and present the result in a form of a systematically written paper and effective oral presentation. The learning method consists of introductory lecture, individual/group exercises in and out of the class, as well as presentation and writing paper as a group final project. The final project consists of a task to use the ArcGIS geospatial model to prepare hydrological model input data for WinTR-20 that used to simulate the connection between rain and flow of water influenced by the changes of the spatial changes on a water catchment area. The Evaluation is focused on the impact of the changes on water catchment area towards the amount of planned flooding debit value which will impact the dimension of related water structure.

Prerequisites: Water Engineering 1

Text Books References:

ENCV 606 005 / ENCV616004

Construction Management

2 Credits

Learning Outcomes:
1. Students will be able to apply process and concept of construction management in analyzing the step of planning, executing and handover stage of a construction project;
2. Be able to apply process and concept of construction management in planning and executing project by considering cost, time and quality aspect of the project;
3. Be able to explain administration of contracts related to a construction project;
4. Be able to use MS Project software as a tool in project planning.

Competencies in curriculum: Prior knowledge untuk WA5 (modern tool usage), dan WA11 (project management & finance)

Syllabus: Construction project knowledge including: Project Planning; Bidding documents preparation; Contract administration; Construction planning; Construction execution methods; Monitoring and Controlling; Material Management; Quality Management; Project Cost Management; Time Management; Safety, Health and Environment; Resource and Stakeholder Management.

Prerequisites:
- Pass these following courses: Construction Drawing; Building Construction; Material Properties
- This course is taken in conjunction with Methods and Equipment Construction Course

Text Books References:

ENCV 606 006 / ENCV616005
Construction Methods and Equipment
2 Credits
Learning Outcomes :
1. Students will be able to calculate the capacity and cost of a heavy construction equipment, able to analyze the character, type and volume of the works;
2. Be able to calculate and plan an execution process of soil displacement using heavy construction equipment by considering the principal of construction management in calculating the cost aspect;
3. Be able to work together in a team.
Competencies in curriculum : Prior knowledge untuk WA3 (design/development of solutions), WA9, (individual and team work) dan WA11 (project management & finance)
Syllabus : Definition of mechanical earth moving, characteristic, type of soil and soil volume, operation of heavy equipment, capacity and production cost of heavy equipment, calculate work volume, determine the equipment needs, designing to combining equipment for optimization times and cost; Calculate production of heavy equipment, the way to work of each heavy equipment, the way to planning project. Several ways to calculate volume of cut and fill, construction method, calculation of the work schedule and related cost.
Prerequisites : Surveying and Basic Soil Mechanics
Text Books References :

ENCV 607 001 / ENCV617001
Capstone Project
3 Credits
Learning Outcomes : The students will be able to produce civil engineering building design with detailed engineering design, simulated as a work ready to be executed using basic civil engineering combined with economic analysis and tender documents complete with shop drawing.
Competencies in curriculum : Prior Knowledge untuk WA2 (problem analysis), WA3 (design/development of solutions), WA5 (modern tool usage), WA6 (the engineer and society), WA7 (environment and sustainability), WA8 (ethics), WA9 (individual and team work) and WA10 (communication)
Syllabus : Identification of problems in accordance with the work terms of reference; Planning component negotiations associated with the scope of work and execution time; Formulation of the main and secondary civil engineering structural component as an analysis material; Arranging analysis report consist of design concept, calculating and execution methods, by applying rules, manuals and standards. ; Arranging civil engineering construction component specification according to the rules and technical specification, Calculation of unit price and bill of quantity, details of the overall cost of the job, and detail drawing for main components according to the standard and technical provisions.
Creating a Blue Print as a results of structure calculation in the form of a shop drawings that are ready to be executed by contractors.
Prerequisites : -
Text Books References :
1) SNI (standar tata cara perhitungan struktur beton untuk bangunan gedung; standar tata cara perencanaan struktur baja untuk bangunan gedung; standar tata cara perencanaan ketahanan gempa bangunan gedung, dan standar yang dikeluarkan oleh Kementerian PU)
2) ASTM (American Standard for Testing Material)
3) AISC (American Institute of Steel Construction)
4) The American Concrete Institute’ (ACI)
5) ASCE 07-2010 - Minimum Design Load for Building and other structures

ENCV 600 001 / ENCV610001
Internship
3 Credits
Learning Outcomes:
1. Students will be able to observe the application of theoretical civil engineering knowledge in an execution process of a construction project;
2. Be able to observe the application of professional ethics during the execution of a construction project;
3. Be able to apply a part of engineering economics principal and construction management in analyzing the execution of a construction projects;
4. Be able to identify problems that emerge during the execution of the construction project and solution decision process, able to analyze solution options according to the existing theory and able to criticize if there is an incompatibility as well as able to give solution that should be taken according to the existing theory;
5. Be able to read engineering drawing and see the similarities between the engineering drawing and the realization in the construction projects;
6. Be able to write field observation result in a form of an internship report and able to present it in front of the examiner team.

Competencies in curriculum: Prior Knowledge for WA6 (the engineer and society), WA7 (environment and sustainability), WA8 (ethics), WA9, (individual and team work), WA10 (communication) and WA11 (project management & finance)

Syllabus: Implement an internship in a construction project, field observation; interpret a construction drawing, writing an observation report, describing a technical work process, quality control, project management, project specification, engineering drawing and other aspect; problem solving on the fields, presenting an internship reports

Prerequisites:
1. Already pass 6th semesters and pass > 75 credits according to the determined conditions applied by the Civil Engineering Department, Faculty of Engineering, Universitas Indonesia and/or the conditions from Faculty of Engineering, Universitas Indonesia
2. Registered and fill out IRS for internship special course, and expresses him/herself to the Internship Coordinator in the Department of Civil Engineering
3. Student choose a project and / or object of selected activities at the internship site and location that has been contracted previously
4. Students must complete and submit the registration form at the Secretariat of Civil Engineering Department

Text Books References: -

ENCV 600 002 / ENCV610002
Seminar
1 Credit
Learning Outcomes:
1. Students will be able to implement the civil engineering knowledge on formulating a problem in the field of civil engineering, conducting a literature studies and formulate a research hypothesis and methodology to solve the problem;
2. Be able to write a study proposal in a scientific writing using a proper Indonesian/English language and following the standard of seminar and undergraduate thesis format and present it to the examiner team;
3. Be able to work independently and complete the work within the time limit.

Competencies in curriculum: Prior knowledge untuk WA2 (problem analysis), WA3 (design/development of solutions), WA5 (modern tool usage), WA6 (the engineer and society), WA7 (environment and sustainability), WA9, (individual and team work), WA10 (communication) dan WA12 (lifelong learning)
Syllabus: Developing problem description, Literature study, constructing research methodology, conducting an initial study, preparing and presenting a well-structured and well-written final report

Prerequisites: Passing 110 credits with GPA >=2.00 and without grade of E

Text Books References: -

ENCV 608 001 / ENCV615005
Ethics and Legal Aspect of Construction Contract
2 Credits
Learning Outcomes:
1. Students will be able to explain ethics and morality in civil engineering profession and able to apply the knowledge in analyzing the impact when ethics is not applied;
2. Be able to explain the legal aspect and contracts in a construction project.
Competencies in curriculum: Prior knowledge for WA6 (the engineer and society) dan WA8 (ethics)
Syllabus: Ethics and morals definition; Ethics theory; Work Ethics; Construction business ethics; Ethics towards environment; Law and regulation in construction works; Legal aspect of the dispute in construction works; Construction contracts
Prerequisites: Construction Management
Text Books References:
1. Mike W. Martin & Roland Schinzinger, Ethics in Engineering, McGraw Hill, 2005
2. Chow Kok Fong, Law and Practice of Construction Contracts, Sweet & Maxwell Asia, 2012

ENCV 608 002 / ENCV 618 001
Entrepreneurship
2 Credits
Learning Outcomes: The students will be able to explain the comparison among wide types of civil engineering entrepreneurship characterized by innovation and independency which based on ethics as well as communicate it both visually and orally.
Competencies in curriculum: Prior knowledge for UI-E (entrepreneurship), WA6 (the engineer and society), WA9, (individual and team work), and WA10 (communication)
Syllabus: Problems and needs from the various stakeholders in the field of civil engineering, General options for entrepreneurship to solve civil engineering problems, Entrepreneurship definition, Businessman Action, Plan and Challenges; Action, Academics and observer challenge and plan, Canvas model Business Concept, General Company Profile, General customer profile, Cost and Turnover, Differences and similarities identification between BMC components, Advantages and disadvantages assessment from each of the BMC components, Various environmental engineering product and services, Definition of product value, Human Needs, Customer segments, Various customer profiles, Knowing the customer profile method, Knowing the customer profile, Differences and similarities identification between VPC components, Advantages and disadvantages assessment from each of the VPC components
Prerequisites: MPKT A, Introduction to Civil Engineering System
Text Books References:
4. Osterwalder, Business Model Generation, 2010
5. Osterwalder, Value Proposition Design: How to Create Products and Services Customers Want, 2014

ENCV 600 003 / ENCV610003
Final Project
4 Credits
Learning Outcomes:
1. Students will be able to apply civil engineering knowledge to solve a complex civil engineering problem through a study that follows the research rules such as: Conducting a literature study, choosing the research methodology, analyze and interpret the data and draw a valid conclusion;
2. Be able to write the result of the research in a scientific writing using the correct Indonesian/English language and following the standard final project format;
3. Be able to present the study result to the examiner team;
4. Be able to work independently and complete the work within the time limit.
Competencies in curriculum: Prior knowledge for WA2 (problem analysis), WA3 (design/development of solutions), WA5 (modern tool usage), WA6 (the engineer and society), WA7 (environment and sustainability), WA9 (individual and team work) and WA10 (communication), WA12 (lifelong learning)
Syllabus: Problem formulation, Literature study, conducting research, data analysis, result inter-
Lecture, preparing a written report of the synthesis and present the study results

Prerequisites: Passing 110 credits with GPA \(\geq 2.00 \) and without grade of E

Text Books References: -

Elective Courses Syllabus

ENCV 607 002
Civil Engineering System
3 Credits

Learning Outcomes:
1. Students will be able to create basic design and proposal for alternative plans or solutions to the problems of civil engineering based on formulation of problems encountered with literature review and field surveys;
2. Students will be able to find the optimal solution for a simple problem in Civil Engineering with a systematic approach through the stages of problem solving techniques (engineering). (C4) / (A3).

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis), WA9 (individual and team work) and WA10 (communication)

Prerequisites: Introduction to Civil Engineering System

Text Book References:

ENCV 617 003
Sustainable Build Environment
3 Credits

Learning Outcomes: Students will be able to apply the basic principles of natural and manmade environmental system and the meaning of sustainable development in engineering activities to be able to design civil engineering buildings with the concept of green building and environmental friendly.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA7 (environment and sustainability)

Syllabus: Basic Principles of natural environmental systems and life cycle (cycle of matter and energy, hydrological cycle, food chain); Basic Principles of manmade environment and the impact on the natural environment system and life cycle (social system, ecosystem, build environment; niche concept, carrying capacity and resilience); Construction and infrastructure sector impact on the natural environment; 21 Agenda and Environmental Based Construction (Global agenda / national / local, social-economic, and the environment pillar in construction); The concept of Civil Engineering environment (zero waste, efficiency, waste management hierarchy, waste-pollution and carrying capacity of the environment, sustainable consumption and production); The concept of Green Building environment (zero waste, efficiency, waste management hierarchy, waste-pollution and carrying capacity of the environment, sustainable consumption and production); The concept of Green Building (LEED); Criteria for Green Building; Sustainable sites (EIA); Water efficiency; Energy and atmosphere; Materials and natural resources; Innovation and design process; Strategy Conception for Green Building; Examples of Green Building concept in Indonesia and other States; Laws and other regulations in Environmental Affairs, ISO 14001.

Prerequisites: -

Text Book References: -

ENEV605004
Integrated Solid Waste Management Design
3 credits
Learning Outcomes: students are able to plan a solid waste management system in engineering aspects

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis), WA3 (design/development of solutions) and WA7 (environment and sustainability)

Syllabus: Students are expected to explain the properties and problems arising from the solid waste material and developing and selecting alternative management in accordance with local conditions. Understanding of the management of solid waste material, Source, type and composition of the waste material solid, Generation waste material solid, collection, transfer and transport of solid waste materials and disposal, and the processing of solid waste material, aspects of the organization in the management of solid waste material, aspects of financing, aspects of regulation and aspects of community participation management of solid waste and materials. The concept of designing the management of solid waste material. The management system of solid waste material, Regulation of solid waste material management, solid waste material management methods

Prerequisites:

Buku Referensi:
2. Tchobanoglous, 1977, Engineering Principles and Management Issues.;
4. Flintoff FF., 1983, *Management of Solid Wastes in Developing Countries*

ENCV 618 002
Steel Structure 2
3 Credits
Learning Outcomes:
1. Students will be able to calculate the connection strength in steel structure and proportioning the connection using plastic and elastic method;
2. Be able to calculate and proportioning girder plate structure, portals and composite structure in a simple multi-stories building using elastic and plastic method.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA3 (design/development of solutions)

Syllabus: Calculation of continuous beam by plastic method; Beam-columns; Theory and Analysis of girder plate on building; Advance connection techniques; The design of the portal and gable frame; Structural Analysis; Steel-steel and steel-concrete composite structures in simple multi-stories buildings; Concrete pre-stressed steel composite structure and implementation of Perplex systems in buildings; Cold form section / Light Gage Member.

Prerequisites: Steel Structure 1

Text Book References:
1. *Spesifikasi untuk Bangunan Gedung Baja Struktural; SNI 1729: 2015*

ENCV 617 005
River Engineering
3 Credits
Learning Outcomes: Students will be able to predict and describe (C5) systematically both in oral and in writing, the influence of interactions among various factors of hydrological, hydraulic and river morphology to the behavior of river and if there are problems may propose solutions (A5) with taking into account the technical and environmental aspects.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis)

Syllabus: Knowledge on how the flow of the river is formed from the river hydrology point of view, River hydraulics and morphology of the river, as well as what problems are caused by changes in river flow due to the nature of the flow and sediment transport, so as too able to predict, analyze and criticize the influence of the local system flow in relation to construction of buildings along the river and river controlling structure.

Prerequisites: Water Engineering 1

Text Book References:
7. Bedient P. B. and Huber W.C., 1992: Hydrology and Floodplain Analysis. 2nd ed. Ch.3-5. Addison-Wesley Publishing Company, USA
9. R. J. Garde, 2006, River Morphology, New Age International (P) Limited, Publisher

ENEV605001
Urban System and Utility
3 Credits
Learning Outcomes:
1. Students will be able to explain the role of civil engineer in setting up the infrastructure needed in an urban area and be able to apply that knowledge in the process of planning, monitoring and implementation of the regional arrangement;
2. Be able to describe the components of an urban sanitation techniques and applying that knowledge in the planning, monitoring and implementation so as to create environmentally sustainable region.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA7 (environment and sustainability)

Syllabus: Definition and function of urban planning, Primary factor in urban planning, Population aspect in urban planning, Social facilities and forms of urban development, Land use, Water management and its relationship with land use. Controlling transmission of infectious and non-infectious diseases in an area, Planning and analyzing impacts of environmental engineering, Clean water supply, Waste water treatment and disposal, Solid waste management, Noise control, Air pollution control.

Prerequisites: -

Text Book References:
4. Environmental Engineering and Sanitation: Joseph A. Salvato: John Willey & Son, Inc., Canada

ENCV 617 004
Concrete Structure 2
3 Credits
Learning Outcomes:
1. Students will be able to design structural component: columns, portals, with the ultimate strength method due to force from latitude bending moment, normal moment, torque and its combination in accordance to the aspect of service life according to SNI 2847: 2013; able to design a two-way slab without beams, short consoles, as well as understand the application of strut and tie models;
2. Students will be expected to plan a simple pre-stressed concrete structures, according to SNI 2847: 2013.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA3 (design/development of solutions), WA10 (communication)

Syllabus: Analysis of shear and torsion; Meaning of bond stress, Termination/cutting of reinforcement steel and length of reinforcement distribution; Serviceability: Analysis of deflection on reinforced concrete structures; Analysis of crack width; Analysis of reinforcement in reinforced concrete slender columns; Biaxial bending; Analysis of P-δ effect; Analysis of shear reinforcement in columns; Planning of continuous foundation and deep foundations in reinforced concrete; Floor system analysis: two-way slab with and without beam, direct design and the equivalent frame; Understanding the
basis for planning and application of reinforced concrete portals; Examination of the relationship between the beams and columns; Corbel and placement; Analysis of Strut and Tie modeling; The basic concept of pre-stressed concrete structures, All kinds of pre-stressed concrete structures, Stage for pre-stress force, Material characteristics, Pre-stressed and anchorage system, Loss of pre-stressed force; Cross-section analysis with elastic method and strength limits for monoliths and composites cross section; Planning of pre-stressed cable cross section due to bending; Analysis of shear stress, Deflection analysis on pre-stressed concrete structures.

Prerequisites: Concrete Structure 1

Text Book References:
1. Persyaratan Beton Struktural Untuk Bangunan Gedung, SNI 2847: 2013
2. Beban Minimum Untuk Perancangan Bangunan Gedung Dan Struktur Lain, SNI 1727: 2013

ENCV 618 003 Construction Methods in Geotechnics

3 Credits

Learning Outcomes: Students will be able to design construction method of a geotechnical construction component with considering the economic, environmental, social, ethical, health, safety, constructability, and sustainability factor.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis), WA3 (design/development of solutions), WA7 (environment and sustainability)

Syllabus: Construction method of deep foundation and retaining wall, and factors that influence the method of selection, Method of testing the integrity of deep foundations; Method of basement construction, Excavation strengthening, dewatering, and factors that influence the selection of method; Construction method of embankment on soft ground, PVD, Preloading, Vacuum preloading, and the factors that influence the selection of method; Geo-synthetic usage in geotechnical construction.

Prerequisites: Basic Soil Mechanics, Soil Mechanics, Foundation Engineering

Text Book References:

ENCV 618 004 Stormwater Management

3 Credits

Learning Outcomes:
1. Students will be able to assess the effectiveness of the management of rain in an existing Region Case (RC) which is a developed region in urban areas, based on the comparison of the evaluation results from the performance of existing drainage systems in existing RC, and performance evaluation of the proposed rain management model by using Low Impact Development (LID) and Water Balance Model (WBM), using a hydrological model WinTR-55 aided with of ArcGIS geospatial model (C5);
2. Be able to organize every individual to work independently and in groups, so as to demonstrate the mastery of the course competencies in the form of a systematic written document and effective and efficient oral presentations (A4).

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA3 (design/development of solutions)

Syllabus: Utilizing a deterministic hydrology model aided with geospatial model to evaluate the performance of drainage systems that exist in a developed region in urban areas, and making proposals to the management system of rain by using Low Impact Development (LID) models and Water Balance Model (WBM), as well as evaluating the performance of the proposed design by utilizing the same hydrological and geospatial models. The result is presented in a systematic
written document and an effective and efficient oral presentations. Learning method consists of introductory lectures, group discussions inside and outside the classroom, written/oral exam, oral presentation and final papers.

Prerequisites: Water Engineering 1

Text Book References:

5. E-Book

ENEV606004

Environmental Impact Analysis and ISO 3 Credits

Learning Outcomes: Students will be able to apply the method of EIA and environmental audits as inputs for safeguards against human and natural resources.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA7 (environment and sustainability)

Syllabus: The meaning of EIA, EIA process and benefits, rules, regulations and management of EIA, Environmental settings, Estimation of environmental impacts, Environmental impact to the physical, chemical, biological, socio-economic, and socio-cultural sector. EIA method, Method and techniques of identification, prediction, evaluation and interpretation of the EIA, Environmental Monitoring Plan, Environmental Management Plan, Environmental Audit and Environmental Management System.

Prerequisites:

Text Book References:

Information:

4.2. UNDERGRADUATE PROGRAM IN ENVIRONMENTAL ENGINEERING

Program Specification

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Awarding Institution</td>
</tr>
<tr>
<td>2.</td>
<td>Teaching Institution</td>
</tr>
<tr>
<td>3.</td>
<td>Programme Title</td>
</tr>
<tr>
<td>4.</td>
<td>Class</td>
</tr>
<tr>
<td>5.</td>
<td>Final Award</td>
</tr>
<tr>
<td>6.</td>
<td>Accreditation / Recognition</td>
</tr>
<tr>
<td>7.</td>
<td>Language(s) of Instruction</td>
</tr>
<tr>
<td>8.</td>
<td>Study Scheme (Full Time / Part Time)</td>
</tr>
<tr>
<td>9.</td>
<td>Entry Requirements</td>
</tr>
<tr>
<td>10.</td>
<td>Study Duration</td>
</tr>
<tr>
<td></td>
<td>Type of Semester</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
</tr>
<tr>
<td></td>
<td>Short (optional)</td>
</tr>
</tbody>
</table>

11. Graduate Profiles:
“A Bachelor Engineer who is able to design and build green environmental engineering infrastructures with professional ethics”
12. **Expected Learning Outcomes:**

1. Apply knowledge of mathematics, natural science, engineering fundamentals and environmental engineering to the solution of complex engineering problems (C3-WA1/Engineering Knowledge)
2. Identify, formulate, research literature and analyze complex environmental engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (C4-WA2/Problem Analysis)
3. Design solutions for complex environmental engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations (C5-WA3/Design or Development of solutions)
4. Conduct investigations of complex environmental engineering problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (C4-WA4/Investigations)
5. Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex environmental engineering problems, with an understanding of the limitations (P3-WA5/Modern Tool Usage)
6. Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional environmental engineering practice and solutions to complex environmental engineering problems (C3-WA6/The Engineer and Society)
7. Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex environmental engineering problems in societal and environmental contexts (C3-WA7/Environment and Sustainability)
8. Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (A4-WA8/Ethics)
9. Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings (P3-WA9/Individual and Team Work)
10. Communicate effectively on complex environmental engineering activities with the environmental engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (C3, P3-WA10/Communication)
11. Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments (C3-WA11/Project Management & Finance)
12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (C3-WA12/Lifelong Learning)
13. Propose alternative solutions of several problems occur in society, nation and country (C3, UI-B)
14. Use knowledge of entrepreneurship to identify an independent business based on creativity and professional ethics (C3, UI-E)

Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>13 %</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>27</td>
<td>19 %</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>79</td>
<td>55 %</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>12</td>
<td>8 %</td>
</tr>
<tr>
<td>v</td>
<td>Internship, Seminar, Undergraduate Thesis, Project</td>
<td>8</td>
<td>6 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>145</td>
<td>100 %</td>
</tr>
</tbody>
</table>

14. **Total Credit Hours to Graduate**

145 SKS
Learning Outcomes Flow Diagram

Graduates Profile
“A Bachelor Engineer who is able to design and build green environmental engineering infrastructures with professional ethics”

8. Design solutions for complex environmental engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations (WA3)

7. Conduct investigations of complex environmental engineering problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)

6. Communicate effectively on complex environmental engineering activities with the environmental engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. (WA10)

5. Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex environmental engineering problems, with an understanding of the limitations (WA5)

4. Identify, formulate, research literature and analyze complex environmental engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (WA2).

3. Apply knowledge of mathematics, natural science, engineering fundamentals and environmental engineering to the solution of complex engineering problems (WA1)

14. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (WA12)

13. Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings. (WA9)

12. Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (WA8)

11. Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional environmental engineering practice and solutions to complex environmental engineering problems. (WA6)

10. Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex environmental engineering problems in societal and environmental contexts. (WA7)

9. Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments (WA11)

Demonstrate integrity, critical thinking, creative mind, innovative and intellectual curiosity in solving individual and group problems. (UI)

1. Propose alternative solutions of several problems occur in society, nation and country (UI)

Can operate ICT (UI)

Communicate effectively in Bahasa and English for academic and non academic purposes. (UI)

2. Use knowledge of entrepreneurship to identify an independent business based on creativity and professional ethics (UI)
COURSE STRUCTURE UNDERGRADUATE PROGRAM ENVIRONMENTAL ENGINEERING

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building Course B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEV601001</td>
<td>Intro to Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building Course A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600020-48</td>
<td>Sport/Art</td>
<td>1</td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Sub Total</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGE600009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600010</td>
<td>Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 603 001</td>
<td>Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 603 003</td>
<td>Construction Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENCV 603 004</td>
<td>Surveying</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 603 001</td>
<td>Material Properties</td>
<td>2</td>
</tr>
<tr>
<td>ENEV 603 002</td>
<td>Structural Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 603 003</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 604 003</td>
<td>Building Construction</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 604 005</td>
<td>TL Basic Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 604 001</td>
<td>Solid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 604 002</td>
<td>Environmental Engineering Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 604 003</td>
<td>Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 604 004</td>
<td>Environmental Global issues</td>
<td>2</td>
</tr>
<tr>
<td>ENEV 604 005</td>
<td>Environmental Microbiology</td>
<td>2</td>
</tr>
<tr>
<td>ENEV 604 006</td>
<td>Thermodynamics</td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENEV 605 001</td>
<td>Urban Planning and Sanitation</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 605 002</td>
<td>Structural Design of Environmental Engineering Facilities</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 605 003</td>
<td>Water Supply and Sewerage Network Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 605 004</td>
<td>Integrated Solid Waste Management Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 605 005</td>
<td>Unit Operation and Process</td>
<td>4</td>
</tr>
<tr>
<td>ENEV 605 006</td>
<td>Environmental Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE600011</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600012</td>
<td>Health, Safety and Environmental Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENEV 606 001</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 606 002</td>
<td>Water Treatment Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 606 003</td>
<td>Domestic Waste Water Treatment Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 606 004</td>
<td>EIA dan ISO</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEV 607 001</td>
<td>Industrial & Hazardous Waste Treatment</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 607 002</td>
<td>Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 600 001</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>ENEV 600 002</td>
<td>Research Methodology & Proposal</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Students</td>
<td>choose 12 credits of elective courses offered by : (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>undergraduate/postgraduate program of Civil Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or (2) other study program in Universitas Indonesia</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEV 608 001</td>
<td>Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEV 600 003</td>
<td>Final Project</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Students</td>
<td>choose 12 credits of elective courses offered by : (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>undergraduate/postgraduate program of Civil Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or (2) other study program in Universitas Indonesia</td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>145</td>
</tr>
</tbody>
</table>

Resume

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>27</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>87</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>133</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>12</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>145</td>
</tr>
</tbody>
</table>
Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>7th Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 801 501</td>
<td>Environmental Risk Management</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 801 502</td>
<td>Technology of Solid Waste Treatment: Operational & Design</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 803 501</td>
<td>Urban Water Quality Management</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 803 502</td>
<td>Environmental Audit</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 803 503</td>
<td>Advanced Environmental Chemistry</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>8th Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 802 501</td>
<td>Contaminating & Soil Remediation</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 802 502</td>
<td>Advanced Waste Water Engineering</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 802 503</td>
<td>Waste to Energy</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 802 504</td>
<td>Emission Control</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 802 505</td>
<td>Technology of Resources Efficiency - Life Cycle Analysis (LCA)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 802 506</td>
<td>Pollution Prevention</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENCV 802 507</td>
<td>Environmental System Dynamics</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment

Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)

Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method:
Active learning, Contextual language learning, small group discussion.

Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
UIGE600003
3 sks
Learning Objectives: After attending this subject, students are expected to capable of use English to support the study in university and improve language learning independently.
Syllabus : Study Skills : (Becoming an active learner, Vocabulary Building: word formation and using the dictionary Listening strategies Extensive reading) Grammar: (Revision of Basic grammar Types of sentences Adjective clauses, Adverb clauses Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking Reading popular science article, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks
Syllabus : Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method : Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)
Prerequisites : OBM (New Student Orientation)
Textbook : Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005
2 sks
General instructional objectives : The cultivation of students who have concern for social, national and countrys issues based on Islamic values which is applied in the development of science through intellectual skills.
Learning Objectives : Course participants are expected to do the following when faced with a problem or issue which they must solve :
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus : Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human's basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam's motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)

CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives :
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.

Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of these studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks

General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

HINDU STUDY
UIGE600013/UIGE610008
2 sks

Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks

Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture (the responsibility of religious society in the realization of critical thinking (academic), work hard and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks
The option of subjects that can be chosen:
- Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025), Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029), Wayang (UIGE600030)

The option of subjects that can be chosen:
- Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043), Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table Tennis (UIGE600048)

Syllabus of basic engineering subjects

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.

LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equationss, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students' knowledge of the basic physics concepts
but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.
PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry.
Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis.
Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/ quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the per-
formance of their professional duties. The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment. Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.
Syllabus of Undergraduate Program on Environmental Engineering
ENEV601001
Introduction to Environmental Engineering System
2 credits
Learning Outcomes:
1. Students are expected to explicate (1) the concept of the environment, (2) natural resources and biodiversity, (3) the source of artificial nature, (4) the balance of nature and carrying capacity, (5) water, (6) liquid waste, (7) solid waste, (8) air pollution, (9) the urban planning in environmental engineering, (10) correlation of sanitation and public health, (11) regulations.

Competencies in curriculum: Prior knowledge untuk WA2 (problem analysis), WA6 (the engineer and society), WA9 (individual and team work) dan WA10 (communication)

Syllabus: Understanding of ecology, ecosystems, natural resources, vegetation and tropical forests, ecosystem waters, dams, agricultural, land use management, climate change, element, energy, life, life cycle, the hydrologic cycle, water and pollution, management of water resources, water needs, water treatment facility and distribution network, the characteristics of liquid waste, domestic waste water treatment facilities and collecting ducts, solid waste and hazardous waste, air emissions, soil and water contamination by sewage, renewable and nonrenewable natural resources, regulations.

Prerequisites: -

Text Book References:

ENCV 603 001
Advanced Calculus
3 Credits
Learning Outcomes: Students will be able to derive and use the concept of: ordinary differential equation and calculus vector in order to solve its applied problems. (C2)

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge)

Vector Functions, Motion on a Curve, Curvature and Components of Acceleration, Partial Derivatives, Directional Derivative, Tangent Planes and Normal Lines, Curl and Divergence, Line Integrals, Independence of the Path, Double Integrals, Double Integrals in Polar Coordinates, Green’s Theorem, Surface Integrals, Stokes’ Theorem, Triple Integrals, Divergence Theorem, Change of Variables in Multiple Integrals.

Prerequisites: Calculus 1 and Calculus 2

Text Book References:
ENCV 603 003

Construction Drawing
2 Credits

Learning Outcomes:
1. Students will be able to explain engineering drawing symbols in Civil Engineering field and draw it manually or using a software (AutoCAD);
2. Be able to design a one-floor simple healthy house building;
3. Be able to draw the one-floor simple healthy house building according to rules and procedures of engineering drawing such as aperture drawing (plans and appearance) and section view; covering dimension/sizes; foundation drawing, structural beam and column drawing, trestlework drawing, electrical installation and plumbing.

Competencies in Curriculum: Prior knowledge for WA3 (design/development of solutions), WA8 (ethics) dan WA10 (communication)

Syllabus: Introduction to Civil Engineering knowledge discipline scope and Civil Engineering building construction, introduction to engineering drawing, benefit and purpose of drawing in design process; introduction to drawing tools, drawing paper format, drawing head, standards, lettering, leader, and scale; geometric construction; pictorial projection; orthogonal projection; section view drawing; details of the building drawing, construction drawing of wooden and light steel rooftop; beam construction drawing, column and river stone foundation; electrical installation drawing and plumbing drawing

Prerequisites:

Text Book References:
1. Neufret, Ernst, Data Arsitek Jilid 1 dan 2, Penerbit Erlangga, Jakarta, 1989

ENCV 603 004

Surveying (2+1)
3 Credits

Learning Outcomes:
1. Students will be able to use various measuring instruments to solve mapping problems and pegs in civil engineering and environmental engineering works, surveying and displaying the results in a form of drawing with integrating various measuring methods and able to read and draw the data from the surveying results done by someone else;
2. Be able to work in team.

Competencies in Curriculum: Prior knowledge untuk WA4 (investigation) dan WA9 (individual and team work)

Syllabus: Explanation of surveying concept in civil engineering and environmental engineering works; introduction to distance measuring equipment, angles and other measuring equipment usually used in mapping and pegging; Operating levelling equipment and Theodolite in order to take field’s data and integrating the data into a map or transferring design coordinates into the field coordinates in civil engineering and environmental engineering activities; carrying out field measuring with measuring methods of horizontal, vertical distance, and angle measurement; Error theory; planning of basic concept of mapping and pegging; calculation of area and volume; displaying the field measuring results in a corresponding map for the needs of civil engineering and environmental engineering

Prerequisites: Calculus 1, Calculus 2, and Construction Drawing

Text Book References:
ENEV603001
Material Properties
2 credits
Learning Outcomes:
1. Understand the practical aspects and the fundamental importance of civil engineering materials comprehensively.
2. Understand and able to apply the practical aspects and the fundamental importance at the laboratory level of the material associated with stress and strain correlation, elasticity, behavior depends on the time, property damping, atomic structure, plasticity, yielding criteria, fatigue, ductility, and process corrosion.

Competencies in Curriculum: Prior knowledge untuk WA1 (engineering knowledge) dan WA4 (investigation)

Syllabus: Particulate material, aggregate, Portland Cement and Portland Cement Concrete, Structural Steel, Cement asphalt and asphalt concrete, wood, polymers and plastics, Concrete Fiber, Basic material and solid, micro structure and surface properties; erial response to stresses; Yielding and fracture; Rheology of the fluid and solid; Fatigue.

Prerequisites: -

Text Book References:

ENEV603002
Structural Mechanics
3 Credits
Learning Outcomes:
1. Students will be able to apply the mechanics physics concept in calculating responds from rigid body as results of working forces (C3);
2. Be able to apply the mechanics physics concept in analyzing simple structure of beam, trusses, and three joints arch (C3) dan WA5 (modern tool usage)

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge) and WA5 (modern tool usage)

Syllabus: Statics of particle; rigid body; equilibrium of rigid body; structural analysis of trusses with point equilibrium method

Prerequisites: Heat and Mechanics Physics, Calculus 1 and Calculus 2

Text Book References:

ENEV 603003
Fluid Mechanics
3 credits
Learning Outcomes: Students are able to understand the fluid characteristics, concept of hydraulic pressure and forces on static and dynamic fluid, and apply the basic equation to calculate the hydraulic pressure and forces on static and dynamic fluid.

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge)

Syllabus: a) The characteristics of the fluid, liquid and gaseous fluids, dimensions and units; (b) Types of flow: laminar, transitional, turbulent; (c) Concept of hydraulic pressure and forces on static and dynamic fluid; the pressure at a point, the pressure on a flat plane, the pressure on the curved area, the pressure of fluid in container undertake linear acceleration, and the pressure of fluid in rotating cylinder; (d) The buoyancy and stability of an object, metacentrum of floating objects; (e) The basic equations of the hydraulic pressure and forces on static and dynamic fluid (Bernoulli, Law of Continuity, Energy, and Momentum), to be applied on Environmental Engineering building structure.

Prerequisites: Physics (Mechanics and Thermal), Calculus

Text Book References:
ENCV 604 003
Building Construction
3 Credits

Learning Outcomes:
1. Students will be able to apply the knowledge of engineering drawing symbols in Civil Engineering field for describing a two-story building according to the rules and procedures of engineering drawing such as aperture drawing (plans and appearance) and section view; covering dimension/sizes; foundation drawing, structural beam and column drawing, trestlework drawing, electrical installation and plumbing;
2. Be able to read the construction drawing and explain the parts of water structure (dam), waste treatment building, geotechnical building (foundation, retaining wall), roads, and bridges according to the construction drawing;
3. Be able to calculate the volume of the building, unit price, and cost estimation.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA10 (communication)

Syllabus: Introduction of the course syllabus, introduction of standards of every building element and room function, plan and appearance drawing of a building, section-view drawing, foundation plan drawing, column and beam construction drawing, rooftop and trestlework plan drawing, platform drawing, stairs drawing, plafond and floor pattern drawing, window and door frames drawing, lighting installation drawing; plumbing system drawing, fire prevention installation drawing; lightning rod installation drawing, solid waste/trash drawing and septic tank drawing. Calculation of the building’s volume and cost estimation. Unit Price. Journals.

Prerequisites: Construction Drawing

Text Book References:
1. Neufret, Ernst, Data Arsitek Jilid 1 dan 2, Penerbit Erlangga, Jakarta, 1989
4. Tanggoro, Dwi, Utilitas Bangunan, Penerbit Universitas Indonesia, 2000

ENCV 604 005 / ENCV 613004
Basic Soil Mechanics (2+1)
3 Credits

Learning Outcomes: Students will be able to explain the basic understanding of geology and able to explain the physical properties of soil and its parameters which covers its application in civil engineering.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis), WA3 (design/development of solutions) WA4 (investigation), WA5 (modern tool usage) and WA 9 (individual and team work)

Syllabus: Bearing capacity of the soil: Allowable bearing capacity and Ultimate bearing capacity due to inclination and eccentricity of load; One dimensional elastic settlement and consolidation settlement; Drawing shallow foundation design; Seepage through dam; Stress distribution in the soil: A point load, strip, circle, and square area of footing using Fadum and Newmark theories; Lateral earth pressure: Rankine and Coulomb theories; Structure design of earth retaining wall, gravity wall, cantilever wall, earth retaining cantilever wall, sheet pile; Slope stability: concept of slope stability, undrained analysis, slice method, introduction of Fellenius method, Bishop method, Soil stability method

Prerequisites: Basic Soil Mechanics

Prerequisites: Material Properties

Text Book References:

ENEV604001
Solid Mechanics
3 SKS

Learning Outcomes:
1. Students will be able to analyze tension and shape changes as a result of working forces for various shape of statically determined structure and various shape of sections and type of materials;

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge)

Syllabus: The meaning of loads and forces working on a solid object, effect of forces to a solid object, stresses on a solid object, shape deformation of a solid object, characteristics of shape deformation of a solid object, elastic and inelastic phases, axial strain, Modulus of Elasticity, Poisson Ratio. Section Properties, area, center of gravity, cross-axis system, maximum moment of inertia of a section, minimum moment of inertia of a section, radius of gyration, symmetric section, asymmetric section. Normal stress due to axial internal forces, normal stress due to flexure, combination of normal stress and flexure, one way and two-way flexural stress, core area (Kern), shear stress due to transversal internal forces, shear stress due to torsion internal forces. Combination of normal and shear stresses. Deflection of beam, portal, and trusses of statically determined structure caused by external forces using energy/unit load method.

Prerequisites: Statics

Text Book References:

ENEV604002
Hydraulics in Environmental Engineering
3 credits

Learning Outcomes:
1. Students have the basic ability to understand the basic concepts of the behavior of water flow in open channels and closed conduits, understand the functions of the water buildings and measuring the flow rate, and able to calculate the flow rate in open channels and closed conduits, calculate the energy loss, and mathematically describe the flow and pressure distribution within a pipe network.

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge) and WA3 (design/development of solutions)

Syllabus: (a) the concept of hydraulics in open-channel flow and closed-conduits flow; (b) Flow in open channel; basic equation, minor and major losses; (c) Flow in pipe network; the use of concept of HGL (Hydraulic Grade Line) and EGL (Energy Grade Line), Bernoulli equation, Hardy-cross method for calculating flow distribution in a pipe network: series, parallel, and branching; (d) The concept of energy (specific energy and critical energy), the type of flow; steady, unsteady, uniform, non-uniform; (e) Various primary water buildings; weir, intake building, distribution channel, flow or discharge measuring tools/gauges; Chipolleti-weir, Parshall-flume, V-notch weir, loggers, etc.

Prerequisites: Fluid Mechanics

Text Book References:

ENEV604003

Environmental Chemistry

3 credits

Learning Outcomes:

1. Students are able to analyze various parameters of water and waste water quality, and writing the results in scientific report

Competencies in Curriculum: Prior knowledge for WA3 (design/development of solutions), WA4 (investigation) and WA9 (individual and team work)

Syllabus: The basic principle of environmental chemistry; interactions between environmental factors and various parameters of water quality and waste water; Water resources: the properties and quality of water resources; contamination and water pollution; quality raw water sources and clean water; chemicals and some parameters in water and waste water (turbidity, color, pH, acidity, alkalinity, hardness, dissolved oxygen, BOD, COD, nitrogen, sulfate, Solid, iron, manganese, fluoride, chlorine residual and the chlorine needs), and its source, influence on health and environment; methods of laboratory examination of various parameters of water and waste water quality

Prerequisites: Basic Chemistry

References:

1. Standard Methods, Examination of Water & Wastewater, 20th Edition

ENEV604004

Environmental Global Issues

2 credits

Learning Outcomes:

1. Students are able to relate the (C3) concepts and knowledge of environmental science to investigate (C3), criticized (A3) and demonstrating (P2) causes, effects and solutions of the existig contemporary global environmental problems

Competencies in Curriculum: Prior knowledge for WA7 (environment and sustainability) and WA12 (lifelong learning)

Syllabus: abiotic environment problems and decrease of resilience of various spatial and temporal scales, (concept of D-P-S-I-R, climate change, water, air and land pollution, scarcity of Natural Resources, Probability and statistics in environmental science, Resiliency); Ecosystems and living beings (Recycling of energy and water, the food chain, biodiversity, nutrient cycle in nature, the main ecosystems of the earth, Sustainability); The harmful effects of environmental problems on society, the economy, and the environment particularly which is irreversible (System thinking, State shift and irreversibility, health impacts, economic impacts, the impact of welfare); Anthropocene era and the concept of sustainable development (population, changes in land use, consumption, economy and development, Nexus Water-Energy-Food, Three pillars of sustainability); Solutions to environmental problems (L-C-A, Greenwashing, Geo-Engineering, End-of-pipe vs closed loop, Reflexive Engineer, Sustainable Consumption and Production, Resiliency)

Prerequisites: Integrated Character Building Course B

Buku Referensi :

ENEV604005

Environmental Microbiology

2 credits

Learning Outcomes:
1. Students are able to explain the system in relation to the microbiological transformation and mineralization of organic wastes and factors that control microbiological processes in wastewater treatment;
2. Students are able to check the quality of water and air microbiological

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge), WA3 (design/development of solutions) and WA9 (individual and team work)

Syllabus: The basic concepts of microbiology (Introduction of environmental microbiology, microorganisms found in the environment, diversity of microorganisms and their interaction at natural ekosistem); Nutrition for microorganisms; Bacterial growth; Environmental microorganism (Earth environments, Aeromicrobiology, Aquatic environments, Extreme environments); Remediation of organic pollutants and metals (microorganisms and organic pollutants, microorganisms and metal pollutants); Basic microbiology for waste water treatment and solid waste (processing aerobic, anaerobic processing); Urban microbiology, microbial emerging global issues in the Anthropocene era and risk assessment.

Practicum
1. Microbial Enumeration for water quality (TPC,MTF)
2. Gram staining
3. Aeromicrobiology - Bioaerosol sampling

Prerequisites: Introduction to Environmental Engineering System

Buku Referensi :

ENEV604006
 Thermodynamics
 2 credits

Learning Outcomes: Students are expected to apply the science of thermodynamics in conceptualizing waste management and environmentally efficient and sustainable

Competencies in Curriculum:

Syllabus: The concept of thermodynamics (enthalpy, entropy, free energy, equilibrium, spontaneity), Cycle of energy on earth, energy balance, the concept of conversion and transfer of energy, Equilibrium element on earth, Thermodynamics in sewage treatment in Indonesia, new and renewable energy

Prerequisites: Basic Chemistry, Physics

Buku Referensi :

ENEV605001
 Urban Planning and Sanitation
 3 Credits

Learning Outcomes:
1. Students will be able to explain the role of civil engineer in setting up the infrastructure needed in an urban area and be able to apply that knowledge in the process of planning, monitoring and implementation of the regional arrangement;
2. Be able to describe the components of an urban sanitation techniques and applying that knowledge in the planning, monitoring and implementation so as to create environmentally sustainable region.

Competencies in Curriculum: WA2 (problem analysis), WA7 (environment and sustainability)

Syllabus: Definition and function of urban planning, Primary factor in urban planning, Population aspect in urban planning, Social facilities and forms of urban development, Land use, Water management and its relationship with land use. Controlling transmission of infectious and non-infectious
diseases in an area, Planning and analyzing impacts of environmental engineering, Clean water supply, Waste water treatment and disposal, Solid waste management, Noise control, Air pollution control.

Prerequisites:

Text Book References:

4. Environmental Engineering and Sanitation: Joseph A. Salvato: John Willey & Son, Inc., Canada

ENEV605002

Structural Design of Environmental Engineering Facilities

3 credits

Learning Outcomes:
1. Students are able to design environmental engineering structures such as sewage treatment facilities and water tanks of reinforced concrete in accordance with the applicable procedures and standards

Competencies in Curriculum: Prior knowledge for WA3 (design/development of solutions), WA5 (modern tool usage) and WA9 (individual and team work)

Syllabus: objections, step and the process of designing the structure and explain the various methods of planning; shape, type, placement, distribution, factors and combinations of load and able to explain a wide range of structural system reinforced concrete; material and mechanical properties of reinforced concrete cross-section, the concept of elastic and strength limits, simplifying the Whitney tension block and impartial failure; square reinforced concrete beam, with single or double bars and the beam cross-section T to bending and shear, and capable to proportion short and slender columns to bending and axial force, and the shallow foundation; building operating conditions to determine the load recovery techniques, water-resistant requirements, joint detail and placement, shrinkage reinforcement, design parameters, strength for restructuring techniques building design; square tank structure and circular tanks of reinforced concrete for the restructuring techniques building.

Prerequisites: Basic Soil Mechanics, Solid Mechanics

Buku Referensi:
1. Persyaratan beton structural untuk bangunan gedung, SNI 2847 : 2013
2. Beban minimum untuk perancangan bangunan gedung dan struktur lain, SNI 1727 : 2013
6. JF. Seidensticker and ES Hoffman, Sanitary

ENEV605003

Network Design in Environmental Engineering

3 credits

Learning Outcomes:
1. Students are able to calculate the regional average rainfall, planned rainfall, organize intensity-duration-frequency rainfall curve, calculate the flood discharge plan at various return period
2. Students are expected be able to divide the service zone, identify water needs of each zone, plan the distribution pipe network of primary and secondary, and determining the location of reservoir distribution
3. Students are able to calculate and design a waste water network; the service zone, calculate peak flow of each zone, plan the distribution pipe network of primary and secondary, and determining the location of waste water treatment plant.

Competencies in Curriculum: Prior knowledge for WA3 (design/development of solutions), WA5 (modern tool usage) and WA9 (individual and team work)

Syllabus: (a) the basic concept of the hydrological cycle, catchment area/watershed; (b) the determination of the average rainfall of a region, design rainfall using extreme distribution method; (c)
determination of intensity-duration-frequency rainfall curve, and design of flood discharge return period; (d) calculation of flow rate in each segment of the pipe, design velocity, and pipe diameter, calculation of flow distribution in pipe network using Hardy-Cross method and EPANet software.

Prerequisites: Fluid Mechanics, Hydraulics in Environmental Engineering

Text Book References:

ENEV605004

Integrated Solid Waste Management Design

3 credits

Learning Outcomes: students are able to plan a solid waste management system in engineering aspects

Competencies in Curriculum: Prior knowledge for WA3 (design/development of solutions), WA6 (the engineer and society) and WA9 (individual and team work)

Syllabus: Students are expected to explain the properties and problems arising from the solid waste material and developing and selecting alternative management in accordance with local conditions. Understanding of the management of solid waste material, Source, type and composition of the waste material solid, Generation waste material solid, collection, transfer and transport of solid waste materials and disposal, and the processing of solid waste material, aspects of the organization in the management of solid waste material, aspects of financing, aspects of regulation and aspects of community participation management of solid waste and materials. The concept of designing the management of solid waste material. The management system of solid waste material, Regulation of solid waste material management, solid waste material management methods

Prerequisites:

Buku Referensi :
2. Tchobanoglous, 1977, Engineering Principles and Management Issues.;
4. Flintoff FF., 1983, *Management of Solid Wastes in Developing Countries*

ENEV605005

Unit Operation and Process

4 credits

Learning Outcomes:
1. students are able to explain unit operations and unit processes used in water treatment and waste water, using the basic principles of engineering calculations for the determining processes of physics, chemistry, and biology.

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge) and WA2 (problem analysis)

Syllabus: unit operations and processes based on the principle (physical processing, chemical, biology), the level of processing; the concept of balanced mass, flow model, and reactor; unit operations and process of preliminary treatment in the process of water treatment and waste water; process and operation of the coagulation process and Flocculation; an operating unit of the separation of solid particles in the water treatment and waste water (sedimentation); an operating unit of the separation of solid particles through the axis media (filtration);

Students are able to explain the operating unit and the process of separation of ammonia, an operating unit and the adsorption process; unit process of chemical reactions between the ions in the liquid phase and solid phase (Ion Exchange) in water treatment and wastewater; unit operation and process that separate elements of the solution using pemeable membrane (Membrane Process) in water treatment and wastewater; unit operations and process of oxygen transfer and mixing; biological processes at waste water treatment by the method of suspended growth: Activated Sludge; biological processes at waste water treatment by the method of suspended growth: Stabilization Ponds and aerated Lagoons; biological processes at waste water treatment by the
method of suspended growth: Stabilization Ponds and aerated Lagoons; biological processes in wastewater treatment with anaerobic suspended growth method: Anaerobic digestion; biological processes in wastewater treatment with suspended aerobic growth method: Aerobic digestion; sludge treatment process

Prerequisites: Basic Chemistry, Physics (Mechanics and Thermal), Environmental Chemistry

Buku Referensi:
1. Tom D. Reynolds and Paul Richards, Unit Operations and Process in Environmental Engineering Pws Series in Engineering;

ENEV605006
Environmental Laboratory
3 credits

Learning Outcomes:
1. Students are able to perform the environmental sampling and water treatment experiment at a laboratory scale by applying the principles of unit operations and processes (C3, P3)

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis) and WA4 (investigation)

Syllabus: Analysis of water resources, Identification of pollution sources; Sampling of surface water and solid waste (representativeness of the sampling and analysis of data, surface water sampling, sampling of solid waste); Analysis of surface water quality (analysis of the characteristics and composition of waste on, quality of surface water), composition and characteristics of solid waste, planning experiment of water treatment at at laboratory scale, solid analyses: sedimentation type 1, coagulation and flocculation processes, sedimentation type 2, chlorination

Prerequisites: Environmental Chemistry

References:
1. Standard Methods, Examination of Water & Wastewater, 20th Edition

ENEV606001
Project Managements
3 credits

Learning Outcomes:
1. At the end of the course, students are expected to select and plan the project management from project initiation to implementation and delivering the works

Syllabus: Project: environmental infrastructure, project initiation: project selection, Planning project: major activities and supporting activities; Implementation of the project: plan implementation, quality assurance, Health, safety and environmental management, material procurement processes, equipment and services; Control of the project: project performance reporting, control activities, time, cost and quality; Closure of the project: the introduction of asset management / infrastructure

Prerequisites:

Buku Ajar:
3. Buku Referensi:
7. Project Management Institute, A Guide to the Project Management Body of Knowledge
ENEV606002
Water Treatment Design
3 credits
Learning Outcomes: students are able to plan water treatment systems and to design dimensions of the unit in the processing unit of the treatment plant
Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge), WA2 (problem analysis) and WA3 (design/development of solutions)
Syllabus: Water supply systems and their components, water needs, raw water sources, water and raw water quality, water catchments and water transmission and equipment, water treatment, physical treatment, chemicals treatment, reservoir, equipments of another installation, layout, hydraulic profile
Prerequisites: Unit Operation and Process, Fluid Mechanics, Water Supply and Sewerage Network Design
Buku Referensi:
2. Water Treatment Principles and design, J. M. Montgomery, 1985
3. Water and Wastewater Technology, Mark J. Hammer, 1996

ENEV606003
Domestic Wastewater Treatment Design
3 credits
Learning Outcomes:
1. The student is able to design the details of domestic waste water treatment facility in a city.
Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge), WA3 (design/development of solutions), WA6 (the engineer and society) and WA9 (individual and team work)
Syllabus: Domestic Wastewater Treatment Design course begins with a study that determining the water needs in its coreelation with the discharge and the characteristics of domestic waste water generated. Domestic wastewater treatment plant designed including all processing units of physical, chemical processing (if necessary) and biological treatment which is the core domestic wastewater. Pre-processing, primary processing and secondary processing and effluent processing units are required to guarantee the quality of treated water before discharged to the receiving water bodies in accordance to applicable Environmental Quality Standards.
Prerequisites: Unit Operation and Process, Perancangan Jaringan TL, Fluid Mechanics
Buku Referensi:
1. Water and Wastewater Technology, Mark J. Hammer, 1996

ENEV606004
Environmental Impact Analysis and ISO
3 Credits
Learning Outcomes: Students will be able to apply the method of EIA and environmental audits as inputs for safeguards against human and natural resources.
Competencies in Curriculum: Prior knowledge for WA4 (investigation), WA6 (the engineer and society), WA7 (environment and sustainability) and WA10 (communication)
Syllabus: The meaning of EIA, EIA process and benefits, rules, regulations and management of EIA, Environmental settings, Estimation of environmental impacts, Environmental impact to the physical, chemical, biological, socio-economic, and socio-cultural sector. EIA method, Method and techniques of identification, prediction, evaluation and interpretation of the EIA, Environmental Monitoring Plan, Environmental Management Plan, Environmental Audit and Environmental Management System.
Prerequisites: -

Text Book References:

ENEV607001
Industrial and Hazardous Waste Treatment
3 credits

Learning Outcomes: Students are expected to implement processes and technology of industrial waste treatment within the framework of environmental pollution control and environmental work

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge), WA2 (problem analysis), WA3 (design/development of solutions) and WA9 (individual and team work)

Syllabus: Sustainable Development Goals in the perspective of environmental development, especially in waste management, regulation and legislation in environmental management industry; concept of environmental carrying capacity and environmental components in the industrial waste management; Sources, types and characteristics of the waste industry based on raw materials, processes and products used; The impact of pollution (liquid, solid and gas waste), vibration and noise on humans and the environment; Pollution prevention and waste minimization industry; Process and waste treatment technology of liquid, solid and gas waste; Case of industrial waste management and treatment.

Prerequisites: Unit Operation and Process

Text Book References:
4. Peraturan Pemerintah 101 Tahun 2014 tentang Pengelolaan Limbah B3

ENEV607002
Air Pollution
3 credits

Learning Outcomes: students are able to identify the problem of air pollution in the solid waste management and waste water treatment setting, determining the source, type, and characteristics of air pollutants and providing advice on control. This course is conducted in Bahasa Indonesia with face to face method, discussions and group assignments.

Competencies in Curriculum: Prior knowledge for WA2 (problem analysis), WA4 (investigation) and WA7 (environment and sustainability)

Syllabus: Sources and types of air pollution, impacts of air pollution, meteorological factors, Detail discussion of the types of air pollution such as sulfur dioxide, nitrogen oxides, particulates, contaminants microbiological, and environmental tobacco smoke, Technology available for air pollution control such as cyclone, bag house filter, and scrubber.

Prerequisites: -

References:
ENVEV607003
Internship
3 Credits
Learning Outcomes:
1. Students are expected to describe a project/work in the field of civil engineering and the environment at the internship location, identify the problem, conduct analysis and thought to overcome it as stated in the form of a written report and be responsible for it before the examiner team.

Competencies in Curriculum: Prior knowledge for WA8 (ethics), WA9 (individual and team work), WA10 (communication) and WA11 (project management and finance).

Syllabus: Implement an internship in a construction project, field observation; interpret a construction drawing, writing an observation report, describing a technical work process, quality control, project management, project specification, engineering drawing and other aspect; problem solving on the fields, presenting an internship reports.

Prerequisites:
1. Already pass 6th semesters and pass ≥ 75 credits according to the determined conditions applied by the Civil Engineering Department, Faculty of Engineering, Universitas Indonesia and/or the conditions from Faculty of Engineering, Universitas Indonesia.
2. Registered and fill out IRS for internship special course, and expresses him/herself to the Internship Coordinator in the Department of Civil Engineering.
3. Student choose a project and/or object of selected activities at the internship site and location that has been contracted previously.
4. Students must complete and submit the registration form at the Secretariat of Civil Engineering Department.

Text Books References:

ENVEV607004
Research Methods and Seminar in Environmental Engineering
2 credits
Learning Outcomes:
1. Students are expected be able to apply knowledge and demonstrate understanding of research methods in civil and environmental engineering; conduct literature review and design experimental methods to solve basic problems in civil and environmental engineering context, as well as be able to communicate verbally and in writing.

Competencies in Curriculum: Prior knowledge for WA4 (investigation), WA5 (modern tool usage), WA6 (the engineer and society), WA7 (environment and sustainability), WA8 (ethics), WA9 (individual and team work) and WA11 (project management and finance).

Syllabus: Identification of major issue and problems in environmental engineering, formulating research problem, determining specific aims/objectives of the research, collecting related data, study or previous research, conducting literature review and meta-analysis, designing research methods, writing research proposal (introduction, literature review, methods), presentation of research proposal.

Prerequisites: Have completed courses of 110 credits with a GPA ≥ 2.00 and without E value.

Textbook References:

ENVEV608001
Entrepreneurship
2 credits
Learning Outcomes: Students are able to explain the comparison of various entrepreneurial activity of civil/environment engineering characterized by innovation and self-reliance based on ethics and able to communicate visually and verbally.

Competencies in Curriculum: Prior knowledge for UI-E (entrepreneurship) and UI-B (social sciences, nationality & humanities).

Syllabus: Problems and needs of the various stakeholders in the fields of water, waste and sanitation in Indonesia, existing solution for the problems of Environmental Engineering, general opportunity entrepreneurship to solve the problems of Environmental Engineering, Definition of entrepreneur-
ship, Action, plans and challenges for entrepreneur, Action, plans and challenges academics and observers, Business models canvas (BMC) concept, profile the company in general, customer profile in general, fees and turnover, identification of differences and similarities between the components of the BMC, Assessment of the advantages and disadvantages of each component of BMC, variety of products and services environmental engineering, definition of product value, human needs, customer segments, various customer profiles, identification of differences and similarities between the components of BMC, Assessment advantages and disadvantages of each component of BMC.

Prerequisites: Integrated Character Building Course A, Introduction to Environmental Engineering System, Urban Planning and Sanitation

Text Book References:
4. Osterwarlder, Business Model Generation, 2010
5. Osterwarlder, Value Proposition Design: How to Create Products and Services Customers Want, 2014

ENEV600003
Final Project
4 Credits

Learning Outcomes:
1. Students will be able to apply civil engineering knowledge to solve a complex civil engineering problem through a study that follows the rules such as: Conducting literature study, choosing the research methodology, analyze and interpret the data and draw a valid conclusion;
2. Be able to write the result of the research in a scientific writing using the correct Indonesian/English language and following the standard final project format;
3. Be able to present the study result to examiner team;
4. Be able to work independently and complete the work within the time limit.

Competencies in Curriculum: Prior knowledge for WA1 (engineering knowledge), WA2 (problem analysis), WA3 (design/development of solutions), WA4 (investigation), WA5 (modern tool usage), WA10 (communication) and WA12 (lifelong learning)

Syllabus: Problem formulation, Literature study, conducting research, data analysis, result interpretation, preparing a written report of the synthesis and present the study results

Prerequisites: Passing 110 credits with GPA >=2.00 and without grade of E

Text Books References: related to the subject

Information: Complete Teaching Plan can be found at http://www.civil.ui.ac.id/id_ID/engineering-environmental/
UNDERGRADUATE PROGRAM IN MECHANICAL ENGINEERING

Program Specification

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1. | **Awarding Institution** | Universitas Indonesia
Double Degree: Universitas Indonesia and Partner University |
| 2. | **Teaching Institution** | Universitas Indonesia
Double Degree: Universitas Indonesia and Partner University |
| 3. | **Programme Title** | Undergraduate Program in Mechanical Engineering |
| 4. | **Class** | Regular, Parallel and International |
| 5. | **Final Award** | Sarjana Teknik (S.T)
Double Degree: Sarjana Teknik (S.T) and Bachelor of Engineering (B.Eng) |
| 6. | **Accreditation / Recognition** | BAN-PT: A Accredited - AUN-QA | |
| 7. | **Language(s) of Instruction** | Bahasa Indonesia and English |
| 8. | **Study Scheme (Full Time / Part Time)** | Full Time |
| 9. | **Entry Requirements** | High school / equivalent, or D3 / Polytechnic / equivalent, AND pass the entrance exam. |
| 10. | **Study Duration** | Designed for 4 years |
| | **Type of Semester** | **Number of Semester** | **Number of weeks / semester** |
| Regular | 8 | 17 |
| Short (optional) | 3 | 8 |
| 11. | **Graduate Profiles:** | Competent engineering graduates who have abilities to design and analyze the element and system in the field of mechanical engineering and have the excellent attitude and character that can adapt the professional challenge in their work field |
| 12. | **List of Graduates Competency:** | 1. Ability to analyze the problems in mechanical engineering field by applying the basic knowledge of mathematics, numerical method, statistical analysis and basic science (physics, chemistry and life science), as well as information technology
2. Ability to design component, system and/or thermofluid process and mechanical system to fulfill the realistical needs, for example law, economics, environment, social, politics, health and safety, sustainability and to understand and/or to use potential local and national resources in global perspective
3. Ability to analyze the scientific problems by conducting research and to publish the results, including the data analysis of the results using the statistical principles
4. Ability to identify, to formulate, to analyze and to solve the engineering problems by applying the principles and calculation in mechanical elements and system design process
5. Ability to use the method, skill and modern engineering tools that used for engineering practice such as material selection and manufacturing process, automation system and computer aided mechanical design
6. Ability to communicate effectively by visual, writing and also verbal
7. Ability to design, to plan, to conduct and to evaluate the task for the given boundary condition
8. Ability to work effectively in individual and multidiscipline or multicultural team
9. Ability to be responsible to the society and to obey the professional ethics in solving engineering problems
10. Ability to conduct life long learning including to access the knowledge on the relevant current issues |
As a Universitas Indonesia student, every graduate of Mechanical Engineering Undergraduate Program should have the following competences as follows:

1. Able to use information and communication technology;
2. Able to think critically, creatively, and innovatively and have intellectual curiosity to solve the individual and group problems;
3. Able to use verbal and writing communication in good bahasa Indonesia and English for academic or non-academic activity;
4. Has an integrity and able to respect others;
5. Able to identify entrepreneurship efforts which show innovation and autonomy based on ethics.

Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.5%</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>30</td>
<td>20.8%</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>68</td>
<td>47.2%</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>16</td>
<td>11.1%</td>
</tr>
<tr>
<td>v</td>
<td>Internship, Seminar, Undergraduate Thesis, Project</td>
<td>12</td>
<td>8.4%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100%</td>
</tr>
</tbody>
</table>

Total Credit Hours to Graduate: 144 SKS

Career Prospects

Graduates of Mechanical Engineering has devoted itself in various fields, including mechanical element and system engineer (mechanical system, thermal and fluid, material and production process), government, process plan supervisor, construction, operation and maintenance, leader and instructor of community development, technical project inspector, Sales & Service Engineer, Entrepreneur and Adjuster.
Learning Outcomes Flow Diagram
Curriculum Structure

Basic Engineering Courses (30 Credit Units)

University Courses (18 Credit Units)

Basic Mechanical Engineering Courses (49 Credit Units)

Mandatory Mechanical Engineering Core Courses (19 Credit Units)

Elective Courses (16 Credit Units)

Design Assignment, On the Job Training, Seminar, Undergraduate Thesis (12 Credit Units)
Composition :

University Courses (18 Credit Units)
- MPKT A: 6
- MPKT B: 6
- English: 3
- MPK Religion: 2
- MPK Sport/Art: 1

Basic Engineering (30 Credit Units)
- Calculus 1: 3
- Calculus 2: 3
- Linear Algebra: 4
- Basic Physics 1 (Mechanics and Heat): 3
- Laboratory Experiment for Basic Physics 1: 1
- Basic Physics 2 (Electrical, Magnet, Wave, and Optic): 3
- Laboratory Experiment for Basic Physics 2: 1
- Engineering Drawing #: 2
- Chemistry: 2
- Health, Safety and Environment: 2
- Statistics and Probability: 2
- Life Science for Engineer: 2
- Industrial Seminar: 2

Basic Mechanical Engineering Courses (49 Credit Units)
- Introduction to Mechanical Engineering: 2
- Mechanical Drawing: 2
- Mechanical Modelling and Visualization: 2
- Engineering Statics: 2
- Strength of Materials: 2
- Engineering Material: 2
- Mechanical Design: 4
- Basic Thermodynamics: 4
- Engineering Mathematics: 4
- Kinematics and Dynamics: 4
- Basic Fluid Mechanics: 4
- Material Selection and Manufacturing Process: 4
- Laboratory Experiment for Manufacturing Process: 1
- Heat and Mass Transfer: 4
- Electrical Power Engineering: 2
- Laboratory Experiment for Electrical Power Engineering: 1
- Measurement and Metrology: 2
- Laboratory Experiment for Measurement and Metrology: 1
- Numerical Method: 2

Mandatory Mechanical Engineering Core Courses (19 Credit Units)
- Fluid System: 3
- Mechatronics: 4
- Maintenance and Condition Monitoring: 3
- Energy Conversion and Conservation: 2
- Laboratory Experiment for Energy Conversion and Conservation: 1
- Mechanical Vibration: 2
- Control System: 4

Elective Courses (16 Credit Units)
- Elective Courses Semester 7:
 - Elective Course #1: 4
 - Elective Course #2: 4

- Elective Courses Semester 8:
 - Elective Course #3: 4
 - Elective Course #4: 4

Design Assignment, Internship, Seminar and Undergraduate Thesis (12 Credit Units)
- Design Assignment 1: 2
- Design Assignment 2: 2
- Internship: 2
- Seminar: 1
- Final Project: 5
The groups of the courses can be seen according to the characteristic and the education purposes that are expected as shown in figure below.
Mechanical Engineering Undergraduate International Program Curriculum

The international program of mechanical engineering study is divided into two phases which are the first will be done at University of Indonesia and the other phase will be completed at partner universities in Australia. There will be an option to continue the second phase at UI. A student at the Department of Mechanical Engineering - Universitas Indonesia must complete and pass 72 - 76 credits over 4 semesters before continuing to partner universities. The courses are classified into University courses (6 credits) and basic courses that consist of Basic Engineering courses (24 credits) and Basic Mechanical Engineering courses (36 credits).
COURSE STRUCTURE UNDERGRADUATE PROGRAM MECHANICAL ENGINEERING

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>ENME601001</td>
<td>Introduction to Mechanical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENME601002</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 6 0 0002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>UIGE600020 - 48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENME602003</td>
<td>Machine Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENME602004</td>
<td>Statics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME603005</td>
<td>Engineering Material</td>
<td>2</td>
</tr>
<tr>
<td>ENME603006</td>
<td>Mechanical Modelling and Visualization</td>
<td>2</td>
</tr>
<tr>
<td>ENME603007</td>
<td>Strength of Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 6 0 0009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENME603008</td>
<td>Basic Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 6 0 0010</td>
<td>Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 6 0 0004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME600009</td>
<td>Kinematics and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENME604010</td>
<td>Material Selection & Manuf. Process</td>
<td>4</td>
</tr>
<tr>
<td>ENME604011</td>
<td>Basic Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ENME604012</td>
<td>Mechanical Design</td>
<td>4</td>
</tr>
<tr>
<td>ENME600013</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME605014</td>
<td>Mechanical Vibration</td>
<td>2</td>
</tr>
<tr>
<td>ENME605015</td>
<td>Measurement and Metrology</td>
<td>2</td>
</tr>
<tr>
<td>ENME600016</td>
<td>Numerical Method</td>
<td>2</td>
</tr>
<tr>
<td>ENME605017</td>
<td>Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>ENME605018</td>
<td>Fluid Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
UNDERGRADUATE PROGRAM

6th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME605019</td>
<td>Control System</td>
<td>4</td>
</tr>
<tr>
<td>ENME600001</td>
<td>Design Assignment 1</td>
<td>2</td>
</tr>
<tr>
<td>ENME600007</td>
<td>Lab of Production Process</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE 6 0 0012</td>
<td>HSE Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENME606020</td>
<td>Maintenance & Machine Monitoring</td>
<td>3</td>
</tr>
<tr>
<td>ENME606021</td>
<td>Energy Conversion & Conservation</td>
<td>2</td>
</tr>
<tr>
<td>ENME606024</td>
<td>Life Science for Engineer</td>
<td>2</td>
</tr>
<tr>
<td>ENME606022</td>
<td>Mechatronics</td>
<td>4</td>
</tr>
<tr>
<td>ENME600002</td>
<td>Design Assignment 2</td>
<td>2</td>
</tr>
<tr>
<td>ENME606023</td>
<td>Electrical Power Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENME600008</td>
<td>Lab for Measurement and Metrology</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME600019</td>
<td>Laboratory Experiment for ECC</td>
<td>1</td>
</tr>
<tr>
<td>ENME600010</td>
<td>Lab for Electrical Power Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ENME600003</td>
<td>On the Job Training</td>
<td>2</td>
</tr>
<tr>
<td>ENME600004</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal 13

TOTAL 144

Resume

<table>
<thead>
<tr>
<th>Subject Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>30</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>80</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>128</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>16</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
ELECTIVES

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN PILIHAN / ELECTIVES SEMESTER 7</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME801113</td>
<td>Ventilation & AC System</td>
<td>4</td>
</tr>
<tr>
<td>ENME803105</td>
<td>Internal Combustion Engine</td>
<td>4</td>
</tr>
<tr>
<td>ENME803106</td>
<td>Flow Measurement & Visualization</td>
<td>4</td>
</tr>
<tr>
<td>ENME803107</td>
<td>CFD Application</td>
<td>4</td>
</tr>
<tr>
<td>ENME803104</td>
<td>Thermal Power Generation</td>
<td>4</td>
</tr>
<tr>
<td>ENME803115</td>
<td>Clean Room</td>
<td>4</td>
</tr>
<tr>
<td>ENME803124</td>
<td>Energy Audit</td>
<td>4</td>
</tr>
<tr>
<td>ENME803134</td>
<td>Enclosure Fire Dynamics & Modelling</td>
<td>4</td>
</tr>
<tr>
<td>ENME803143</td>
<td>Mechanical Failure</td>
<td>4</td>
</tr>
<tr>
<td>ENME803145</td>
<td>Composite Product Development</td>
<td>4</td>
</tr>
<tr>
<td>ENME803147</td>
<td>Toy Production Design and Development</td>
<td>4</td>
</tr>
<tr>
<td>ENME803153</td>
<td>Machine Vision System</td>
<td>4</td>
</tr>
<tr>
<td>ENME803154</td>
<td>Quality & Production Manag. System</td>
<td>4</td>
</tr>
<tr>
<td>ENME803161</td>
<td>Micro-machining</td>
<td>4</td>
</tr>
<tr>
<td>ENME803167</td>
<td>Modern Vehicle Technology</td>
<td>4</td>
</tr>
<tr>
<td>ENME803195</td>
<td>Oil and Gas Drilling Equipment</td>
<td>4</td>
</tr>
<tr>
<td>ENME803196</td>
<td>Jet and Rocket Propulsion</td>
<td>4</td>
</tr>
<tr>
<td>ENME803174</td>
<td>Risk Management</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KODE</th>
<th>MATA AJARAN PILIHAN / ELECTIVES SEMESTER 8</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME804110</td>
<td>Combustion Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804109</td>
<td>Heat and Mass Transfer Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804111</td>
<td>Aerodynamics Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804118</td>
<td>Mechanical system for Building</td>
<td>4</td>
</tr>
<tr>
<td>ENME802103</td>
<td>Energy System Optimization</td>
<td>4</td>
</tr>
<tr>
<td>ENME804138</td>
<td>Evaluation of Fire Protection System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804148</td>
<td>Design For Manufacture and Assembly</td>
<td>4</td>
</tr>
<tr>
<td>ENME804149</td>
<td>Noise and Vibration</td>
<td>4</td>
</tr>
<tr>
<td>ENME804155</td>
<td>CAD/CAM</td>
<td>4</td>
</tr>
<tr>
<td>ENME804156</td>
<td>Manufacturing Performance Assesment</td>
<td>4</td>
</tr>
<tr>
<td>ENME802152</td>
<td>Automation and Robotics</td>
<td>4</td>
</tr>
<tr>
<td>ENME804168</td>
<td>Railway Vehicle Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804197</td>
<td>Handling and Construction Equipment</td>
<td>4</td>
</tr>
<tr>
<td>ENME804198</td>
<td>Aircraft Stability and Control</td>
<td>4</td>
</tr>
<tr>
<td>ENME804190</td>
<td>Advanced Welding Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME803108</td>
<td>Refrigeration Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>
COURSE STRUCTURE INTERNATIONAL UNDERGRADUATE MECHANICAL ENGINEERING

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME611001</td>
<td>Introduction to Mechanical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>UIGE610002</td>
<td>Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 1 0001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610005</td>
<td>Physics - Mechanics and Heat</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610006</td>
<td>Physics - Mechanics and Heat Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENME611002</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 6 1 0010</td>
<td>Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 6 1 0004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE610005-9</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 6 1 0002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610007</td>
<td>Physics - Electricity, MWO</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610008</td>
<td>Physics - Electricity, MWO Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>UIGE600020-48</td>
<td>Sport/ Art</td>
<td>1</td>
</tr>
<tr>
<td>ENME612003</td>
<td>Machine Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENME612004</td>
<td>Engineering Statics</td>
<td>2</td>
</tr>
<tr>
<td>ENME612005</td>
<td>Engineering Material</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 6 1 0009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>18</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME610013</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENME613006</td>
<td>Mechanical Modelling and Visualization</td>
<td>2</td>
</tr>
<tr>
<td>ENME613007</td>
<td>Strength of Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENME610016</td>
<td>Life Science for Engineer</td>
<td>2</td>
</tr>
<tr>
<td>ENME613008</td>
<td>Basic Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENME613010</td>
<td>Material Selection and Manuf. Process</td>
<td>4</td>
</tr>
<tr>
<td>ENME613015</td>
<td>Measurement and Metrology</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME610009</td>
<td>Kinematics and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENME610007</td>
<td>Laboratory Experiment of Production Process</td>
<td>1</td>
</tr>
<tr>
<td>ENME614011</td>
<td>Basic Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>ENME614012</td>
<td>Mechanical Design</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 6 1 0012</td>
<td>Health, Safety and Environmental Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENME616024</td>
<td>Numerical Method</td>
<td>2</td>
</tr>
<tr>
<td>ENME610008</td>
<td>Laboratory Experiment for Measurement and Metrology</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>18</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>UIGE610004</td>
<td>Integrated Character Building Course B</td>
<td>6</td>
</tr>
<tr>
<td>ENME615014</td>
<td>Mechanical Vibration</td>
<td>2</td>
</tr>
<tr>
<td>ENME615017</td>
<td>Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>ENME615018</td>
<td>Fluid System</td>
<td>3</td>
</tr>
<tr>
<td>ENME615019</td>
<td>Control System</td>
<td>4</td>
</tr>
<tr>
<td>ENME610001</td>
<td>Design Assignment 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>6th Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Character Building Course A</td>
<td>6</td>
</tr>
<tr>
<td>ENME616020</td>
<td>Maintenance and Machine Monitoring</td>
<td>3</td>
</tr>
<tr>
<td>ENME616021</td>
<td>Energy Conversion and Conservation</td>
<td>2</td>
</tr>
<tr>
<td>ENME616022</td>
<td>Mechatronics</td>
<td>4</td>
</tr>
<tr>
<td>ENME610002</td>
<td>Design Assignment 2</td>
<td>2</td>
</tr>
<tr>
<td>ENME616023</td>
<td>Electrical Power Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>7th Semester</td>
<td></td>
</tr>
<tr>
<td>ENME610019</td>
<td>Laboratory Experiment for ECC</td>
<td>1</td>
</tr>
<tr>
<td>ENME610010</td>
<td>Laboratory Experiment for Electrical Power Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ENME610003</td>
<td>On the Job Training</td>
<td>2</td>
</tr>
<tr>
<td>ENME610004</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Elective # 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective # 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8th Semester</td>
<td></td>
</tr>
<tr>
<td>ENME610005</td>
<td>Final Project</td>
<td>5</td>
</tr>
<tr>
<td>ENME610006</td>
<td>Industrial Seminar</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Elective # 3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective # 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Resume

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>30</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>80</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>128</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>16</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
Elective Courses

Electives for 7th Semester

<table>
<thead>
<tr>
<th>KODE</th>
<th>Subject</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME803105</td>
<td>Internal Combustion Engine</td>
<td>4</td>
</tr>
<tr>
<td>ENME803106</td>
<td>Applied Flow Measurement and Visualization</td>
<td>4</td>
</tr>
<tr>
<td>ENME803107</td>
<td>CFD Application</td>
<td>4</td>
</tr>
<tr>
<td>ENME803104</td>
<td>Thermal Power Generation</td>
<td>4</td>
</tr>
<tr>
<td>ENME803115</td>
<td>Clean Room</td>
<td>4</td>
</tr>
<tr>
<td>ENME803124</td>
<td>Energy Audit</td>
<td>4</td>
</tr>
<tr>
<td>ENME803134</td>
<td>Enclosure Fire Dynamics and Modelling</td>
<td>4</td>
</tr>
<tr>
<td>ENME803143</td>
<td>Mechanical Failure</td>
<td>4</td>
</tr>
<tr>
<td>ENME803145</td>
<td>Composite Product Development</td>
<td>4</td>
</tr>
<tr>
<td>ENME803147</td>
<td>Toy Production Design</td>
<td>4</td>
</tr>
<tr>
<td>ENME803153</td>
<td>Machine Vision System</td>
<td>4</td>
</tr>
<tr>
<td>ENME803154</td>
<td>Quality and Production Management System</td>
<td>4</td>
</tr>
<tr>
<td>ENME803161</td>
<td>Micro-machining</td>
<td>4</td>
</tr>
<tr>
<td>ENME803167</td>
<td>Modern Vehicle Technology</td>
<td>4</td>
</tr>
<tr>
<td>ENME803195</td>
<td>Oil and Gas Drilling Equipment</td>
<td>4</td>
</tr>
<tr>
<td>ENME803196</td>
<td>Jet and Rocket Propulsion</td>
<td>4</td>
</tr>
<tr>
<td>ENME803174</td>
<td>Risk Management</td>
<td>4</td>
</tr>
</tbody>
</table>

Electives for 8th Semester

<table>
<thead>
<tr>
<th>KODE</th>
<th>Subject</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME804110</td>
<td>Combustion Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804109</td>
<td>Heat and Mass Transfer Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804111</td>
<td>Aerodynamics Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME801113</td>
<td>Ventilation and Air Conditioning System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804118</td>
<td>Mechanical system for Building</td>
<td>4</td>
</tr>
<tr>
<td>ENME802103</td>
<td>Energy System Optimization</td>
<td>4</td>
</tr>
<tr>
<td>ENME804138</td>
<td>Evaluation and Maintenance of Fire Protection System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804148</td>
<td>Design For Manufacture and Assembly</td>
<td>4</td>
</tr>
<tr>
<td>ENME804149</td>
<td>Noise and Vibration</td>
<td>4</td>
</tr>
<tr>
<td>ENME804155</td>
<td>CAD/CAM</td>
<td>4</td>
</tr>
<tr>
<td>ENME804156</td>
<td>Manufacturing Performance Assesment</td>
<td>4</td>
</tr>
<tr>
<td>ENME802152</td>
<td>Automation and Robotics</td>
<td>4</td>
</tr>
<tr>
<td>ENME804168</td>
<td>Railway Vehicle Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804197</td>
<td>Handling and Construction Equipment</td>
<td>4</td>
</tr>
<tr>
<td>ENME804198</td>
<td>Aircraft Stability and Control</td>
<td>4</td>
</tr>
<tr>
<td>ENME804190</td>
<td>Advanced Welding Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME803108</td>
<td>Refrigeration Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>
Curriculum Design for Queensland University of Technology (QUT) 2+2

For Mechanical Engineering, the advanced standing is as follows (based on 2009 mechanical course structure at UI):

<table>
<thead>
<tr>
<th>UI Units</th>
<th>QUT Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENB100, ENB200, ENB150</td>
<td>ENB100802l + ENG100808l + ENG100807l + MCS210803l</td>
</tr>
<tr>
<td>MAB126, MAB127, MAB233</td>
<td>ENG100801l + ENG100804l + ENG200801l + MCS210810l</td>
</tr>
<tr>
<td>ENB110</td>
<td>ENG100805l + MCS120801l</td>
</tr>
<tr>
<td>ENB120</td>
<td>ENG200802l + EES21089l + EES210914l</td>
</tr>
<tr>
<td>ENB211</td>
<td>MCS220801l</td>
</tr>
<tr>
<td>ENB231, ENB331</td>
<td>MCS120801l + MCS220802l + MCS320801l</td>
</tr>
<tr>
<td>ENB212, ENB215</td>
<td>ENB220804l</td>
</tr>
<tr>
<td>ENB221</td>
<td>ENB210802l</td>
</tr>
<tr>
<td>ENB222</td>
<td>MCS220803l + MCS220803l</td>
</tr>
</tbody>
</table>

Provisional Program at QUT

February Entry

<table>
<thead>
<tr>
<th>Semester 1, Year 1</th>
<th>Semester 2, Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>ENB311</td>
<td>Stress Analysis</td>
</tr>
<tr>
<td>ENB312</td>
<td>Dynamics of Machinery</td>
</tr>
<tr>
<td>ENB316</td>
<td>Design of Machine Elements</td>
</tr>
<tr>
<td></td>
<td>Minor/Second Major 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 1, Year 2</th>
<th>Semester 2, Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>ENB421</td>
<td>Thermodynamics 2</td>
</tr>
<tr>
<td>BEB801</td>
<td>Project 1</td>
</tr>
<tr>
<td>SEB400</td>
<td>Foundations of Research</td>
</tr>
<tr>
<td>Minor/Second Major 3</td>
<td>Advance Selective</td>
</tr>
</tbody>
</table>

July Entry (preferred)

<table>
<thead>
<tr>
<th>Semester 2, Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>ENB205</td>
</tr>
<tr>
<td>ENB321</td>
</tr>
<tr>
<td>Minor/Second Major 4</td>
</tr>
<tr>
<td>Minor/Second Major 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 1, Year 2</th>
<th>Semester 2, Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>ENB311</td>
<td>Stress Analysis</td>
</tr>
</tbody>
</table>
New QUT Units Name:

BEB801 Project 1
Synopsis: This unit is usually taken in the final year of study. Students complete an individual project involving the application of skills and knowledge attained during the earlier years of their degree program. For some students, this unit will be taken one of two ‘project’ units related to the same student project; in such cases this unit may be a pre-requisite or co-requisite to the second unit (or a follow-on from the first unit). The final ‘deliverable’ for this unit may vary for each discipline and details will be provided in lectures/tutorials and on the Blackboard website.

BEB802 Project 2
Synopsis: This unit is usually taken in the final year of study, and is only taken by students completing a two unit project. Students complete an individual project involving the application of skills and knowledge attained during the earlier years of their degree program. This unit will be taken as the second of two ‘project’ units related to the same student project.

SEB400 Foundations of Research
Synopsis: This unit facilitates the acquisition of knowledge and skills essential to engaging with, and conducting research. This unit introduces you to the research process, project planning and management, and methodologies used in science, information technology, engineering, mathematics, urban development and property economics. The learning acquired in this unit will be applied to your project which is further developed in the Research units.

Curriculum Design for University of Queensland (UQ) 2+2

Course list for the Mechanical Engineering Single Major

Show information for:

Information valid for students commencing 2016

Mechanical Engineering
Students must complete for the BE(Hons) (Mechanical Engineering) a Single Major (Plan code: MECHAX2342) or Extended Major (Plan code: MECHAY2342), #64 comprising one of the following:

1. a major - #50, comprising all compulsory courses listed in Part A of the Me-
chanical Engineering lists; and
b. balance from electives, being courses from the BE(Hons) list or other
courses approved by the executive dean, with
(i) a minimum of #6 from courses on the BE(Hons) list, other than
courses on the Mechanical Engi-
neering Part B0 list, and
(ii) a maximum of #4 from courses from part B0 of the Mechanical Engi-
neering list, and
(iii) a maximum of #4 from level one courses not on the BE(Hons) list;

OR
2. a. an extended major - #60, comprising
 (i) #50 being all courses in part A compulsory; plus
 (ii) #10 from part B Electives under Extended Major; and
 b. balance from electives, being courses from the BE(Hons) list or other
courses approved by the Executive Dean.

Part A - Compulsory

<table>
<thead>
<tr>
<th>Year 1, Semester 1</th>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG1100</td>
<td>2</td>
<td></td>
<td>Engineering Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 1, Semester 1 or 2</th>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG1300</td>
<td>2</td>
<td></td>
<td>Introduction to Electrical Systems</td>
</tr>
<tr>
<td>ENGG1400</td>
<td>2</td>
<td></td>
<td>Engineering Mechanics: Statics & Dynamics</td>
</tr>
<tr>
<td>ENGG1500</td>
<td>2</td>
<td></td>
<td>Engineering Thermodynamics</td>
</tr>
<tr>
<td>MATH1051</td>
<td>2</td>
<td></td>
<td>Calculus & Linear Algebra I [1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 1, Semester 2</th>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG1200</td>
<td>2</td>
<td></td>
<td>Engineering Modelling & Problem Solving</td>
</tr>
<tr>
<td>MATH1052</td>
<td>2</td>
<td></td>
<td>Multivariate Calculus & Ordinary Differential Equations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 Semester 1</th>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2000</td>
<td>2</td>
<td></td>
<td>Calculus & Linear Algebra II</td>
</tr>
<tr>
<td>MATH2001</td>
<td>2</td>
<td></td>
<td>Advanced Calculus and Linear Algebra</td>
</tr>
<tr>
<td>MECH2300</td>
<td>2</td>
<td></td>
<td>Structures & Materials</td>
</tr>
<tr>
<td>MECH2305</td>
<td>2</td>
<td></td>
<td>Introduction to Engineering Design and Manufacturing</td>
</tr>
<tr>
<td>MECH2410</td>
<td>2</td>
<td></td>
<td>Fundamentals of Fluid Mechanics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 Semester 2</th>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH2100</td>
<td>2</td>
<td></td>
<td>Machine Element Design</td>
</tr>
<tr>
<td>MECH2210</td>
<td>2</td>
<td></td>
<td>Intermediate Mechanical & Space Dynamics</td>
</tr>
<tr>
<td>MECH2700</td>
<td>2</td>
<td></td>
<td>Engineering Analysis I</td>
</tr>
<tr>
<td>Course Code</td>
<td>Units</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MATH2010</td>
<td>1</td>
<td>Analysis of Ordinary Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MECH3300</td>
<td>2</td>
<td>Finite Element Method & Fracture Mechanics</td>
<td></td>
</tr>
<tr>
<td>MECH3400</td>
<td>2</td>
<td>Thermodynamics & Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>MECH3600</td>
<td>2</td>
<td>Engineering Management & Communication</td>
<td></td>
</tr>
<tr>
<td>STAT2201</td>
<td>1</td>
<td>Analysis of Engineering & Scientific Data</td>
<td></td>
</tr>
</tbody>
</table>

Year 3 Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH3100</td>
<td>2</td>
<td>Mechanical Systems Design</td>
</tr>
<tr>
<td>MECH3200</td>
<td>2</td>
<td>Advanced Dynamics & Vibrations</td>
</tr>
<tr>
<td>MECH3410</td>
<td>2</td>
<td>Fluid Mechanics</td>
</tr>
</tbody>
</table>

Year 3 or 4 #2 from -

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH3250</td>
<td>2</td>
<td>Engineering Acoustics</td>
</tr>
<tr>
<td>MECH3750</td>
<td>2</td>
<td>Engineering Analysis II</td>
</tr>
<tr>
<td>ENGY4000</td>
<td>2</td>
<td>Energy Systems</td>
</tr>
<tr>
<td>METR3100</td>
<td>2</td>
<td>Sensors & Actuators</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR4201</td>
<td>2</td>
<td>Introduction to Control Systems</td>
</tr>
</tbody>
</table>

and at least #4 from -

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG4011</td>
<td>6</td>
<td>Professional Engineering Project</td>
</tr>
<tr>
<td>MECH4500</td>
<td>4</td>
<td>Engineering Thesis [2]</td>
</tr>
<tr>
<td>MECH4501</td>
<td>4</td>
<td>Engineering Thesis [2]</td>
</tr>
<tr>
<td>MECH4552</td>
<td>4</td>
<td>Major Design Project [2]</td>
</tr>
</tbody>
</table>

Part B Electives

Part B0 - Preparatory Mathematics & Science Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1090</td>
<td>2</td>
<td>Introductory Chemistry [3]</td>
</tr>
<tr>
<td>MATH1050</td>
<td>2</td>
<td>Mathematical Foundations [1] [4]</td>
</tr>
<tr>
<td>PHYS1171</td>
<td>2</td>
<td>Physical Basis of Biological Systems [5]</td>
</tr>
</tbody>
</table>

Extended Major

Students enrolled in the extended major are required to obtain the major plus an additional #10 from introductory or advanced electives from Part B1 or B2, including a minimum of #8 from Part B2. Students participating in the CEED program and undertaking #6 ENGG4011 are only required to obtain an additional #8 towards the extended major, including a minimum of #6 from Part B2.

B1 - Introductory Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1100</td>
<td>2</td>
<td>Chemistry 1</td>
</tr>
<tr>
<td>CSSE1001</td>
<td>2</td>
<td>Introduction to Software Engineering</td>
</tr>
<tr>
<td>ENGG1600</td>
<td>2</td>
<td>Introduction to Research Practices - The Big Issues</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>2</td>
<td>Electromagnetism and Modern Physics</td>
</tr>
<tr>
<td>Course Code</td>
<td>Units</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>AERO4300</td>
<td>2</td>
<td>Aerospace Composites</td>
</tr>
<tr>
<td>CHEE4302</td>
<td>2</td>
<td>Electrochemistry & Corrosion</td>
</tr>
<tr>
<td>ELEC2003</td>
<td>2</td>
<td>Electromechanics & Electronics</td>
</tr>
<tr>
<td>ENGG4103</td>
<td>2</td>
<td>Engineering Asset Management</td>
</tr>
<tr>
<td>ENGG4900</td>
<td>2</td>
<td>Professional Practice and the Business Environment</td>
</tr>
<tr>
<td>ENGY4000</td>
<td>2</td>
<td>Energy Systems</td>
</tr>
<tr>
<td>FIRE3700</td>
<td>2</td>
<td>Introduction to Fire Safety Engineering</td>
</tr>
<tr>
<td>MECH3250</td>
<td>2</td>
<td>Engineering Acoustics</td>
</tr>
<tr>
<td>MECH3305</td>
<td>2</td>
<td>Science & Engineering of Metals</td>
</tr>
<tr>
<td>MECH3750</td>
<td>2</td>
<td>Engineering Analysis II</td>
</tr>
<tr>
<td>MECH4301</td>
<td>2</td>
<td>Materials Selection</td>
</tr>
<tr>
<td>MECH4304</td>
<td>2</td>
<td>Net Shape Manufacturing</td>
</tr>
<tr>
<td>MECH4450</td>
<td>2</td>
<td>Aerospace Propulsion</td>
</tr>
<tr>
<td>MECH4470</td>
<td>2</td>
<td>Hypersonics & Rarefied Gas Dynamics</td>
</tr>
<tr>
<td>MECH4480</td>
<td>2</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>MECH4552</td>
<td>4</td>
<td>Major Design Project [2]</td>
</tr>
<tr>
<td>MECH4800</td>
<td>2</td>
<td>Space Engineering</td>
</tr>
<tr>
<td>MECH4950</td>
<td>2</td>
<td>Special Topics C</td>
</tr>
<tr>
<td>MECH4951</td>
<td>1</td>
<td>Special Topics D</td>
</tr>
<tr>
<td>METR3100</td>
<td>2</td>
<td>Sensors & Actuators</td>
</tr>
<tr>
<td>METR4202</td>
<td>2</td>
<td>Advanced Control & Robotics</td>
</tr>
<tr>
<td>TIMS3309</td>
<td>2</td>
<td>Fundamentals of Technology and Innovation Management</td>
</tr>
</tbody>
</table>

End notes

- [1] Students without at least a Sound Achievement in Senior Maths C are required to take MATH1050 as an elective before MATH1051.
- [2] This course is offered over more than one semester. Enrol in the same course code in each semester.
- [3] CHEM1090 is not available for students with a Sound Achievement or higher in Senior Chemistry or equivalent.
- [4] MATH1050 is not available for students with a High Achievement or higher in Senior Maths C. MATH1050 is not available to students who have passed MATH1051 and/or MATH1052.
- [5] PHYS1171 is not available for students with a Sound Achievement or higher in Senior Physics or equivalent.
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment
Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)

Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method: Active learning, Contextual language learning, small group discussion.
Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
UIGE600003
3 sks
Learning Objectives: After attending this subject, students are expected to capable of use English to support the study in university and improve language learning independently.
Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary, Listening strategies: Extensive reading) Grammar: (Revision of Basic grammar: Types of sentences, Adjective clauses, Adverb clauses, Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking, Reading popular science articles, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and note-taking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article, Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks
Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)
Prerequisites: OBM (New Student Orientation)
Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005
2 sks
General instructional objectives: The cultivation of students who have concern for social, national and countries issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human's basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam's motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)

CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.

Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks

General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

Syllabus: History (Historical terms): Status of the Bible, the existence of God and Morality, Christ the Savior, the Holy Spirit as existence reformer and outlook on the world: Faith and Knowledge of Science, Church and service, Ecclesiology, Spiritual and enforcement of Christian Human Rights and the world of ethics: Christian Ethics, Christian and worship, Christianity and politics, Christian love and social reality: Christian Organizations, Students and Service, Christian and expectations.

HINDU STUDY
UIGE600013/UIGE610008
2 sks

Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks

Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture (the responsibility of religious society in the realization of critical thinking (academic), work hard and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks
ART
UIGE600020-30
1 sks
The option of subjects that can be chosen:
Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025), Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029), Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be chosen:
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043), Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.

LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts
but also to increase their capability in using information technology and computer and to train their
skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.

PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry. Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis.
Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.
The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment.
Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

COURSE DESCRIPTION
ENME601001 - INTRODUCTION TO MECHANICAL ENGINEERING (2 SKS)
Learning Objective(s):
To give a description of mechanical engineering knowledge by describing scoupe, field and relation to other knowledges. By this course, student can understand the application and the knowldege of mechanical engineering in every sector. Memberikan gambaran tentang keilmuan teknik mesin dengan menjabarkan ruang lingkup, bidang, serta hubungan dengan keilmuan lain. Melalui mata ajaran ini, diharapkan mahasiswa memahami aplikasi dan keilmuan teknik mesin di berbagai sektor
Syllabus:
Mechanical engineering field, Mechanical engineering sub-field, mechanical engineering professional ethics; mechanical design, manufacturing process; force, structure and machine; material; fluid mechanics, energy and heat

Pre-requisite(s): -

Text Book(s):

ENME601002 – ENGINEERING DRAWING (2 SKS)

Learning Objective(s):
Course participants are able to transfer geometric component by drawing according to standard draw which is recognized by International Standard Organization (ISO). Students understand the theory and procedure of engineering drawing based on ISO standard. Students are able to read, interpret, and transfer 2D/3D geometric draw from component or construction. Students are able to draw the orthogonal projection based on ISO standard.

Syllabus:
Illustration: Function and benefit of Engineering Drawing; SAP; Measurement and Evaluation; Introduction to drawing equipment; Basic definition of geometric, paper format, draw regulation, line, field, line configuration, basic geometric form; Visualization geometric: Skew projection and isometric, function and line types, configuration geometric form; Orthogonal Projection: Projection standard, viewing concept, width display principle; Advanced orthogonal projection: Circle region concept, special region concept, trimming concept, display width, refraction.

Pre-requisite(s): -

Text Book(s):
2. A.W. Boundy, Engineering Drawing, McGraw-Hill Book Company
4. Takeshi S. G., Sugianto Hartanto, Menggambar Mesin, Pradnya Paramita, 1983

ENME602003 – MECHANICAL DRAWING (2 SKS)

Learning Objective(s):
Students have the basic ability to visualize the information content of one component effectively, capable to create a model for 2D and 3D visualization with utilize the software and interprete the subject into a drawing that can be used as working guidance and can be understand clearly by the user.

Syllabus:
The purpose and the advantage of the drawing in the design and manufacturing process, surface working quality and tolerance, standard and marking classification of working quality, standard and marking classification of working tolerance, Welding construction, standard and marking of weld groove, line diagram, 2D and 3D representation method, introduction to modeling software interface, modeling, manipulation and 2D & 3D visualization.

Pre-requisite(s): Engineering Drawing, Introduction to Mechanical Engineering

Text Book(s):
ENME602004 - ENGINEERING STATICS (2 SKS)
Learning Objective(s):
To understand the concept of force and force equilibrium in some construction so the student can calculate and analyze the equilibrium of construction by using static equilibrium law.
Syllabus:
Pre-requisite(s): Introduction to Mechanical Engineering, Engineering Drawing
Text Book(s):
3. Riley, F William, Engineering mechanics: STATICS, John wiley & sons

ENME603005 - ENGINEERING MATERIAL (2 SKS)
Learning Objective(s):
Engineering materials are one of the basic knowledge in field of design, especially in mechanical engineering. From the discussion of the behavior of several materials, the students are expected to have the overview about several thing that has to be the concern related to the working process or the specific need. The students are expected to have the basic ability to identify and explain the nature and behavior of materials related to the treatment in working process and specific need. Syllabus:
Introduction to the importance of the engineering material science in mechanical engineering, atomic structure, crystalic material, metal and non metal material, process, phase diagram and solidification, heat treatment process, mechanical behavior of crystalic material, elastic material, plastic deformation, crystal plasticity, method of material mechanical testing, dislocation, strengthening, failure and remaining lifetime of material, introduction to mechanical crack and steel mechanical structure behavior, material structure degradation, corrosion process, corrosion prevention, Oxidation, wear and erotion, concrete material behavior, wood, cement and its structure behavior.
Pre-requisite(s): -
Text Book(s):

ENME603006 - MECHANICAL VISUALIZATION AND MODELING (2 SKS)
Learning Objective(s):
This course will give the understanding of any respond of solid material when it is given the specific thermal and mechanical load.
Syllabus:
Introduction of physical mechanism related to the design of material properties, such as, rigidity,
strength, toughness and endurance; understanding of basic mechanical properties of material, testing procedure for determining the properties, every properties that influence the material responses; material capability in engineering design; and fundamental principle to choose the material in mechanical design.

Pre-requisite(s): Mechanical Drawing, Engineering Statics

Text Book(s):

ENME603007 – STRENGTH OF MATERIALS (2 SKS)

Learning Objective(s):
The aim of this subject is student can calculate and analyze the stress in construction. Student able to solve the deflection and indeterminate statics.

Syllabus:

Pre-requisite(s): Mechanical Drawing, Engineering Statics

Text Book(s):
1. Timoshenko, Strength of Material, 1965
2. Belyaev, Strength of Material, MIR Publisher, 1979
5. Riley, F William, Engineering mechanics: STATICS, John wiley & sons

ENME603008 – BASIC THERMODYNAMICS (4 SKS)

Learning Objective(s):
This course introduces the basic concept of thermodynamics and its application in real life and gives the understanding about the design of thermodynamics system.

Syllabus :
Scope and basic understanding of thermodynamics system, temperature concept, pressure, thermodynamics equilibrium, reversible/irreversible process, zero law of thermodynamics and absolute temperature, first law of thermodynamics, second law of thermodynamics, thermodynamics equation, gas power cycle, gas compressor, combustion engine cycle, internal combustion engine, simple gas turbine cycle, brayton’s cycle, stirling’s cycle, steam power cycle, refrigeration, carnot’s cycle, simple rankine’s cycle, rankine’s cycle with modification, biner cycle, phsycometric chart, cooling tower, real gas, real gas equation, enthalpy and entropy.

Pre-requisite(s): -

Text Book(s):
5. H.D. Baehr, Termodynamik , Springer Verlag
ENME600009 - KINEMATICS AND DYNAMICS (4 SKS)

Learning Objective(s):
The students have the ability to understand the key concept of kinematics and dynamics of mechanical system and capable to analyse the movement, velocity, acceleration force and equilibrium.

Syllabus:
Vector velocity analysis, free body diagram, linear motion, velocity polygon, 2D motion, rectangular coordinates, N-T and pole, relative motion and velocity of 2 coincide/relate point, Coriolis acceleration and stiff body kinematics, Inertia Force, Statics, particle system, works, energy, impulse, linear-angular momentum, stiff body motion, works and energy, relative motion, rotating mass balancing and back & forth motion, cam dynamics and Gyroscope.

Pre-requisite(s): Engineering Statics

Text Book(s):

ENME604010 - MATERIAL SELECTION AND MANUFACTURING PROCESS (4 SKS)

Learning Objective(s):
To give the knowledge, understanding and competence about the theory, application method and product manufacturing process technology that consist of: characteristic and how the process work, process constraint, force and energy that needed in process, the effect of the process parameter to the product quality and the relation between process and material to the material characteristic that needed in every process.

Syllabus:
Manufacturing process and production system, materials in manufactur, theory and method in metal casting, theory and method of bulk formation, theory and method of sheet metal forming, theory and method of powder metallurgy, theory and method of machining/metal cutting process, theory and process of product surface quality improvement, theory and method of joining, theory and method of prototyping process, characteristic of engineering materials, correlation of material and process characteristic, process parameter control of material, Design of material selection and manufacturing process that related to the market needs (assignment).

Pre-requisite(s): Material Teknik

Text Book(s):
6. Buku Panduan Praktikum Proses Produksi, Departemen Teknik Mesin FTUI

ENME600007 - LABORATORY EXPERIMENT FOR MANUFACTURING PROCESS (1 SKS)

Learning Objective(s):
This course is laboratory practice for Material Selection and Manufacturing Process course. After this course, student can have practical ability of manufacturing process of product by considering the technology and material.

Syllabus:
Laboratory practice using manual machine tool for workbench such as turning machine, drilling,
milling, sawing, etc., welding process; rapid prototyping
Pre-requisite(s): Material Selection and Manufacturing Process
Text Book(s):
1. Buku Panduan Praktikum Proses Produksi, Departemen Teknik Mesin FTUI.

ENME604011 - BASIC FLUID MECHANICS (4 SKS)
Learning Objective(s):
Fluid mechanic are one of the applied mechanical science branch that will be used to investigate, analyse, and learn the nature and the behavior of fluids. Fluid that will be explored could be a moving or stationary fluid. Fluid Mechanics course intends to complement the ability of a student to be able to apply the basic laws of fluid mechanics in practical engineering calculations of fluid mechanics and be able to analyze the behavior of the fluid and developing knowledge in the field of fluid mechanics.

Syllabus:
Fluid and its nature, fluid statics, the relative balance, concept and basic equations of fluid flow, dynamic of flow, the equation of fluid motion (Newton, Euler, Navierstokes), Basic Equation of Fluid Dynamics (Continuity, Energy and momentum), dimentional analysisist and hydraulic similarity, ideal fluid flow, viscous flow, viscous flow: transition from laminar into turbulent flow, fully developed turbulent flow, flow around submerged objects, general characteristic of outside flow, concept and characteristic of layer in closed flow, measurement and visualization of flow, pressure measurement concept, flow and capacity, flow measurement devices (Pitot tube, Venturi, orifice, Nozzel, HWA, LDV), Flow visualization method.

Pre-requisite(s): -
Text Book(s):

ENME604012 - MECHANICAL DESIGN (4 SKS)
Learning Objective(s):
Give the understanding about the application of engineering mechanic science and material strength in machine element. The students have the basic competence to design the machine element.

Syllabus:
Basic mechanical design review, design of joint : welding, solder, adhesive bonding, rivet, pin, bolt, nut, thread, axel, shaft, hub, roller & lauch bearing, lubrication, wear and friction, spring, break, fixed and unfixed clutch, chain, belt, basic of gear, straight & tilt bearing, Final Assignment : Design process consist of the understanding of purpose, load and calculation of machine element.

Pre-requisite(s): Mechanical Visuzalization and Modelling,Strength of Material
Text Book(s):

ENME600013 - ENGINEERING MATHEMATICS (4 SKS)
Learning Objective(s):
Complete student’s anylitical ability. Students understand and able to use the advances mathematical concepts in order to solve the engineering problems.
Syllabus:
Introduction to differential equation, 1st order differential equation, 2nd order differential equation, higher order differential equation, vector analysis, vector differential, grad operation, divergence and curl, vector integration, laplace transform, laplace transform to solve the differential equation, fourier transform, convulsion, numerical method, root of equation, numerical differentiation, numerical integral.
Pre-requisite(s): Calculus, Linear Algebra
Text Book(s):

ENME605014 - MECHANICAL VIBRATION (2 SKS)
Learning Objective(s):
The students have an understanding of the key points and concepts of the mechanical vibrations of mechanical systems and have the basic competence to analyze the vibration behavior and what parameters can be controlled in order to vibration damping.
Syllabus:
Fundamental of mechanical vibration in mechanical systems, oscillatory motion, free vibration, harmonic vibration, transient vibration, system with 2 degree of freedom and system with multi degree freedom, lumped parameters system and continuous system, Lagrange equation, random and non-linear vibration.
Pre-requisite(s): Engineering Mathematics, Kinematics and Dynamics
Text Book(s):

ENME605015 - MEASUREMENT AND METROLOGY (2 SKS)
Learning Objective(s):
Measurement and Metrology course is knowledge to study the concept of metrology and measurement in industry and the applicaton of metrology and its tools. This course is study the relevance of the theory to the engineering application and manufacturing industry. This course will give the ability to the student to understand the theory and application of engineering measurement and metrology in mechanical engineering application
Syllabus:
The basic concept of measurement and metrology, measurement terminology and systems, industrial measurement and system terminology, temperature measurement, pressure and flow measurement, force, stress, data acquisition, motion measurement : position, velocity, vibration and acceleration, types of sensors/transducer, transfer function, FFT and filtering, uncertainty analysis, geometric and dimension calibration, room dimension, metrology (length measurement), surface texture, roughness and roundness, flatness and straightness, angle measurement, introduction to CMM
Pre-requisite(s):
Text Book(s):
4. Raldi Artono Koestoer, Pengukuran Teknik, Departemen Teknik Mesin FTUI.
ENME600008 - LABORATORY EXPERIMENT FOR MEASUREMENT AND METROLOGY (1 SKS)
Learning Objective(s):
This course is laboratory practice for Measurement and Metrology course. By this course, student can study the technical application of metrology, sensors and transducer and how to use it in measurement system.
Syllabus:
Laboratory practice to use metrology tool; practice to use some sensors such as temperature and pressure.
Pre-requisite(s): Measurement and Metrology
Text Book(s):
4. Raldi Artono Koestoer, Pengukuran Teknik, Departemen Teknik Mesin FTUI.

ENME600016 - NUMERICAL METHODS (2 SKS)
Learning Objective(s):
The objectives of this course is that the student can understand and able to apply the process and method (algorithm) of engineering numerical method in computer-based computation and to understand the parameters that influence the speed and accuracy of calculation.
Syllabus:
Introduction to numerical method and programming: simple mathematical modeling, programming and software, structural programming, modular programming, iterative method; Function: function and function value, Taylor and Maclaurin series, approximation and error; Root of equation: graphical method, Bisection method, False-Position method, Newton - Raphson method, Secant method, Bairstow method; Linear algebra equation system: Gauss elimination, Gauss-Jordan elimination, Decomposition and transformed matrices; Curve - Fitting: Least - Square regression, Interpolation; Numerical Integral: Trapezoid method, Simpson method, Double Integral; Differential equation: Finite Divided Difference, Euler method, Runge - Kutta method; Ordinary Differential Equation System
Pre-requisite(s): -
Text Book(s):

ENME605017 - HEAT AND MASS TRANSFER (4 SKS)
Learning Objective(s):
This course studies about the heat and mass transfer mechanism within a volume control system due to the temperature gradient, this course strictly related to the basic thermodynamics course. The purpose of this course is to develop the understanding from the students about several heat and mass transfer mechanism between two systems if the temperature gradient occur and the students able to calculate the heat transfer rate. The students capable to solve numbers of heat transfer problems using non-dimensional parameter.
Syllabus:
Fundamental of heat transfer, conduction heat transfer (1 dimensional and 2 dimensional), numerical analysis in conduction heat transfer/unsteady state, forced convection heat transfer, free convection heat transfer, boiling and condensation, heat exchanger, radiation, fundamental of mass transfer, steady state molecule diffusion, unsteady state molecule diffusion, convection mass transfer, convection mass transfer correlation, mass transfer apparatus.
Pre-requisite(s): Basic Thermodynamics
Text Book(s):
1. Frank P Incropere, David P De Witt, Fundamental heat and mass transfer, 7th Ed., Wiley, 2011,
ENME605018 - FLUID SYSTEM (3 SKS)
Learning Objective(s):
Fluid system is applied science and engineering of basic fluid science which studies the utilization of characteristic, behavior and properties of fluid and its flow behavior in various fluid machines i.e. rotodynamic, reciprocating, hydraulic and pneumatic system. The course is intended to equip student to understand characteristic of turbo fluid machines, hydraulic and pneumatic system and to be able to calculate and design a fluid system.
Syllabus:
Basic Thermo fluid in a Fluid System; Energy Transfer from Fluid to Rotor; Lagrangian and Eulerian Approach; Energy Transfer Components; Impulse and Reaction; Turbo machinery Analysis with Flow; Operational Aspects of Rotodynamic Machinery; Hydraulic Similarities on Fluid Machinery; Reciprocating Machinery: Classification, Main Component and Operating; Discharge and Coefficient Discharge; Work and Power; Basic Hydraulic Machines; Hydraulic Machines; Hydraulic Accumulator; Hydraulic Intensifier, Hydraulic Press; Hydraulic Crane; Hydraulic lift; Pneumatic System: Basic Laws, Pressure Drop Losses, Basic Control Valve of Pneumatic Circuit.
Pre-requisite(s):
Basic Thermodynamics, Basic Fluid Mechanics
Text Book(s):
1. Harinaldi, Sistem Fluida

ENME605019 - CONTROL SYSTEM (4 SKS)
Learning Objective(s):
System control is one of the sciences discussed about the method to control the value of parameters within a system. Parameters within the system in this course are base on physic that could be position, velocity, rotation, pressure, acceleration flow rate, temperature and other variables. This course aims for students to understand the basics, analysis, and engineering design and control system compensation techniques, and be able to choose a control system (controller) is right for a mechanical system.
Syllabus:
Introduction to system control, laplace transform, reverse laplace transform, solution for liner ordinary differential equation, mathematical modeling I-IV, control action, PID controller, electronic controller, pneumatic and hydraulic control, transient response analysis I and II, root place analysis, design of system control with root place analysis method, frequency response analysis, stability analysis, MATLAB laboratory activity, design of control system with response frequency method, discrete time system and Z-Transform, PID control and introduction to robust control,
space condition analysis I-II, design of control system within space condition, liapunove stability analysis and optimum square control.

Pre-requisite(s): Engineering Mathematics, Basic Physics 1, Basic Physics 2

Text Book(s):

ENME600001 – DESIGN ASSIGNMENT 1 (2 SKS)

Learning Objective(s):
Student has the ability to design the system and mechanical product using previous knowledge and skill. From this course, student can work in team, communicate, report, present and defend the final project.

Syllabus:
Fundamental of mechanical design process; team work in design; process planning, understanding the problem and development of engineering specification; Concept Generation, Evaluation and Selection; Product Design Phase; Engineering Economics

Pre-requisite(s): Mechanical Design, Material Selection and Manufacturing Process

Text Book(s):

ENME606020 – MAINTENANCE AND CONDITION MONITORING (3 SKS)

Learning Objective(s):
This course gives the understanding and the ability to analyze a system and design a system for maintenance and its procedure to improve the efficiency and reliability within a system. To give the understanding and competence to develop and implementation of vibration monitoring and engine condition so that the mechanical system reach the optimum performance.

Syllabus:
Quality, Reliability and Maintainability, maintenance system strategy, failure analysis, design of maintenance system and scheduling, maintenance system organization, condition monitoring and condition based maintenance, computer based maintenance system, total productive maintenance (TPM) and its implementation, the effectiveness measurement of total productive maintenance, reliability based maintenance system, planning; measurement and standardization of maintenance work, quality of maintenance system, basic theory of vibration and engine condition, basic of engine condition monitoring, vibration monitoring device in several mechanical systems and engine condition analysis.

Pre-requisite(s): Mechanical Vibration

Text Book(s):
1. Niebel, B.W., Engineering Maintenance Management, Marcel Dekker, Inc. 1994
3. Mishra, R.C., and K. Pathak, Maintenance Engineering and Management, PHI, 2004
4. Bruel & Kjaer. Handbook of Vibration & Condition Monitoring
ENME606021 - ENERGY CONVERSION AND CONSERVATION (3 SKS)

Learning Objective(s):
This course discusses about the energy resources, type and classification of energy, energy conversion, energy consumption, basic concept of energy conversion, power resources and classification of energy conversion engines. The students understand the energy source, type of energy conversion engine, conversion and conservation of energy system, and also capable to perform a basic calculation of energy conversion engine performance and critical consideration of energy conversion.

Syllabus:
Definition of energy and energy resources, type and energy classification, law and equation in energy conversion, energy profile (resources, reserves and the world’s and Indonesia’s energy needs), basic concept of energy conversion system, power resources and classification of energy conversion engine, fuel in energy conversion, renewable energy, non-renewable energy, classification of combustion engine, calculation for internal combustion engine performance, steam power plant, fluid machinery, cooling engine classification, thermodynamic cycle of cooling engine, energy conversion method in vehicle, industry and building.

Pre-requisite(s):
Basic Thermodynamics, Basic Fluid Mechanics, Heat and Mass Transfer

Text Book(s):

ENME600009 - LABORATORY EXPERIMENT FOR ENERGY CONVERSION AND CONSERVATION (1 SKS)

Learning Objective(s):
This course is laboratory practice for Energy Conversion and Conservation course. By this course, student can understand practical application of energy conversion and conservation

Syllabus:
Laboratory practice of compressor, Pelton turbine, axial turbine, heat pump, Refrigeration Training Unit, Diesel engine, Otto engine, sentrifugal pump

Pre-requisite(s): Konversi dan Konservasi Energi

Text Book(s):

ENME606022 - MECHATRONICS (4 SKS)

Learning Objective(s):
This course provides the ability to design electrical-mechanical that properly meet the needs of a process specification and a design that given in a laboratory scale with the mechanical, electrical theory and automation control.

Syllabus:
Mechatronics concept and theory, electronics analog system, electronis analog components, electronics digital system, analog and digital interface, sensors and actuators (electric motor, pneumatic, hydraulic), principles of microprocessor and microcontroller, microcontroller based control system theory, C/C++ programming for electrical-mechanical for control, programmable logic controller (PLC), Laboratory activity.

Pre-requisite(s): Basic Physics 1, Basic Physics 2

Text Book(s):
2. Sabri Cetinkunt, Mechatronics, Wiley, 2006
ENME606023 - ELECTRICAL POWER ENGINEERING (2 SKS)
Learning Objective(s):
The objective of this course is to give the understanding of basic concept and practical application on electrical power engineering. Student also studies the general understanding of electrical power engineering terms and can work in team effectively.
Syllabus:
Linear approach and signal analysis; History of development and basic physics of electrical power generation; Electromechanical energy conversion; Single phase and Triple phase Transformer; Three phase generation.
Pre-requisite(s):
Text Book(s):
3. Zuhal, Dasar Tenaga Listrik dan Elektronika Daya

ENME600010 - LABORATORY EXPERIMENT FOR ELECTRICAL POWER ENGINEERING (1 SKS)
Learning Objective(s):
The laboratory is intended to introduce electric power basic concept to electrical engineering students: motor and generator includes DC or AC transformer
Syllabus:
Watt meter, volt meter, amp meter and transformer. Motor & generators DC. Reading of 3 phase circuit power either with balanced or unbalanced load. One and three phase circuit testing for Y & Δ. Power Transformer, solving by using open loop and closed loop circuit test. Autotransformer.
Pre-requisite(s): Electrical Power Engineering
Text Book(s):
3. Zuhal, Dasar Tenaga Listrik dan Elektronika Daya

ENME606024 - LIFE SCIENCE FOR ENGINEERS (2 SKS)
Learning Objective(s):
This course will study the basic knowledge and introduction to the aspect of life organism that have close relation to mechanical engineering field. The student will get the broad perspective of life science application in mechanical engineering.
Syllabus:
Introduction to cell, chemical aspect in biology: acid, carbohidrat, lipid, protein, nucleat acid; bioenergy and metabolism: aerobic and anaerobic respiration, photosynthesis; animal control system, termoregulation and homestasis; biomechanics, animal locomotion, scale effect; food and farm; environmental conservation, air, water, life science consideration in mechanical design
Pre-requisite(s):
Text Book(s):
6. Basic Biomechanics, Susan J. Hall, McGraw Hill, USA
7. Biomechanics, Kreighbaum, Barthels, Burgees Publishing, USA
8. Biomechanics in Ergonomics, Shrawan Kumar, Taylor & Francis INC, USA
10. Biomechanics Mechanical Properties, Y.C. Fung, Springer, USA
11. Biomechanics of the Upper Limbs, Andris Freivalds, CRC Press, USA
12. Skeletal Tissue Mechanics, Martin, Burr, Sharkey, Springer, USA
13. Biomedical Engineering Principles, David Cooney, Marcel Dekker INC, USA

ENME600002 – DESIGN ASSIGNMENT 2 (2 SKS)
Learning Objective(s):
Student have ability to produce the prototype from the previous design in Design Assignment 1.
Student can work in team, manage the project and present the final project.
Syllabus:
Product Generation, Evaluation and Performance; Project Management; Product Evaluation or Mechanical System for Cost, Manufacturing, Assembling etc; Technopreneurship consideration.
Pre-requisite(s): Design Assignment 1
Text Book(s):

ENME600006 – INDUSTRIAL SEMINAR (2 SKS)
Learning Objective(s):
Able to understand industrial development and its problems.
Syllabus:
Special topics in industries which are not covered in other courses.
Pre-requisite(s): Passed 76 SKS and GPA > 2.00
Text Book(s): -

ENME600003 – INTERNSHIP (2 SKS)
Learning Objective(s):
The course is intended to provide opportunity for gaining experience in industries and applying mechanical engineering knowledge. Able to perform management tasks and engineering technique according to field of interest.
Syllabus:
Management and Engineering according to the field of interest. Presentation of internship results and report.
Pre-requisite(s): Passed 95 SKS and GPA > 2.00

ENME600004 – SEMINAR (1 SKS)
Learning Objective(s):
Student can communicate in verbal or written with final project proposal; able to formulate the problems and objectives of the research, conduct theoretical review to formulate the hypothesis, design the research method for empirical proof and present the preliminary result to the supervisor.
Syllabus:
Problem description, basic concept of research with assumption and constraint; making preliminary report, conducting the preparation, literature review and research methodology; present final report with structured report, language, graphical presentation, table etc, reference and clarity.
Pre-requisite(s): Passed 110 SKS and GPA > 2.00 without Grade E
Text Book(s): -

ENME600005 – FINAL PROJECT (5 SKS)
Learning Objective(s): Students are able to conduct design and analysis the object of system that related to the mechanical engineering field
Syllabus: Synthesizing various lectures taken by students to design or to solve engineering problems. Preparing a written report of the synthesis.
Pre-requisite(s): Passed 128 SKS and GPA > 2.00 without Grade E

ELECTIVES

ENME803105 – INTERNAL COMBUSTION ENGINE (4 SKS)
Learning Objective(s): Student is expected to have competency and expertise in the field of his interest of internal combustion engine working principle and theory and is able to design and do construction calculation.
Syllabus: Actual Cycle of Internal Combustion Engine; Fuel System; Ignition and Combustion in Spark Ignition Engine and Compressed Ignition Engine; Some Basic Characteristics and Calculations; Basic Engine Design; Determination of Engine’s Main Components; Kinematics and Dynamics Analysis of the Motion; Calculation and Planning of Lubrication and Cooling System.
Pre-requisite(s): -
Text Book(s):

ENME803106 - APPLIED FLOW MEASUREMENT AND VISUALIZATION (4 SKS)
Learning Objective(s): Applied flow diagnostic study measurement and visualization techniques which have wide application both in industry and laboratory. The course give basic competency for the student to be bale to understand various measurement and visualization methods and to design appropriate flow diagnostic system in process installation in industry or experimental set up in a scientific research activities which related to fluid flow.
Syllabus: Statistics Diagnostic Flow, Calibration in Flow Measurement; Momentum Sensing Meter (orifice plate, venturi, nozzle meters); Positive Displacement Flow Meter (Nulating Disc, Sliding Vane, Gear meters, etc.); Electromagnetic and Ultrasonic Flow Meters; Compressible Flow Meter (Wet Gas and Wind Anemometer); Principles Local Velocity Measurement in Liquid and Gases; Hot Wire Anemometry; Based Laser Velocimetry (LDV, PIV); Principles of Flow Visualization, Flow Visualization conventional; Shadowgraphs and Schliern Technique; Interferometry Technique; Light Sheet Based Technique ; Image Processing and Computer Assisted Method.
Pre-requisite(s): Fluid Mechanics, Fluid System
Text Book(s):

ENME803107 - CFD APPLICATIONS (4 SKS)
Learning Objective(s): Understanding the basic principles of CFD and having the basic knowledge in applying CFD (Computational Fluid Dynamic)
Syllabus:
Prediction-rule Principles, Numerical Solutions: Advantages and Disadvantages; Mathematical Description of Physical Phenomena; Basic Nature of Coordinates; Discretization Method; Volume-set Application on Heat Conduction Problem; Convection and Diffusion; Two-Dimension Discretization Equations; Three-Dimension Discretization Method; Special Procedure Needs; Some of Constraints Associated with the Representation of Pressure-gradient Factors, Continuity Equations Representation; Stayered Grid; SIMPLE Algorithm; Revision of SIMPLER algorithm; Final Solutions: Basic Properties of Iterative Numerical Procedures; Soursctermin Linearization, Irregular Geometries, Preparation and Testing a Computer Programs.

Pre-requisite(s):

Text Book(s):

ENME803108 - REFRIGERATION ENGINEERING (4 SKS)

Learning Objective(s):
Refrigeration engineering course provides basic competency for the student to be able to do the simulation software to design a cooling system and equipments involved with a very close relationship with the Industrial and engineering users. Hence student will have understanding in design and development of cooling system and ability to evaluate and analyze its performance, especially on clod storage.

Syllabus:
Principles of Refrigeration and Heat Pump, Terminology and Units; Mechanical Vapor Compression Refrigeration Engine; Heat Transfer in Refrigeration System; ph Diagram Calculation in Refrigeration Cycle; Refrigeran, Lubricant, Salt and the Environment; Compressors; Condenser and Evaporator; Refrigeration Piping System and Equipments; Automatic Control System and Safety Equipments; Air Properties; Psychrometric and its process; Absorption Refrigeration; Alternative refrigeration Cycles (adsorption, gas compression, and ejector); Display Case, Prefabricated Cold Storage and Cold Storage, Cold Room Calculations.

Pre-requisite(s): Basic Thermodynamics

Text Book(s):
4. ASHRAE Handbook of Fundamental, ASHRAE Atlanta, 2001

ENME803104 - THERMAL POWER GENERATION (4 SKS)

Learning Objective(s):
The course objective is to provide an understanding of the basic principles of power generation, and basic competency in the design and development of power generation systems.

Syllabus:
Industrial Power Plant and Steam System: Boiler, Steam Turbine, Gas Turbine; Cogeneration Engineering, Instrumentation and Main Tools; Performance and Reliability Factors; Economical Aspects, Environmental Aspects: Settings and Prevention.

Pre-requisite(s):

Text Book(s):
4. Black and Veath-Power plant engineering , Philips Keameh-Power generation handbook
ENME801113 - VENTILATION AND AIR CONDITIONING SYSTEM (4 SKS)

Learning Objective(s):
This course provide the understanding and basic competence in design the air conditioning system regarding a better air condition. The student will provided with knowledge about the environmentally friendly refrigerant.

Syllabus:

Pre-requisite(s):
Refrigeration System

Text Book(s):
2. Carrier : Handbook of HVAC
3. ASHRAE Standard

ENME803115 - CLEAN ROOM (4 SKS)

Learning Objective(s):
Provide an understanding of the basic knowledge of clean room systems and its application in buildings, hospital and pharmaceutical industries. Understanding of the concept of air cleanliness, ventilation and fresh air exchange, application of laminar flow, the air pressure in the chamber and measuring systems, validation and its control.

Syllabus:
Indoor environment: human psychological and physiological aspects, BEAM IAQ assessment; Air quality: air cleanliness, ambient air quality, rationale for standards; Indoor air pollutants: gaseous pollutants, airborne particulate, VOCs, radon, biological contaminants; Indoor air movement: air flow in confined and unconfined spaces, filtration systems; Instrumentation and measurement techniques; Control measures: improved IAQ by HVAC system design, removal of contaminants.

Pre-requisite(s):
-

Text Book(s):

ENME803124 - ENERGY AUDIT (4 SKS)

Learning Objective(s):
This course focuses on the theory, techniques and practices of analyzing energy aspects of building operations and correlating a building envelope’s interaction with the mechanical systems. Students will perform a detailed energy audit of a state-of-the-art commercial building design using energy modeling simulation software and develop energy conservation strategies, such as thermal stor- age, that can be applied to heating, cooling, and ventilating equipment to reduce utility bills. Students will apply supporting analytical data to develop operations and maintenance changes designed to improve energy efficiency and reduce operating cost.

Syllabus:
Energy Auditing Basics, Energy Accounting and Analysis, Understanding the Utility Bill, Energy...

Pre-requisite(s): -

Text Book(s):

ENME803134 - ENCLOSURE FIRE DYNAMICS AND MODELLING (4 SKS)

Learning Objective(s):
Students understand the various stages of fires and provide basic knowledge methods and techniques applied in the analysis of fire development, and develop students’ ability to critically analyze the methods of practical application. This course also aims to improve the ability to understand and analyze the fires model.

Syllabus:
Introduction to the process of combustion, premixed flame and diffusion flame, ignition and spread of fire, classification of fires and the influence of the geometry of the room. Calorimetry fire: heat release rate, mass loss rate and the relationship between time and heat release rate, the growth of fire in the room, as well as testing methods. The dynamics of the flame: fire plume and flame (flame), a high flame, the flame height correlation.

Pre-requisite(s): -

Text Book(s):
4. Thierry POINSOT, Denis VEYNANTE, Theoretical and Numerical Combustion.
5. Jurnal dan standar terkait.

ENME803143 - MECHANICAL FAILURE (4 SKS)

Learning Objective(s):
This course provides an understanding and competence about principles and modes of mechanical failure may occur and should be avoided so that should be considered in the design of mechanical, including buckling, Corrosion, fatigue, creep, melting, fracture, thermal, and wear.

Syllabus:
Theory and Buckling Mode (Torsional-lateral, Plastic, Dynamic), Theory and Corrosion mode (Metal, Non-Metal, Glass); Corrosion Prevention; Theory and Fatigue Failure Mode; Theory and creep mode; Theory and Melting Mode; Theory and Type of Fracture mode, Theory and the thermal failure mode; Theory and Wear mode; Failure Analysis and Prevention to: Buckling, Corrosion, Fatigue, creep, Melting, Fracture, Thermal, and Wear

Pre-requisite(s): Engineering Material, Basic Mechanical Design, Mechanical Design

Text Book(s):

ENME803145 - COMPOSITE PRODUCT DEVELOPMENT (4 SKS)

Learning Objective(s):
Provide expertise and competence to students in the field of designing and manufacturing of parts
/ mechanical construction using composite materials. This course provides an understanding of composite materials, including the characteristics, testing, manufacturing process, and special applications in the engineering field.

Syllabus:
Composite Type, Material, Properties, Mechanics; Knowledge and Characteristics of Fiber Composite, Strength, Hardness, and the composite thermal expansion; Theory of Combination Fiber and Matrix; Matrix Composite Characterization; Laminar Theory On Axis and Off Axis; Composite Product Design, Composite Fabrication Technique; Testing Method; Future Applications.

Pre-requisite(s): Engineering Materials, Mechanical Design, Design Assignment.

Text Book(s):
4. Composites ASM handbook No 21

ENME803147 - TOY PRODUCTION DESIGN (4 SKS)

Learning Objective(s):
Understanding the basics and design development of educational products in the industry props, product education, and game props.

Syllabus:

Pre-requisite(s): -

Text Book(s):

ENME803153 - SISTEM MACHINE VISION (4 SKS)

Learning Objective(s):
Machine Vision Industry Subjects provides the understanding and competency of the principles, methods and applications monitoring the production process by using visual-based camera technology, image processing, for the purpose of introducing the feature: product identification, selection and product screening, and quality control. With the completion of this course, students have the ability to apply and develop the visual method of monitoring the production process in the industry for the purpose.

Syllabus:

Pre-requisite(s): -

Text Book(s):

ENME803154 - QUALITY AND PRODUCTION MANAGEMENT SYSTEM (4 SKS)
Learning Objective(s):
Provide knowledge, understanding and ability to perform management, analysis and improvement of production systems in the manufacturing industry with the principles of efficiency and effectiveness, and able to understand and implement and develop policies and procedures are needed to improve and control the various processes.

Syllabus:

Pre-requisite(s): -
Text Book(s):
3. TQM, Text, Cases and Readings, Joel E. Ross, St. Lucie Press 100 E. Linton Blvd Suite 403 B Delray Beach, FL 33483

ENME803161 - MICROFABRICATION AND PRECISION MANUFACTURING (4 SKS)
Learning Objective(s):
In this course provides expertise of micro manufacturing process widely used in the making of MEMS (micro Electro mechanical system) at this time that has wide application of the biomedic system, sensors and micro-electronic devices (electronic devices). This course giving understanding of manufacturing techniques and basic structure mechanics in a product and also the micro-characterization of the process fabrication conducted in the laboratory. This course provides a basic competency of the principles in the design techniques which control the movement of the size or dimensions in a very small if compared with the size of the object that is designed and produced the correct design and the development machine and a precision mechanism

Syllabus:
Introduction to Engineering Micro Fabrication; Lithography: The design aspect, masks making, etching technique (And Wet Etching Dry Etching); Deposition Engineering: Chemistry and Chemicals; Electroplating, Micromolding, Beam Processing; Microscaling consideration); Transport Processes and Metrology in the micro-scope; Lab Practice and Applications, Philosophy Precision Manufacturing; kinematic concept; Pro and contra Flexures Design; Materials for Precision Components; Self Calibration Concept; Manufacturing Process which is Important in Precision Manufacturing, Precision Instruments; Basic Concept of Tolerance on Dimensions and geometric.

Pre-requisite(s): Basic mechanical design, Mechatronics, Design assignment, Metrology and Measurement, Engineering Materials, Manufacturing Process and Materials Selection

Text Book(s):
3. Mainsah, E., Greenwood J.A. and Chetwynd D.G. Metrology and properties of engineering surfaces,

ENME803167 - MODERN VEHICLE TECHNOLOGY (4 SKS)

Learning Objective(s):

Students understand the concept of manufacturing technology and control systems on the vehicle so as to:

- Analyze the condition of current technological advances to make fundamental changes in vehicle design a sustainable future.
- Design process to create an automatic control system that helps in controlling the vehicle.
- Designing vehicles with electronic control systems that can improve vehicle performance.
- Describes the integration of vehicle control systems and mechanical-electrical interaction possibilities for the design of future vehicles.

Syllabus:

Knock control, Linear solenoid idle speed control, Sequential fuel injection, Distributorless ignition, Self-diagnosis for fail-safe operation, Crankshaft angular position measurement for ignition timing, Direct mass air flow sensor, Variable valve phasing, teknologi kendaraan Hybrid Electric Vehicles and Electric Vehicle.

Pre-requisite(s): -

ENME803195 - OIL AND GAS DRILLING EQUIPMENT (4 SKS)

Learning Objective(s):

Provide additional insights regarding the implementation of basic knowledge of engineering competence that is at the core of oil and gas drilling techniques. Competencies expected of graduates capable of developing the engine with value added technical knowledge of oil and gas drilling
equipment that is ready to be trained and shaped to be easily and immediately adapt to work without the awkwardness of the world’s E / P oil and gas fields in general and in particular oil and gas drilling. Thus it has the advantages of graduates and a wider choice in the real world of work later. Objectives and learning outcomes to be achieved:

1. Enabled students to know the basic tools and their functions and how each is needed in an oil and gas drilling operations.
2. Students capable of explaining the technique of oil and gas drilling operations and its other related aspects such as equipment used, safety issues, safety equipment, emergency and environmental issues.
3. Students have a pretty good understanding of the knowledge of drilling equipment and its operation so as to participate in an oil and gas drilling operations with confidence and readiness to increase knowledge and skills later on after graduation.

Syllabus:

Intro to oil / gas well, oil / gas Exploration, exploitation and production, drilling rig, the terminology, the problem of drilling, drilling fluid, drilling oil and gas in the system, hoisting system equipments, equipments rotating system, circulating system equipments, power system equipments, blowout prevention system equipments, well design, equipments and operations for safety and efficiency, process and equipments for cementing, drilling preparation, drilling operations, drilling and process problems (drill string vibration and whirling, collar failure, etc.) artificial lift methods and equipments, visit to the field of oil and gas drilling.

Pre-requisite(s):

Text Book(s):

ENME803174 - RISK MANAGEMENT (4 SKS)

Learning Objective(s):

Students can explain and apply risk management in a risk assessment.

Syllabus:

Introduction to risk management, Value at Risk --VaR Risk measures for various asset classes, Monte Carlo Simulation, VaR Validation and Extremes, Regulatory Environment 25 years of risk related regulations, Multifactor models Discussion of multifactor analysis, Review of industry leading risk management system, Operational Risk and its Basel II requirements.

Pre-requisite(s):

Text Book(s):
2. Roger Lowenstein, When Genius Failed, Random House, 2000

ENME804110 - COMBUSTION ENGINEERING (4 SKS)

Learning Objective(s):

Combustion Engineering provide basic competency to investigate, analyze and learn about the process of combustion of fuel, and the nature and behavior of flame. The course provides basic understanding to apply the laws of basic aerothermochemistry in the engineering calculation of practical combustion engineering. The student is expected to be able to analyze the combustion behavior of a flame and to develop knowledge in the field of combustion engineering.

Syllabus:

Syllabus: Important Meaning of Combustion Study; Basic Reaction and Stoikhiometry of Combustion; Gas Fuel (BBG); Liquid Fuel, Solid Fuel; Basic Thermochemistry and Fluid Dynamics of Combustion;
Principles of Conservation of Mass and Continuity; Turbulence Premixed Flame Structure; Detonation; Combustion Technology; Fixed-Bed Combustion, Suspension, Fluidized-Bed; Study on Flame and Combustion Technology; Minimum Temperature Self-ignition (Auto/Self-Ignition); Flammability Limit; Fire spread, Fire Suppression Material, Combustion and the environment.

Pre-requisite(s): Basic Chemistry, Basic Thermodynamics, Basic Fluid Mechanic, Heat and Mass Transfer.

Text Book(s):

ENME804109 - HEAT AND MASS TRANSFER ENGINEERING (4 SKS)

Learning Objective(s):
The course objective is to provide understanding of the heat exchangers used in many industrial processes and power plants as the application of heat transfer. This course provides a basic competency to know main heat exchanger types and to understand and able to select suitable heat exchanger type for current applications. Student is also expected to understand basic factors in designing heat exchangers, to estimate size and price and know and choose the type of heat exchanger. Provide basic understanding and various parameters on the drying process so that students can perform calculations and analysis of various drying techniques and their applications. This course also provides the expertise so that students are able to do drying modeling, to design and analyze the system for various materials (solid and solvent) so that the drying process can be suitably selected for particular product.

Syllabus:
Heat Transfer Review; Type and Application of Heat Exchangers; Practical Design of Shell and Tube Heat Exchanger (Thermal and Mechanical); Manufacturing Cost Estimation; Heat Exchangers; Operation and Monitoring of Heat Exchangers (Fouling And Vibration); Maintenance of Heat Exchangers; Corrosion on Heat Exchangers; Heat Exchanger Design Software; Presentation and Laboratory Practice of Heat Exchangers. Review Transfer Phenomena (Momentum, Heat and Mass); Drying Principles and Basics; Mathematical Modeling of Drying System; Classification and Selection of Dryer, Post-Harvest Drying and Storage of Grain; Rotary Drying; Vacuum Drying; Fluidized Bed and Spouted Bed Drying; Drum Dryer; Spray Drying, Freeze Drying; Conveyer Drying; Solar Drying; Energy Optimization in Drying System; Drying System Design.

Pre-requisite(s): Heat and Mass Transfer, Fluid Mechanics

Text Book(s):

ENME804111 - AERODYNAMICS ENGINEERING (4 SKS)

Learning Objective(s):
Aerodynamic Engineering is an advanced course of Fluid Mechanics which focusing on aeronautics applications. Through the course students is expected to be able to understand the fundamental principles and basic equations of aerodynamics and to apply them in the process of airfoil design and to understand performance characteristics of the airfoil. Student is able to understand the phenomenon of incompressible flow through the airfoil and finite wings. Student is expected to be able to have an understanding of subsonic and supersonic compressible flow phenomena through
aerofoil and other compressible flow phenomena.

Syllabus:
Introduction on Aerodynamics; Basic and Principle Equations; Incompressible flow; Airfoil Aerodynamics Characteristics; Finite Wings; Incompressible Flow through Airfoil; Incompressible Flow through Finite Wings; Airfoil in Compressible Flow; Wings and Wings-Body Combination in Compressible Flow; Airfoil Design; Double Surface; Vortex Lift; Secondary Flow and Viscous Effect; Other Phenomena in Compressible Flow; Normal Shock Wave; Oblique Shock Wave; Expansion Wave; Supersonic Wave.

Pre-requisite(s): Fluid Mechanics, Basic Thermodynamics

Text Book(s):
fire modeling, designing and analyzing the protection system against fire. Students know the role of safety management on the fire hazard in ensuring the industry and high rise building operations.

Syllabus:

Pre-requisite(s):

Text Book(s):
5. SNI, ASTM, NFPA, rules and standards

ENME804148 - DESIGN FOR MANUFACTURE AND ASSEMBLY (4 SKS)

Learning Objective(s):
Provide knowledge, understanding and competence in the product design process which is considering, including factor and oriented on: material, manufacturing capability and assembling process. Therefore the product is expected to have made ease of manufacture and assembly.

Syllabus:
Review of the materials selection and processes, product design for manual assembly, design for automated assembly, PCB design for manufacture and assembly, machining process design, injection molding, sheet metal forming processes, die-casting.

Pre-requisite(s):

Text Book(s):
Boothroyd, Product Design for Manufacture and Assembly 3rd Ed, CRC Press, 2010

ENME804149 - NOISE AND VIBRATION (4 SKS)

Learning Objective(s):
This course provides competency to students to complete the issue of application of vibration on the mechanical structure of the construction, and plate or vessel (vessel), perform the calculation of vibration reducer system design, system and engine holder enhancing of production equipment. Finally students have to make basic vibration measurements; forecasts predicted the damage engine, the vibration analysis of the data signal and the vibration spectrum and carry out machine performance diagnosis based on data analysis of vibration data and other data related

Syllabus:
Mechanical vibration with Many Degrees Freedom; Vibration on the Structure Construction; Vibration on plate and body shell (Vibration Plate and Shell); Vibration Isolation; Designing Vibration Absorber; Engineering Vibration Measurement; Vibration spectrum analysis; Performance Diagnostic Machine.

Pre-requisite(s): Numerical Computation, Mechanical Vibration, Maintenance and Machine Cond. Monitoring

Text Book(s):
ENME804155 - CAD/CAM (4 SKS)

Learning Objective(s):
This lecture will discussed about technology of CAD, CAM, Integration of CAD / CAM application in the industry and the emphasis on: the principles modeling and surface curve geometry (Geometric modeling), design of 2D and 3D models with computer assisted. The principle of data exchange between CAD/CAM systems also tool path design using computer for prismatic and sculptured model. Lectures CAD / CAM are provided with the aim that students have the understanding and applying technology of CAD / CAM: starting the process from design to production process with the computers assistance.

Syllabus:
Overview of CAD / CAM System; Hardware & Software System of CAD / CAM; Interactive Tools and Computer Graphics Concepts, Geometric Modeling: Type & Representation of mathematical model Curve, Surface & Solid ; Data Exchange in CAD / CAM system; Manufacturing Processes: Manufacturing Process Review Type and Parameter Calculation machining, Lab. practice of CAD; CNC Technology; Tool Path Generation Method in the CAM system; Control ‘quality of machinery’ in the CAM system; Computer Aided Process Planning-CAPP; Postprocessing; Lab. practice of CAM.

Pre-requisite(s): -

Text Book(s):
2. Choi B. K., Jerard R. B., Sculptured Surface Machining,

ENME804156 - MANUFACTURING PERFORMANCE ASSESMENT (4 SKS)

Learning Objective(s):
Provide knowledge about the basic concepts of performance assessment of manufacturing industry relating to product performance, process, manufacturing system and its relation to manufacturing excellence. At the end of this course, students are expected to understand the methodologies and assessment tools manufacturing performance and are able to identify, assess and analyze the performance of the manufacturing industry increase.

Syllabus:

Pre-requisite(s): -

Text Book(s):
2. “World Class Manufacturing Performace Measures”

ENME802152 - AUTOMATION AND ROBOTICS (4 SKS)

Learning Objective(s):
Automation and Robotics course discusses technology and application in the automation industry and the design and control the robot emphasizes: understanding the types of automation systems,
particularly in the manufacturing industry and the mechanism, the design and development of automation system that emphasizes the 3 things: reliability, quality and cost and the understanding robot control system. Automation and Robotics Lectures given with the aim that students have an understanding in the implementation of technology Automation and Robotics, especially in the manufacturing industry.

Syllabus:
Automation System; Classification Type Manufacturing Automation machinery; Actuator; Sensor System; PLC Control System in the Manufacturing Automation machinery; Robot- cs: Definitions and Principles of Robot; Spatial Descriptions: Definitions and Principles, Methods and Applications Spatial descriptions; Forward Kinematics: Definition, Principles and The Forward Kinematics; Jacobians: Speed, explicit shape, definition and principle of inverse Kinematics; Dynamic: The form of explicit, Acceleration and inertia; Control system ronbotic: PID control, the Joint Space Control, Operational Control and Space Force Control; Robot Design Assignment.

Pre-requisite(s): -

Text Book(s):

ENME804168 - RAILWAY VEHICLE ENGINEERING (4 SKS)

Learning Objective(s):
Provide the knowledge and design of rail vehicle.

Syllabus:
Engineering and economic analysis of rail vehicles; body structures and rail vehicles; structural analysis of flat car; coupler analysis; electrical and pressurized water; analysis and modeling of the bogie; axle; wheel; brake and pivot; suspension system and driving quality; dynamic load analysis; fatigue and cracks in rail vehicles; models of rail vehicles and track geometry; modeling components of rolling stock; response rail vehicle on the track tangent; lateral stability of the rail vehicle on the track tangent; response rail vehicle on a curved trajectory; wheel wear; rail vehicle dynamics.

Pre-requisite(s): -

Text Book(s):

ENME804197 - MATERIAL HANDLING EQUIPMENT (4 SKS)

Learning Objective(s):
Provide expertise and competence to students in the field of design and development of lifting equipment and construction equipment

Syllabus:
Introduction and Scope of Construction Equipment; Tractor, Bulldozer, Dump Truck and shovel; Construction Equipment Mechanical Concept; Heavy equipment system: Pneumatic and Hydraulic; Basic Machine-lifting machinery and materials transporter; Cranes, hoist and conveyor; forklift: Moving Walks, Escalators, and Elevators

Pre-requisite(s): Mechanical Design, Design Assignment

Text Book(s):
1. ASME. Handbook of Materials Handling.
ENME804198 - AIRCRAFT STABILITY AND CONTROL (4 SKS)

Learning Objective(s):
Provide the students with the knowledge and ability in analyzing the aircraft (A/C) stability and control.

Syllabus:
Systems of Aircraft Axes and Notation, Aircraft Static Equilibrium and Trim, The Equations of Aircraft Motion, Aircraft Longitudinal Dynamics, Aircraft Lateral-Directional Dynamics, Aircraft Maneuverability, Aircraft Stability, Aircraft Flying and Handling Qualities, Aircraft Stability Augmentation, Aircraft Aerodynamic Modelling, Aircraft Aerodynamic Stability and Control Derivatives

Pre-requisite(s): -

Text Book(s):

ENME804190 - ADVANCED WELDING ENGINEERING (4 SKS)

Learning Objective(s):
Provide knowledge, understanding of the theories, principles and design as well as the assessment of the quality of welding and welding applications.

Syllabus:
Introduction, review of welding term and definition, welding process type, standard power source, Oxy-gas welding, Shield Metal Arc Welding (SMAW), Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Submerged Arc Welding (SAW), Flux Cored Arc Welding (FCAW), Resistance welding, Friction Stir Welding, Other welding process: laser, electron beam, plasma, Cutting and other edge preparation processes, surfacing and spraying, Brazing and soldering, Joining processes for plastics, ceramics and composites, Welding metal: Ferrous-based metal, non-ferrous-based metal, Material behavior during welding process, Testing materials and the weld joint, Non Destructive Examination (NDE), DT (Destructive Test), Heat treatment of base materials and welded joints, Basic of welding design, Residual stresses and distortion, Welding Symbol, Behavior of welded structures under different types of loading, Design of welded structures under static and dynamic loading, welding defects, Design of welded pressure equipment, Welding Performance Qualification Record (WPQR), Welding Procedure Specification (WPS), Welding automation.

Pre-requisite(s): -

Text Book(s):
2. ASME Section IX, Welding and Brazing Qualifications
3. AWS D1.1., Structural Welding (Steel)
4.4. UNDERGRADUATE PROGRAM IN NAVAL ARCHITECTURE AND MARINE ENGINEERING

Program Specification

1. Awarding Institution: Universitas Indonesia
2. Teaching Institution: Universitas Indonesia
3. Programme Title: Undergraduate Program in Naval Architecture and Marine Engineering
4. Class: Regular
5. Final Award: Sarjana Teknik (S.T)
7. Language(s) of Instruction: Bahasa Indonesia
8. Study Scheme (Full Time / Part Time): Full Time
9. Entry Requirements: High school / equivalent, or D3 / Polytechnique / equivalent, AND pass the entrance exam.
10. Study Duration: Designed for 4 years

<table>
<thead>
<tr>
<th>Type of Semester</th>
<th>Number of Semester</th>
<th>Number of weeks / semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

11. Graduate Profiles:
A Bachelor in Engineering with abilities to design ship structure and system, and excellence in leadership and professional characters.

12. List of Graduates Competency:
1. Ability to apply basic knowledge of mathematics, numerical methods, statistical analysis, basic sciences (physics and chemistry), as well as information technology required to achieve competence in the discipline of Maritime Engineering (Main competency)
2. Ability to design by applying methods, skills and modern engineering software required for practical engineering problems such as materials selection and process, as well as ship designing using a computer (Main competency)
3. Ability to carry out analysis for problem solving in the field of Maritime Engineering by applying calculation and principles in ship designing process and ship system (Main competency)
4. Ability to evaluate scientific problem by carrying out research and report the results, including statistical data analysis obtained for decision making in the field of Marine Engineering (Main competency)
5. Ability to identify impacts as a result of solution in the field of Marine Engineering with respect to sustainable development (Supporting competency)
6. Ability to think critically, creatively, and innovatively as well as to maintain intellectual curiosity for problem solving in individual and group level (UI)
7. Ability to communicate effectively in visual, written, and verbal (Supporting competency)
8. Ability to apply professional ethics related to law, economy, environment, social, political, health, and safety with responsibility and integrity (Supporting competency)
9. Ability to carry out life-long learning including access to knowledge of relevant recent issues (Supporting competency)
10. Ability to apply financial principles and management as well as entrepreneurship in the field of Marine Engineering

As a Universitas Indonesia student, every graduate of Naval Architecture and Marine Engineering Program should have the following competences as follow:
1. Able to use information and communication technology;
2. Able to think critically, creatively, and have intellectual curiosity to solve the individual and group problems;
3. Able to use verbal and writing communication in good bahasa Indonesia and English for academic or non-academic activity;
4. Has an integrity and able to respect others;
5. Able to identify entrepreneurship efforts which show innovation and autonomy based on ethics
13. Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>26</td>
<td>18.05 %</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>70</td>
<td>48.6 %</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>12</td>
<td>8.33 %</td>
</tr>
<tr>
<td>v</td>
<td>Ship Design Assignment 1, Ship Design Assignment 2, Ship Design Assignment 3, On The Job Training, Seminar, Undergraduate Thesis</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

14. Total Credit Hours to Graduate 144 SKS

Career Prospects

Naval architecture and marine engineering graduates have devoted themselves to various fields such as: maritime industry, government classification, research institutes, industrial engineering, automotive industry, shipbuilding industry, oil and gas industry, heavy machinery industry, educational institutions and other industries both domestically and internationally.

DESCRIPTION

Naval architecture and Marine Engineering study program was developed with a purpose, namely: producing graduates who have the attitude of leadership and excellence in scholarship and professionalism that have ability to analyze and synthesize characteristics of shipbuilding technology that includes design and planning process and ship machinery systems, as well as managing the installation and production systems ship, and were able to analyze and solve any scientific problem, work together in teams, and able to develop themselves and their knowledge.

The basic curriculum 2012 in Bachelor of Naval architecture and Marine Engineering which can be seen in the figure shows the grouping and the relationship between subject groups. Before reaching a Bachelor’s degree from a total of 144 SKS, a student in Marine Engineering must complete the university courses (18 SKS), basic courses (75 SKS) which consists of basic engineering (26 SKS) and basic of marine engineering (49 SKS), and marine technical skills courses (33 SKS) consisting of core courses (21 SKS), elective courses (12 SKS), and the remaining 18 SKS in the form of assignment, internship and final project.

The curriculum was designed and developed to make the learning process is able to produce graduates who are competent in the field of Naval architecture and marine engineering with characteristics in accordance with the purpose of education, that is:

1. Having a strong base of engineering knowledge through the sciences of mathematics, physics, and chemistry
2. The ability to design and conduct research to analyze and interpret the data.
3. The ability to identify, formulate and solve problems in the field of shipbuilding techniques based on a review of the latest issue
4. The ability to design a system, component or process to meet desired needs by considering and implementing aspects of the economy,
5. Knowledge of leadership, ability to communicate well, work together in teams, and develop themselves and their knowledge
Learning Outcomes Flow Diagram

Graduate Profile

- Ability to apply professional ethics related to law, economy, environment, social, political, health, and safety with responsibility and integrity (8)
- Ability to carry out life-long learning including access to knowledge of relevant recent issues (9)
- Ability to apply financial principles and management as well as entrepreneurship in the field of Marine Engineering (10)
- Ability to carry out analysis for problem solving in the field of Maritime Engineering by applying calculation and principles in ship designing process and ship system (3)
- Ability to evaluate scientific problem by carrying out research and report the results, including statistical data analysis obtained for decision making in the field of Marine Engineering (4)
- Ability to design by applying methods, skills and modern engineering software required for practical engineering problems such as materials selection and process, as well as ship designing using a computer (2)
- Ability to identify impacts as a result of solution in the field of Marine Engineering with respect to sustainable development (5)
- Ability to communicate effectively in visual, written, and verbal (7)
- Ability to apply basic knowledge of mathematics, numerical methods, statistical analysis, basic sciences (physics and chemistry), as well as information technology required to achieve competence in the discipline of Maritime Engineering (1)
- Ability to think critically, creatively, and innovatively as well as to maintain intellectual curiosity for problem solving in individual and group level (6)
Curriculum Structure

Basic Courses
- Basic Engineering (26 sks)
- Basic Marine Engineering (49 sks)

Specialization of Naval Architecture and Marine Engineering (33 sks)
- Core Courses (21 sks)
- Elective Courses (12 sks)
- Design Assignment, Internship, Seminar and Final Project (18 sks)

University General Courses (18 sks)
Flow Diagram of Subjects
<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENMR601001</td>
<td>Intro to Marine Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENME601002</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE600020 - 48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 6 0 0002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENMR602002</td>
<td>Ships Visualization & Modelling</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME600013</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 6 0 0009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENME603008</td>
<td>Basic Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 6 0 0004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENMR603003</td>
<td>Ship Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMR603004</td>
<td>Ship Building Theory</td>
<td>2</td>
</tr>
<tr>
<td>ENMR603005</td>
<td>Ship Structure 1</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMR604006</td>
<td>Thermofluids</td>
<td>4</td>
</tr>
<tr>
<td>ENMR604007</td>
<td>Ship Machinery</td>
<td>2</td>
</tr>
<tr>
<td>ENMR604008</td>
<td>Ship Structure 2</td>
<td>4</td>
</tr>
<tr>
<td>ENME600016</td>
<td>Numerical Method</td>
<td>2</td>
</tr>
<tr>
<td>ENMR604009</td>
<td>Ship Resistance and Propulsion</td>
<td>4</td>
</tr>
<tr>
<td>ENMR604010</td>
<td>Ship Hydrodynamics</td>
<td>2</td>
</tr>
<tr>
<td>ENMR600001</td>
<td>Ship Design Assignment 1</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMR605011</td>
<td>Fluid & Piping System of Ship</td>
<td>2</td>
</tr>
<tr>
<td>ENME600009</td>
<td>Kinematics and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENMR605012</td>
<td>Engineering Economics</td>
<td>2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>ENMR605013</td>
<td>Ship Manufacturing Process</td>
<td>2</td>
</tr>
<tr>
<td>ENMR605014</td>
<td>Welding Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENMR605015</td>
<td>Ship Electrical System</td>
<td>2</td>
</tr>
<tr>
<td>ENMR605016</td>
<td>Engine Room Layout Design</td>
<td>2</td>
</tr>
<tr>
<td>ENMR600002</td>
<td>Ship Design Assignment 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
<tr>
<td>ENGE 600010</td>
<td>Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 600012</td>
<td>HSE Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENMR606017</td>
<td>Ship Vibration</td>
<td>2</td>
</tr>
<tr>
<td>ENMR606018</td>
<td>Ship Machinery & Equipment</td>
<td>2</td>
</tr>
<tr>
<td>ENMR606019</td>
<td>Ship Electronic System</td>
<td>2</td>
</tr>
<tr>
<td>ENMR606020</td>
<td>Ship Power System</td>
<td>2</td>
</tr>
<tr>
<td>ENMR606021</td>
<td>Ship Maintenance & Repair</td>
<td>2</td>
</tr>
<tr>
<td>ENMR600003</td>
<td>Ship Design Assignment 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>17</td>
</tr>
<tr>
<td>ENME600006</td>
<td>Capita Selecta Industrial</td>
<td>2</td>
</tr>
<tr>
<td>ENMR600004</td>
<td>On the Job Training</td>
<td>2</td>
</tr>
<tr>
<td>ENMR607022</td>
<td>AC & Refrigeration System of Ship</td>
<td>4</td>
</tr>
<tr>
<td>ENMR607023</td>
<td>Survey and Inspection of Ship</td>
<td>2</td>
</tr>
<tr>
<td>ENMR600005</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>15</td>
</tr>
<tr>
<td>ENMR600006</td>
<td>Final Project</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
</tr>
</tbody>
</table>

Resume

<table>
<thead>
<tr>
<th>Subject Type</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>28</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Sub-Total</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>12</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
ELECTIVES

<table>
<thead>
<tr>
<th>KODE</th>
<th>MATA AJARAN PILIHAN SEMESTER 7</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME803183</td>
<td>Marine and Offshore Structure</td>
<td>4</td>
</tr>
<tr>
<td>ENME803184</td>
<td>Sea Transportation Port Manag.</td>
<td>4</td>
</tr>
<tr>
<td>ENME803185</td>
<td>Maritime Law and regulation</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KODE</th>
<th>MATA AJARAN PILIHAN SEMESTER 8</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME804186</td>
<td>Special Ship Project</td>
<td>4</td>
</tr>
<tr>
<td>ENME804187</td>
<td>Ship Production Management</td>
<td>4</td>
</tr>
<tr>
<td>ENME802103</td>
<td>Energy Optimization System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804188</td>
<td>Maritime Energy Management</td>
<td>4</td>
</tr>
<tr>
<td>ENME804189</td>
<td>Maritime Safety</td>
<td>4</td>
</tr>
<tr>
<td>ENME804190</td>
<td>Advanced Welding Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks

Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment

Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks

The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and o continue learning on their own after taking the MPK program (to develop independent learners)

Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method: Active learning, Contextual language learning, small group discussion.

Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test
Learning Objectives: After attending this subject, students are expected to be capable of using English to support the study in university and improve language learning independently.

Syllabus: Study skills: becoming an active learner, Vocabulary building: word formation and using the dictionary, Listening strategies: Extensive reading, Grammar: Revision of basic grammar, Types of sentences: Adjective clauses, Adverb clauses: Noun clauses, Reduced clauses, Reading: Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking: Reading popular science articles, Reading an academic text, Listening: Listening to short conversations, Listening to a lecture, Listening to a news broadcast, Listening to a short story, Speaking: Participating in discussions and meetings, Giving a presentation, Writing: Writing a summary of a short article, Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay.

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks
Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)
Prerequisites: OBM (New Student Orientation)
Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005
2 sks
General instructional objectives: The cultivation of students who have concern for social, national and country issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in life, eschatology and work ethics, human’s basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam’s motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)
CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.
Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society.

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks
General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student's participation in line with the study to help improve and build our country.
Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

HINDU STUDY
UIGE600013/UIGE610008
2 sks
Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahmam (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human's duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks
Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture (the responsibility of religious society in the realization of critical thinking (academic), work hard
and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be choosen :
Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025), Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029), Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be choosen :
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043), Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.

LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.
PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry.

Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis.

Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations
that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment.

Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

COURSE DESCRIPTION

ENMR601001 - INTRODUCTION TO MARINE ENGINEERING (2 sks)

Course Objective:
Provides basic competence of ship building and structure and the approach to ship designing.

Syllabus:
History of Ship Building; Types of water bulding: the Classification of Society and the International Agency; Ship Building and Construction; main dimension: Ship Motion; Ship Design Process; Stability: resistance and Propulsion; Tonnage; Ship building method. Historical of ship machinery, main engines, auxiliary engines, the engine room layout.

Pre-requisite: -

References:
1. GM Kok, A.C. Nierich., Bangunan Kapal, MARTECH

ENME601002 – ENGINEERING DRAWING (2 SKS)

Course Objective:
Course participants are able to transfer geometric component by drawing according to standard draw which is recognized by International Standard Organization (ISO). Students understand the theory and procedure of engineering drawing based on ISO standard. Students are able to read, interpret, and transfer 2D/3D geometric draw from component or construction. Students are able to draw the orthogonal projection based on ISO standard.

Syllabus:
Function and benefit of Engineering Drawing; SAP; Measurement and Evaluation; Introduction to drawing equipment; Basic definition of geometric, paper format, draw regulation, line, field, line configuration, basic geometric form; Visualization geometric: Skew projection and Isometric, function and line types, configuration geometric form; Orthogonal Projection: Projection standard, viewing concept, width display principle; Advanced orthogonal projection: Circle region concept, special region concept, trimming concept, display width, refraction.

Pre-requisite: -

References:
2. A.W. Boundy, Engineering Drawing , McGraw-Hill Book Company
4. Takeshi S. G., Sugiarto Hartanto, Menggambar Mesin, Pradnya Paramita, 1983

ENMR602002 - SHIPS VISUALIZATION AND MODELING (3 sks)

Course Objective:
This subject focus on the procedure of preparing a lines plan drawing that represents the shape of the ship’s hull. This subject also provide hands on experience to the student on how ship lines plan is prepared and discuss the characteristics of underwater characteristic of the ship hulls.

Syllabus:
Drawing Lines Plan; Optimizing the main dimensions and coefficients on ship designs with restrictions on ship type; Method of Nederlandsche Scheepsbouw Proefstationen (NSP); Data Form Method; Body Plan & Lines Plan. Interpreting the Hydrostatic Curve; HSC calculations use the Simpson method; Read the calculated hydrostatic curve. Interpreting the Bonjean Curve; Calculating the Bonjean curve; Reading the calculated Bonjean curve. Interpreting Cross Curve; Counting Cross Curve; Read Cross Curve that has been calculated.

Pre-requisite: -

References:
6. Manual Autocad dan Maxsurf 12.02

ENMR603003 – SHIP MATERIALS (3 sks)

Course Objective:
Students are expected to understand available material options depending on the operation requirement of the ships, encompassing both qualitative and quantitative understanding. Qualitative understanding includes properties of materials which are used for ship structure. Quantitative understanding includes calculation of properties of materials which may change due to external influences such as elongation that results from a loading.

Syllabus:
Types of materials and their applications in industry, properties of materials in various industries such as naval industry, heat treatment, diffusion of materials, phase diagram, dislocation and strengthening mechanism, materials failure, corrosion and degradation of materials, stress-strain diagram, elastic-plastic deformation, compressive deformation, shear stress and torsional stress, material hardness, destructive and non-destructive testing.

Pre-requisite: -

References:

ENMR603004 – SHIP BUILDING THEORY (2 sks)

Course Objective:
Provides an understanding about hydrostatic and dynamic stability calculation

Syllabus:
Lines Plan calculation and methodology; Bouyancy system; Metasentra, Static Stability: Calculation of hydrostatic curves and cross curves; docking, Ship crashes out, inclining test, ship launching, Wave Theory; Ship Hydrodynamics; Foil shape; Theory of Ship Motion; Plan Steering: Dynamic Stability: Theory of Stationary and Non-Stationary on a Ship Motion; Calculation of Critical Conditions Due to shaky ship; Impact loading.

Pre-requisite: Ship Visualization and Modelling

References:
ENME600013 - ENGINEERING MATHEMATICS (4 SKS)

Course Objective:
This course aims to complete student’s analytical ability. Students understand and are able to use
the advanced mathematical concepts in order to solve engineering problems.

Syllabus:
Introduction to differential equation, 1st order differential equation, 2nd order differential equation,
higher order differential equation, vector analysis, vector differential, grad operation, divergence and curl, vector integration, laplace transform, laplace transform to solve the differential equation, fourier transform, convolution, numerical method, root of equation, numerical differentiation, numerical integral

Pre-requisite: Calculus 2

References:

ENME603008 - BASIC THERMODYNAMICS (4 SKS)

Course Objective:
This course introduces the basic concept of thermodynamics and its application in real life and
gives the understanding about the design of thermodynamics system.

Syllabus:
Scope and basic understanding of thermodynamics system, temperature concept, pressure, ther-
modynamics equilibrium, reversible/irreversible process, zero law of thermodynamics and abso-
lute temperature, first law of thermodynamics, second law of thermodynamics, thermodynamics
equation, gas power cycle, gas compressor, combustion engine cycle, internal combustion engine,
simple gas turbine cycle, brayton's cycle, stirling's cycle, steam power cycle, refrigeration, car-
not's cycle, simple rankine's cycle, rankine's cycle with modification, biner cycle, phsycometric
chart, cooling tower, real gas, real gas equation, enthalpy and entropy.

Pre-requisite: Physics (Mechanics and Thermal)

References:
1. Michael J. Moran, Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 8th
5. H.D. Baehr, Termodynamik , Springer Verlag

ENMR603005 - SHIP STRUCTURE 1 (2 sks)

Course Objective:
Provides an understanding for calculating transversal and longitudinal constructions, profile and plate selection

Syllabus:
Stress and strain torsion (torque) and calculation of moment inertia; axial force, shear force and bending moment; Calculation of reaction cross-beam and diagrams, axial and moment diagrams; Analysis of stress and strain fields;
Beams Deflection I; Beams Deflection II: Static; column; energy method; cylinder walls thick and thin; theory of plate; analysis of ship structures; longitudinal and transversal strength of ships; calculation of midship strength; Bending and torsion on the Hull Girder; Calculation of Cross Section, Bending and Buckling on the panels; concept of fatigue.

Pre-requisite: -

References:
1. Dr. Yong Bai, Marine Structural Design. Elsevier Science.2003
ENME600016 - NUMERICAL METHOD (2 SKS)

Course Objective:
The objective of this course is so that students can understand and apply the process and method (algorithm) for engineering numerical computation based on computer and parameters that affect speed and accuracy of the results.

Syllabus:

Pre-requisite: Calculus 1, Calculus 2 and Engineering Mathematics

References:

ENMR605013 - SHIP MANUFACTURING PROCESS (2 sks)

Course Objective:
This course aims to study the ship manufacturing process in general, the process of forming and shaping, the manufacturing of ship’s plate, and the machining process.

Syllabus:
Ship manufacturing process (ship planning & Mouldloft, Sand Blasting & Primer Coating, Keel Laying, Fabrication, Assembly, Erection, Outfitting, Painting, Leakage Test, Launching, Sea Trial, Delivery), Forming and shaping process (Rolling, Forging, Extrusion, Sheet Metal Forming), Manufacturing of ship’s plate (surface roughness, surface treatment, surface coating, surface cleaning), Machining process (machining fundamentals, turning, milling, broaching, sawing, & filing)

Pre-requisite: -

References:

ENMR605014 - WELDING ENGINEERING (2 sks)

Course Objective:
This course aims to study basic knowledges in welding, joining, cutting. Students are expected to achieve the basic competences of welding engineering.

Syllabus:
Basic knowledge of welding, joining and cutting (Oxy -gas welding dan SMAW, GTAW dan GMAW, SAW, FCAW and friction welding, types of cutting, Brazing, soldering and joining), terminologies and definitions, welding design and its calculations (Weld joint, non destructive test, and destructive test, Heat treatment of base materials and welded joints)

Pre-requisite: -

References:
ENMR605012 - ENGINEERING ECONOMICS (2 sks)
Course Objective:
Provides an understanding of utilizing concepts in advanced mathematics to solve problems in naval engineering
Syllabus:
Graphs, Trigonometry and Geometry, Solution of Triangles, Mensuration of Areas, Volume-Mass, Centre of Gravity, Moment, Economic Mathematics
Pre-requisite:
References:

ENMR606020 - SHIP POWER SYSTEM (2 sks)
Course Objective:
Students can understand the principles of power system of the ship, including the current and the future trends.
Syllabus:
The need for ship power system, current and future trends (fossil fuel, carbon emission, international regulations, system and consumption of ship energy, efficiency management of ship energy), conventional power system (diesel and biofuel, LNG and CNG, dual-fuel, gas turbine), non-conventional power system (nuclear energy, wind energy, solar energy, Organic Rankine Cycle (ORC)), system of electric ship (principles of electric ship, types of electric ship application, hybrid ship)
Pre-requisite:
References:
1. K.C. Weston, *Energy Conversion*, PWS Publisher

ENMR604010 - SHIP HYDRODYNAMICS (2 sks)
Course Objective:
Students are expected to understand basic knowledge on ship hydrodynamics, waves, and viscous flow
Syllabus:
Basic of fluid, hydrostatic pressure, basic of hydrodynamics, theory of linear wave, Bernoulli equation and dynamic pressure, effect of wave force on the body of ship, mass addition, equation for seakeeping, viscous lift and drag, friction and streamline endurance, buff bodies, and Navier Stoke equation.
Pre-requisite:
References:

ENMR604008 - SHIP STRUCTURE 2 (4 sks)
Course Objective:
Provides knowledge and understanding of the types of construction on the ship structure and competence to design ship structures
Syllabus:
Bottom Structure: Ship hull and section system; Bulk head and girder; deck, Coaming and super structure; fore peak and after peak construction: Construction of Tankers; Gas Carrier Ship Construction: Doors and Windows; Fire Protection; Cabin Construction: Construction of loading and unloading Equipments; Painting and Corrosion Prevention.
Pre-requisite:
References:
References:
3. Biro Klasifikasi Indonesia
4. Lloyd’s Register Rules and Regulations

ENMR604006 - TERMOFLUIDS (4 sks)
Course Objective:
Students can understand various heat transfer mechanism between two systems if there exists a temperature difference, can calculate its heat transfer coefficient, and can solve various heat transfer problems with dimensionless parameters.

Syllabus:
Principles of Fluid Dynamics: Pressure distribution of fluid flow, integral flow analysis, differensial flow analysis. Viscous flow, drag and lift force for floating and moving objects. Laminar and turbulent flow; Boundary Layer; Losses in Fluid Flow. Heat Transfer; one-dimensional steady state; Steady dimensional conduction state; Convection principles; empirical formulas and practices for forced convection and heat transfer.; natural convection System, heat exchangers.

Pre-requisite: Basic Thermodynamics

References:

ENMR604007 - SHIP MACHINERY (2 sks)
Course Objective:
Understanding of types and concept of the main system, supporting system, lubrication system, and refrigeration system of a ship machinery

Syllabus:
Basic concept of diesel engine, combustion process, four and two stroke engine theory, types of engine, performance of diesel engine, turbo charger, engine ratings, machinery components, supporting system of machines, starting systems, fuel system, lubrication system, refrigeration system, engine propeller matching, experiment for diesel engine performance testing.

Pre-requisite: Basic Thermodynamics

References:

ENMR600001 - SHIP DESIGN ASSIGNMENT 1 (2 sks)
Course Objective:
Understanding of ship design procedures and monitoring.

Syllabus:
Design Analysis (owner requirement based); study literature; initial finding: Displacement, main dimension, and shape of ship, finding power driven; linesplan sketch and monitong of calculation CSA (Curve of Sectional Area); general plan sketch (GA); initial assessment payload and unloading space, stability, hull arise, trim; free and unloading space estimates; watertight bulkhead positioning for passenger ships.

Pre-requisite: Ship Building Theory

References:
1. B. Baxter, Teach Yourself Naval Architecture, The English Universities Press. Signifi cant Ships, RINA

ENMR605011 - FLUID AND PIPING SYSTEM OF SHIP (2 sks)
Course Objective:
Understanding types of fluid system, piping system, and practical aspects on the Ship Construction Syllabus: Positive displacement of fluid engines, hydraulic system, pneumatic power systems. Experimental of water piping system, air piping system, pump impeller, Pelton turbine. Piping systems on ships and marine construction, type of pipe material, pipe fittings, valves, tanks, sea-chest, standards and methods of drawing systems, bilga systems, ballast systems, fire extinguish system, supporting system (auxiliary motor), fuel system, lubrication system, cooling system, compressed air systems, domestic systems, tanker loading and unloading systems.

Pre-requisite: Thermofluids

References:

ENMR604009 - SHIP RESISTANCE AND PROPULSION (4 sks)

Course Objective: Provides an understanding for the calculation of ships resistance and propulsion, both theoretically and by using a model

Syllabus: Ship force; Ship Resistance Comparative Law; Frictional resistance: wave resistance; pressure resistance: Air resistance; Effect of Ship Shape; Resistance predictions with Model Test; Wake Friction: Thrust reduction; Ship resistance in Bad Weather: The principle of Hydrofoil Ship; coefficient of propulsion; Calculation of Propeller Design with Form Data and Wageningen Graphs..

Pre-requisite: -

References:
1. J. P. Ghose, R. P. Gokarn, Basic Ship Propulsion, 2004
4. C. Gallin, Ships and Their Propulsion System, Lohmann & Stolterfoht

ENMR605016 - ENGINE ROOM LAYOUT DESIGN (2 sks)

Course Objective: Students can design the layout and ergonomic aspect of engine room

Syllabus: Engine Room Lay Out: ergonomic consideration in the placement of equipments, placement of the main engine, placement of auxiliary engine system, placement of ship supporting system

Pre-requisite: -

References:

ENMR600002 - SHIP DESIGN ASSIGNMENT 2 (4 sks)

Course Objective: Understanding the calculation and monitoring of supporting system for ships designing

Syllabus: Ship displacement method; determine main dimension and coefficient; determine lines plan, hydrostatic calculation, main section plan, profile and bulkhead plan, design of air conditioning system, ship maintenance design, communication devices election, navigate devices election, safety plan

Pre-requisite: Ship Design Assignment 1

References:

ENMR606019 - ELECTRONIC SYSTEM OF SHIPS (2 sks)

Course Objective:
Understanding of the principles, operations, and applications of electronic systems of ships

Syllabus:
Basic of electronics; Passive Components: Semiconductors; Digital Systems; Digital Combinational circuit; Digital Sequential circuit; PLC; Electronics Simple Plan; basic theory of DC circuit: basic theory of AC electrical circuits, working principle of DC motors, Types of MDC; operation of the MDC, the working principle of AC Motor, Various kinds of MAC, MAC operation: principle of generator, voltage drop generator; generator no-load and under load; Parallel generator; Introduction of the application on ship; Electric propulsion and PTO.

Pre-requisite: Electrical System of Ships

References:

ENMR605015 - ELECTRICAL SYSTEM OF SHIPS (2 sks)

Course Objective:
Understanding the principles of engineering and automation and control applications of the ship

Syllabus:
Introduction to automation systems engineering; proportional plus integral plus derivative control; Application of mathematical modeling to determine the performance of control system. Response system signals I and Order II: Analysis of transient response of the system order I and order II: Introduction to process control in shipbuilding applications; computer simulations and laboratory-scale models; Introduction of hydraulic and pneumatic control systems. Instruments for UMS classification

Pre-requisite: Physics (Elec. Magnet, Wave & Optic)

References:
1. E. Hughes, *Electrical Technology*, IBS

ENME600009 - KINEMATICS AND DYNAMICS (4 SKS)

Course Objective:
Students have the ability to understand the key concept of kinematics and dynamics of mechanical system and capable to analyze the movement, velocity, acceleration force and equilibrium.

Syllabus:
Vector velocity analysis, free body diagram, linier motion, velocity polygon, 2D motion, rectangular coordinates, N-T and pole, relative motion and velocity of 2 coincide/relate point, Coriolis acceleration and stiff body kinematics, Inertia Force, Statics, particle system, works, energy, impulses, linear-angular momentum, stiff body motion, works and energy, relative motion, rotating mass balancing and back & forth motion, cam dynamics and Gyroscope.

Pre-requisite: Physics of Mechanics & Heat

References:

ENMR606017 - SHIP VIBRATION (2 sks)

Course Objective:
Understanding of engine vibration system and vibration source detection

Syllabus:
Engine vibration system: free vibration, damping, transient vibrations, forced vibrations, vibra-
tions with two degrees of freedom, torsional vibration, lateral and longitudinal in ship propulsion
system; Experimental measurement of vibration

Pre-requisite : Kinematics and Dynamics

References:
 Coast Institution of Engineers and Shipbuilders. 1935

ENMR606021 - SHIP MAINTENANCE AND REPAIR (2 sks)

Course Objective:
Students are able to understand the maintenance and control of ship’s engine system.

Syllabus:
Introduction to reliability system, reliability Fundamental Review of the concept, simple system
Network Modelling, Network Modelling System, Introduction to Markov and Monte Carlo Simula-
tion, Discrete Markov Chains and Markov Continuous Process. Public Review: Economic and Reli-
bility, Maintenance Strategy. Functions of Manual Maintenance; Parts List and Stock; Preparation
of Schedule Maintenance: Maintenance Document Preparation; Engine Room Maintenance, Main-
tenance of Inventory: The Role of Engine Builders Tips and Tools: Spare-Parts.

Pre-requisite : Engine Room Layout Design, Ship Manufacturing Process

References:
1. D. Benkovsky, Technology of ship repairing, MIR Publisher.

ENMR606018 - SHIP MACHINERY AND EQUIPMENT (2 sks)

Course Objective:
Understanding of theory, system, and working principle of ship equipment

Syllabus:
Anchoring and mooring equipment supplies; loading and unloading equipment; Water-tight win-
dows and doors; Ventilation Equipment: Safety Equipment: Equipment Navigation and Communi-
cations; Firefighting Equipment: Equipment Ship Steering; Oil Separator Equipment: Pumps and
System Installation.

Pre-requisite :

References:

ENMR600003 - SHIP DESIGN ASSIGNMENT 3 (3 sks)

Course Objective:
Understanding of calculation and monitoring of ship engine design

Syllabus:
Engine and tools selection (auxiliary engine); electrical load balance; Detailed drawings; Design
of Ship Engine Room Layout; transmission system, reduction gear and shafting; Construction of a
propeller and propeller machining; ship piping systems for engine and hull; fire extinguishing sys-
tem; steering system; ventilation system; calculation, selection and layout of the marine cable;
load analysis and design one-line diagram of electrical & Wiring Diagram instalasi including lighting
vessels and equipment. Bilga system design and Engine Room Bilga System (Oily-Water Bilge Sys-
tem); Design System Reply: Fire System Design: Design of Fuel System: Engine Lubrication System
Design: Design of Engine Cooling System: Air Pressure System Design; Domestic Fresh Water System
Design Air & Sea; Sanitary Disposal System Design: the design of loading and unloading systems;
Ship Electrical Load Analysis: Calculation and selection of the number and capacity of Genset &
Shore Connection: the calculation and selection of battery capacity; List Equipment Code

Pre-requisite : Ship Design Assignment 2
References:

ENME600006 - INDUSTRIAL SEMINAR (2 SKS)
Course Objective:
Able to understand industrial development and its problems.
Syllabus: Special topics in industries which are not covered in other courses
Pre-requisite: Passed 76 SKS and GPA > 2.00
References: -

ENMR607022 - AIR CONDITIONING AND REFRIGERATION SYSTEM (4 sks)
Course Objective:
Students are able to analyze the design of air conditioning and refrigeration system on the ship
Syllabus:
Basic principles of refrigeration and air conditioning processes. Diagrams Psikrometri, ducting system design, heating system design, ventilation system design, system design of air conditioning and refrigeration, technical specifications and troubleshooting, ISO standards and the Class
Pre-requisite: Ship Power System
References:

ENMR607023 - SURVEY AND INSPECTION OF SHIP AND MARINE STRUCTURE (2 sks)
Course Objective:
Understanding of types of class survey, statutory approval and ship operation
Syllabus:
Statutory survey; Class survey; Hull survey; Loadline survey, Inclining experiment; Damage survey; Machinery Installations survey; Electrical & Genset survey; Seatrial procedure.
Pre-requisite: Ship Maintenance & Repair
References:
1. D. Benkovsky, *Technology of ship repairing*, MIR Publisher.
4. Biro Klasifikasi Indonesia
5. Lloyd’s Register Rules and Regulations

ENME600003 - INTERNSHIP (2 SKS)
Learning Objective(s):
The course is intended to provide opportunity for gaining experience in industries and applying mechanical engineering knowledge. Able to perform management tasks and engineering technique according to field of interest.
Syllabus:
1. Management and Engineering according to the field of interest. Presentation of internship results and report.
2. Pre-requisite(s): Passed 95 SKS and GPA > 2.00

ENME600004 - SEMINAR (1 SKS)
Learning Objective(s):
Student can communicate in verbal or written with final project proposal; able to formulate the problems and objectives of the research, conduct theoretical review to formulate the hypothesis, design the research method for empirical proof and present the preliminary result to the supervisor
Syllabus:
Problem description, basic concept of research with assumption and constraint; making preliminary report, conducting the preparation, literature review and research methodology; present final report with structured report, language, graphical presentation, table etc, reference and clarity.

Pre-requisite(s): Passed 110 SKS and GPA > 2.00 without Grade E
Text Book(s): -

ENME60005 - FINAL PROJECT (5 SKS)
Learning Objective(s):
Students are able to conduct design and analysis the object of system that related to the mechanical engineering field
Syllabus:
Synthesizing various lectures taken by students to design or to solve engineering problems. Preparing a written report of the synthesis.
Pre-requisite(s): Passed 128 SKS and GPA > 2.00 without Grade E

ELECTIVES

ENME803183 - MARINE AND OFFSHORE STRUCTURE (4 sks)
Course Objective:
Provide the knowledge, understanding of the theory and principles of building offshore include the type, function, and offshore construction technology and techniques in performing design structure.
Syllabus:
Types of Offshore; Construction and Offshore Structures; Calculation of Style and Power Offshore: Safety Requirements; Construction Semi-submersible; Single Buoy Mooring; FPSO; Offshore Maintenance and Repair.
Pre-requisite: -
References:
2. Subrata Chakrabarti, Handbook of Offshore Engineering, Elsevier Science, 2005

ENME803184 - SEA TRANSPORT AND PORT MANAGEMENT (4 sks)
Course Objective:
Provides the knowledge and understanding of various management approaches, maritime transport and port activities which also include risk factors, safety, and economy.
Syllabus:
Pre-requisite: -
References:
1. P. Lorange, Shipping Management, Institution for shipping Research.

ENME803185 - MARITIME LAW AND REGULATION (4 sks)
Course Objective:
Provide knowledge and understanding of the laws and regulations on maritime activities both nationally and internationally.
Syllabus: -
Introduction of maritime law; Regulation of Marine Pollution Prevention and Control; SOLAS; Prevention of Collisions Regulations; ISM Code; Statutory Rules; Passenger Ship Regulations; Tanker Regulations; Offshore Regulations: Accident Rescue Regulations; Other IMO rules. Accident prevention regulations; Risk assessment and analysis.

Pre-requisite: -

References:
1. International Convention for the Prevention of Pollution From Ships (MARPOL), International Maritime Organisation Publications
2. International Regulations for Preventing Collisions at Sea (COLREG), International Maritime Organisation Publications

ENME804186 - SPECIAL SHIP PROJECT (4 sks)
Course Objective:
Provide the knowledge, understanding of ship design for special purposes.

Syllabus:
Typology and special ship purposes; Material to special Ship, Design Considerations; Calculation of loading; Calculation of Ship Quantities; Computation Structures: Propulsion Systems; Motion System; Safety and Navigation System; Stability Calculation.

Pre-requisite: -

References:

ENME804187 - SHIP PRODUCTION MANAGEMENT (4 sks)
Course Objective:
Provides knowledge and understanding of the various shipyard management and technique.

Syllabus:
Shipyard Layout; Ship Process Production; Steel Stock Yard Planning; Crane Calculation: Jamo-rang Calculation At Each Stage Production: Make Work Schedule: Work Break Down Structure; Integrated Hull Outfitting and Painting; Advanced Outfitting; Group Technology Methods for Ship Production; Ship launching; Ship trials.

Pre-requisite: -

References:
2. R.Shenoi, Ship Production Technology, Univ. Of Southampton.

ENME802103 - ENERGY OPTIMIZATION SYSTEM (4 sks)
Course Objective:
This course provides an understanding of mathematical modeling, simulation and optimization of energy systems through technical and economical approach. The course is intended to equip student with the ability to understand mathematical model, simulation and optimization of thermal systems.

Syllabus:
Workable System Design; Economical Evaluation; Determination of Mathematical Equations; Ther-
nal Equipment Modeling; System Simulation; System Optimization: Objective Function, Con-
straints; Lagrange Multipliers: Lagrange multiplier to complete the optimization process; Dyna-
mics, Geometric and Linear Programming; Mathematical Model of Thermodynamics Properties; Big
System Simulation under Steady Condition; Big Thermal System Simulation; Calculation of Vari-
ables in Optimum Conditions.
Pre-requisite : -
References :

ENME804188 - MARITIME ENERGY MANAGEMENT (4 sks)
Course Objective :
This course aims to provide an understanding of analysis for energy optimization resulted from
minimum fuel consumption as well as analysis for performance optimization from minimum initial
energy
Syllabus :
Principle and regulation of maritime energy, design and operation of efficient ship, energy man-
agement for off shore structure, port energy management, renewable energy, and human re-
sources factors in energy management.
Pre-requisite : -
References :
 Springer, 2014

ENME804189 - MARITIME SAFETY (4 sks)
Course Objective:
Provides knowledge and understanding of maritime safety through regulations, management and
development of maritime transportation technology.
Syllabus :
SOLAS: general provision, construction, safety equipment, communication radio, safety naviga-
tion, freight, management for ship safety, MARPOL Annex I-V, maritime safety, threats from mari-
time trading, threats from shipping, evolution of maritime safety, implementation of ISPS code, safety planning.
Pre-requisite: -
References:

ENME804190 - ADVANCED WELDING ENGINEERING (4 SKS)
Learning Objective(s):
Provide knowledge, understanding of the theories, principles and design as well as the assessment
of the quality of welding and welding applications.
Syllabus:
Introduction, review of welding term and definition, welding process type, standard power source,
Oxy-gas welding, Shield Metal Arc Welding (SMAW), Gas Tungsten Arc Welding (GTAW), Gas Metal
Arc Welding (GMAW), Submerged Arc Welding (SAW), Flux Cored Arc Welding (FCAW), Resistance
welding, Friction Stir Welding, Other welding process: laser, electron beam, plasma, Cutting and
other edge preparation processes, surfacing and spraying, Brazing and soldering, Joining processes
for plastics, ceramics and composites, Welding metal: Ferrous-based metal, non-ferrous-based
metal, Material behavior during welding process, Testing materials and the weld joint, Non De-
structive Examination (NDE), DT (Destructive Test), Heat treatment of base materials and welded
joints, Basic of welding design, Residual stresses and distortion, Welding Symbol, Behavior of
welded structures under different types of loading, Design of welded structures under static and dynamic loading, welding defects, Design of welded pressure equipment, Welding Performance Qualification Record (WPQR), Welding Procedure Specification (WPS), Welding automation.

Pre-requisite(s): -

Text Book(s):
2. ASME Section IX, Welding and Brazing Qualifications
3. AWS D1.1., Structural Welding (Steel)
4.5. UNDERGRADUATE PROGRAM IN ELECTRICAL ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Awarding Institution</td>
<td>Universitas Indonesia Double Degree: Universitas Indonesia and partner university</td>
</tr>
<tr>
<td>2.</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia Double Degree: Universitas Indonesia and partner university</td>
</tr>
<tr>
<td>3.</td>
<td>Programme Title</td>
<td>Undergraduate Program in Electrical Engineering</td>
</tr>
<tr>
<td>4.</td>
<td>Class</td>
<td>Regular, Parallel, International</td>
</tr>
<tr>
<td>5.</td>
<td>Final Award</td>
<td>Sarjana Teknik (S.T) Double Degree: Sarjana Teknik (S.T) and Bachelor of Engineering (B.Eng)</td>
</tr>
<tr>
<td>6.</td>
<td>Accreditation / Recognition</td>
<td>BAN-PT: A accredited AUN-QA</td>
</tr>
<tr>
<td>7.</td>
<td>Language(s) of Instruction</td>
<td>Bahasa Indonesia and English</td>
</tr>
<tr>
<td>8.</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9.</td>
<td>Entry Requirements</td>
<td>High school /equivalent, or D3 / Polytechnique / equivalent, AND pass the entrance exam.</td>
</tr>
<tr>
<td>10.</td>
<td>Study Duration</td>
<td>Designed for 4 years</td>
</tr>
<tr>
<td></td>
<td>Type of Semester Number of Semester Number of weeks / semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Short (optional)</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>Graduate Profiles:</td>
<td>Bachelor of engineering who is able to design both hardware and/or software as solution in electrical engineering problem based on technological advancement in accordance with professional ethics.</td>
</tr>
<tr>
<td>12.</td>
<td>Expected Learning Outcomes:</td>
<td>General outcomes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Able to design hardware.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Able to design software.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Able to handle general issues and specific in electrical engineering.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Able to apply the basic principles of mathematics, physics, and statistics in solving electrical engineering.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Capable of critical thinking, creative, and innovative and have the intellectual curiosity to solve problems at the level of the individual and the group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Able to identify varieties of entrepreneurial efforts that are characterized by innovation and self-reliance based on ethics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Able to use the language both spoken and written in the Bahasa Indonesia and English for academic or non-academic activities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Able to provide alternative solutions to problems that arise in the environment, society, nation, and country.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Able to utilize information communication technology (ICT).</td>
</tr>
<tr>
<td></td>
<td>Electronics Engineering Majoring Outcomes:</td>
<td>1. Able to design advanced electronics circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Able to analyse photonic devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Able to design MEMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Able to design VLSI circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Able to analyse state of the art in the field of electronics and photonics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Able to utilize technological advancement to solve problems related to his/her expertise (stream).</td>
</tr>
</tbody>
</table>
Telecommunication Engineering Majoring Outcomes:
1. Able to design wire and wireless communication equipment system.
2. Able to design communication network system
3. Able to analyse the performance of communication systems on different media.
4. Able to identify the process of information signal processing.
5. Able to examine the development of telecommunications engineering
6. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring)

Control Engineering Majoring Outcomes:
1. Able to identify dynamic control system in mathematical equation.
2. Able to design discrete controller.
3. Able to design knowledge-based controller.
4. Able to reverse engineer simple controller.
5. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring)

Electrical Power Engineering Majoring:
1. Able to characterize electric power engineering and energy.
2. Able to review the latest technology to solve the problem of electric power and energy fields.
3. Able to analyze the phenomenon of high field to resolve the problems of the field of electric power.
4. Able to itemize the problems of electric power and energy.
5. Able to design simple application in the fields of electric power and energy.
6. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring).

Biomedical Engineering Majoring Outcomes:
1. Able to apply the basic principles of biology in field of biomedicine engineering.
2. Able to apply the techniques, skills and modern tools that are necessary in the practice of biomedicine engineering.
3. Able to analyze medical data/information related to the condition of human physiology.
4. Able to make simple medical device design at the level of individuals and groups.
5. Able to process medical signal to improve the performance of a medical device.
6. Able to study the latest technology to solve the problem of appropriate areas of expertise (Majoring).

Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>71</td>
<td>49.31 %</td>
</tr>
<tr>
<td>iv</td>
<td>Majoring Subject</td>
<td>21</td>
<td>14.58 %</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>8</td>
<td>5.56 %</td>
</tr>
<tr>
<td>v</td>
<td>Special Subject (Internship, Seminar, Undergraduate Thesis)</td>
<td>8</td>
<td>5.56 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Career Prospects

The graduates of this program have been employed in various industrial companies within one month (in average) after the graduation. Some of them are involved in power engineering, IT, electronic, oil & gas, telecommunication and other related industries. Some of graduates were even employed before the graduation.

Some occupation or job titles that are suitable for this program are electrical engineer, process engineer, control engineer, instrumentation engineer, program manager, project manager, technical manager and professional lecturers.
Sarjana Teknik yang mampu membuat rancangan perangkat keras dan/atau perangkat lunak sebagai solusi suatu permasalahan di bidang teknik elektro sesuai etika profesi

Mampu membuat rancangan perangkat keras

Mampu membuat rancangan perangkat lunak

Mampu menangani masalah umum dan spesifik di bidang teknik elektro

LEARNING OUTCOMES

ELECTRICAL ENGINEERING

Teknik Elektronika
- Mampu menganalisis divais fotonika
- Mampu membuat rancangan rangkaian elektronika lanjut
- Mampu membuat rancangan MEMS
- Mampu membuat rancangan rangkaian VLSI
- Mampu menganalisis perkembangan terkini di bidang elektronika dan fotonika
- Mampu mengkaji teknologi terkini untuk menyelesaikan masalah sesuai bidang keahliannya (KI)

Teknik Telekomunikasi
- Mampu menggunakan bahasa lisan dan tulisan dalam Bahasa Indonesia dan Bahasa Inggris dengan baik untuk kegiatan akademik maupun non akademik.

Teknik Kendali
- Mampu berpikir kritis, kreatif, dan inovatif serta memiliki keingintahuan intelektual untuk memecahkan masalah pada tingkat individual dan kelompok.
- Mampu mengidentifikasi ragam upaya wirauusaha yang bercirikan inovasi dan kemandirian yang berlandaskan etika
- Mampu menggunakan bahasa lisan dan tulisan dalam Bahasa Indonesia dan Bahasa Inggris dengan baik untuk kegiatan akademik maupun non akademik.
- Mampu memberikan alternatif solusi terhadap masalah yang timbul di lingkungan, masyarakat, bangsa dan negara
- Mampu memanfaatkan Teknologi Informasi Komunikasi (TIK)

Teknik Ketenagalistrikan
- Mampu menerapkan prinsip dasar matematika, fisika, dan statistik dalam menyelesaikan permasalahan teknik elektro

Teknik Biomedik
- Mampu menerapkan prinsip dasar biologi dalam bidang rekaan medis
- Mampu menelaah teknologi terkini untuk menyelesaikan masalah sesuai bidang keahliannya (KI)

Mampu menerapkan prinsip dasar matematika, fisika, dan statistik dalam menyelesaikan permasalahan teknik elektro

UNDERGRADUATE PROGRAM
Diagram Alir Mata Kuliah Prasyarat Untuk Mata Kuliah Praktikum
Diagram Alir Mata Kuliah Prasyarat Untuk Mata Kuliah Non Praktikum

Legenda
- Mata Kuliah Perangkat Lunak
- Mata Kuliah Perangkat Keras
- Mata Kuliah Dasar Sains
- Mata Kuliah Peminatan (Prasyarat lihat di silabus)

Mata Kuliah Perangkat Keras
- Semester 6
- Semester 7
- Semester 8

Mata Kuliah Perangkat Lunak
- Semester 1
- Semester 4
- Semester 5
- Semester 6
- Semester 7

Mata Kuliah Dasar Sains
- Semester 2
- Semester 3

Mata Kuliah Peminatan*
- Semester 1
- Semester 2
- Semester 3
- Semester 4
- Semester 5
- Semester 6
- Semester 7
- Semester 8

(Prasyarat lihat di silabus)
COURSE STRUCTURE UNDERGRADUATE PROGRAM
ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600003</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE601001</td>
<td>Intro to Electrical Engineering</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>19</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE600020-48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE602002</td>
<td>Electric Circuit 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE603003</td>
<td>Electric Circuit 2</td>
<td>3</td>
</tr>
<tr>
<td>ENEE603004</td>
<td>Electric Circuit Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE603005</td>
<td>Vector Analysis and Complex Variable</td>
<td>2</td>
</tr>
<tr>
<td>ENEE603006</td>
<td>Probability and Stochastic Process</td>
<td>3</td>
</tr>
<tr>
<td>ENEE603007</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENEE603008</td>
<td>Semiconductor Devices</td>
<td>2</td>
</tr>
<tr>
<td>ENEE603009</td>
<td>Fund. of Digital System & Lab</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>18</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE604010</td>
<td>Basic Computer and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE604011</td>
<td>Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ENEE604012</td>
<td>Electronic Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE604013</td>
<td>Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>ENEE604014</td>
<td>Signal and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE604015</td>
<td>Electric Materials</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>16</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGE600012</td>
<td>Health, Safety & Environment Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENEE605016</td>
<td>Numerical Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE605017</td>
<td>Telecommunication Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE605018</td>
<td>Electric Power Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE605019</td>
<td>Electric Power Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>ENEE605020</td>
<td>Control Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE605021</td>
<td>Control Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE605022</td>
<td>Algorithm and Programming</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>6th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606024</td>
<td>Modelling and Simulations</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606025</td>
<td>Telecommunication Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE606026</td>
<td>Microprocessor and Microcontroller</td>
<td>4</td>
</tr>
<tr>
<td>ENEE606027</td>
<td>Microprocessor & Microcontroller Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENEE606028</td>
<td>Electric Measurements</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606029</td>
<td>Electric Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Majoring Courses</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>7th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606023</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Majoring Courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>8th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE608033</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Majoring Courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>144</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE TELECOMMUNICATION ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606301</td>
<td>Coding Technique and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606302</td>
<td>Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606303</td>
<td>Broadband Multimedia Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607304</td>
<td>Antennas and Propagation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607305</td>
<td>Optical Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608307</td>
<td>Mobile and Wireless Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608308</td>
<td>Communication System Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

CURRICULUM STRUCTURE ELECTRICAL POWER ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606101</td>
<td>Electric Energy Conversion</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606102</td>
<td>Power Electronics and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606103</td>
<td>Management and Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607104</td>
<td>Electric Power System and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607105</td>
<td>High Current & Voltage Eng + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607106</td>
<td>Building Electric Installation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608108</td>
<td>Electric Power Transmission & Distribution</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608109</td>
<td>Electric Power System Protection</td>
<td>2</td>
</tr>
</tbody>
</table>

CURRICULUM STRUCTURE ELECTRONICS ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606201</td>
<td>Advanced Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606202</td>
<td>Photonic Devices</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606203</td>
<td>Semiconductor Device Fabr + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606204</td>
<td>Introduction of Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606205</td>
<td>VLSI</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606207</td>
<td>Solar Cell</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606208</td>
<td>MEMS</td>
<td>3</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE CONTROL ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606401</td>
<td>Digital Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606402</td>
<td>Process Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606403</td>
<td>Electric Drive Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607404</td>
<td>Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607405</td>
<td>Adaptive and Predictive Control System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608407</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608408</td>
<td>Knowledge Based System</td>
<td>3</td>
</tr>
</tbody>
</table>

CURRICULUM STRUCTURE BIOMEDICAL ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE606501</td>
<td>Biology and Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606502</td>
<td>Medical Communication System</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606503</td>
<td>Intro to Biomedical Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607504</td>
<td>Medical Imaging Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607505</td>
<td>Medical System Modelling</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608507</td>
<td>Biomedical Instrumentations and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608508</td>
<td>Medical Informatics</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE607306</td>
<td>Special Course of Telecommunications 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608309</td>
<td>Special Course of Telecommunications 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607107</td>
<td>Special Course of Electrical Power 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608110</td>
<td>Special Course of Electrical Power 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606206</td>
<td>Special Course of Electronics 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE606209</td>
<td>Special Course of Electronics 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607406</td>
<td>Special Course of Control 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608409</td>
<td>Special Course of Control 2</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607506</td>
<td>Special Course of Biomedics 1</td>
<td>2</td>
</tr>
<tr>
<td>ENEE608509</td>
<td>Special Course of Biomedics 2</td>
<td>2</td>
</tr>
</tbody>
</table>
FAST TRACK CURRICULUM TELECOMMUNICATION ENGINEERING MAJOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Rekayasa dan Kewirausahaan</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Penulisan Ilmiah</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE603007</td>
<td>Matematika Terapan</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606303</td>
<td>Komunikasi Multimedia Pita Lebar</td>
<td>Broadband Multimedia Communications</td>
<td>3</td>
</tr>
<tr>
<td>ENET801002</td>
<td>Sistem Radar dan Disain</td>
<td>Radar Systems and Design</td>
<td>3</td>
</tr>
<tr>
<td>ENET801003</td>
<td>Pengolahan Sinyal dan Aplikasi</td>
<td>Digital Signal Processing & Apps</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607304</td>
<td>Antena dan Propagasi</td>
<td>Antennas and Propagation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607305</td>
<td>Komunikasi Optik</td>
<td>Optical Communications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Semester 8			
ENEE608033	Skripsi	Bachelor Thesis	4
ENEE802002	Metodologi Penelttian	Research Method	3
ENET802004	Teknik Sistem Medis Nirkabel	Wireless Medical System Eng.	3
ENET802005	Disain RF Lanjut	RF Engineering Design	3
ENET802006	Disain Antena Modern	Modern Antenna Design	3
ENMT803007	Komunikasi Multimedia Nirkabel	Multimedia Wireless Communications	3
ENEE608308	Divais Sistem Komunikasi	Communication System Devices	3
Subtotal			22

Semester 9			
ENET803007	Tek. Komunikasi Gelombang Cahaya	Lightwave Communication Technology	3
ENET803008	Topik Khusus Telekomunikasi	Special Topic in Telecommunication	2
ENEE803003	Manajemen & Keekonomian Proyek Teknik	Engineering Economy & Project Management	3
Subtotal			8

Semester 10			
ENEE804005	Publikasi Ilmiah	Publication Scientific	2
ENEE804004	Tesis	Thesis	8
Subtotal			10

FAST TRACK CURRICULUM ELECTRONICS ENGINEERING STREAM

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Rekayasa dan Kewirausaha</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
</tbody>
</table>

238
<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE607032</td>
<td>Penulisan Ilmiah</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Matematika Terapan</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEF801001</td>
<td>Desain Rangkaian Terpadu</td>
<td>Integrated Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEF801002</td>
<td>Nanoelektronika</td>
<td>Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEF801003</td>
<td>Divais Fotonik Lanjut</td>
<td>Advanced Photonic Devices</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606204</td>
<td>Pengantar Nanoelektronik</td>
<td>Introduction of Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606205</td>
<td>Very Large Scale Integration (VLSI)</td>
<td>VLSI</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Semester 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE608033</td>
<td>Skripsi</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENEF802004</td>
<td>Desain MEMS (Micro Electronics & Mechanical)</td>
<td>MEMS Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEF802005</td>
<td>Divais Solid State</td>
<td>Solid State Device</td>
<td>3</td>
</tr>
<tr>
<td>ENEF802006</td>
<td>Divais Hetero-struktur</td>
<td>Hetero-structure Devices</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Metodologi Penelitian</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606207</td>
<td>Sel Surya</td>
<td>Solar Cell</td>
<td>3</td>
</tr>
<tr>
<td>ENEE606208</td>
<td>MEMS</td>
<td>MEMS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Semester 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Manaj. & Keekonomian Proyek Teknik</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEF803007</td>
<td>Sistem Optik Koheren</td>
<td>Optical Coherent System</td>
<td>2</td>
</tr>
<tr>
<td>ENEF803008</td>
<td>Sistem Pengukuran dengan Metode Optik</td>
<td>Optical Method for Measurement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Semester 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Publikasi Ilmiah</td>
<td>Publication Scientific</td>
<td>2</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Tesis</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

FAST TRACK CURRICULUM ELECTRICAL POWER ENGINEERING STREAM

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Rekayasa dan Kewirausahaan</td>
<td>Engineering Enterpreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Penulisan Ilmiah</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Matematika Terapan</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEP801001</td>
<td>Operasi & Kendali Pembangkitan TL</td>
<td>Power Generation Ops & Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEP801002</td>
<td>Mutu dan Kualitas Daya Sistem TL</td>
<td>Electrical Power System Quality</td>
<td>3</td>
</tr>
<tr>
<td>ENEP801003</td>
<td>Energi dan Lingkungan</td>
<td>Energy and Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607104</td>
<td>Sistem Tenaga Listrik dan Praktikum</td>
<td>Electrical Power System and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Mata Ajaran</td>
<td>Course</td>
<td>Credit</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>ENEE607030</td>
<td>Seminar</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607031</td>
<td>Rekayasa dan Kewirausahaan</td>
<td>Engineering Entrepreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE607032</td>
<td>Penulisan Ilmiah</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Matematika Terapan</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEC801001</td>
<td>Kendali Analog dan Dijital</td>
<td>Analog and Digital Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEC801002</td>
<td>Topik Khusus Riset Terkini</td>
<td>Special Topic on Advance Research</td>
<td>3</td>
</tr>
<tr>
<td>ENEC801003</td>
<td>Pemodelan dan Rekayasa Sistem</td>
<td>Modeling and System Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607404</td>
<td>Robotika</td>
<td>Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE607405</td>
<td>Sistem Kendali Prediktif & Adaptif</td>
<td>Adaptive & Predictive Control System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subtotal</td>
<td>24</td>
</tr>
</tbody>
</table>

FAST TRACK CURRICULUM CONTROL ENGINEERING STREAM

<table>
<thead>
<tr>
<th>CODE</th>
<th>MATA AJARAN</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE608033</td>
<td>Skripsi</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Metodologi Penelitian</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEC802004</td>
<td>Sistem Kendali Multivariabel</td>
<td>Multivariable Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEC802005</td>
<td>Robotika Cerdas</td>
<td>Intelligent Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEC802006</td>
<td>Kendali Adaptif dan Optimal</td>
<td>Adaptive and Optimal Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE608407</td>
<td>Mekatronika</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>CODE</td>
<td>Course</td>
<td>CREDIT</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>ENEE611001</td>
<td>Fundamental of Digital Systems and Laboratory</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENEE611002</td>
<td>Academic Writing</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ENGE610003</td>
<td>Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGE610007</td>
<td>Physics (Electric, Magnet, Wave & Optic)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGE610008</td>
<td>Physics (Electric, Magnet, Wave & Optic) Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENEE611003</td>
<td>Introduction to Electrical Engineering</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ENEE611004</td>
<td>Electrical Materials</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ENEE612005</td>
<td>Basic Computer and Laboratory</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENEE612006</td>
<td>Semiconductor Devices</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ENGE610004</td>
<td>Linear Algebra</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGE610005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGE610006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENEE612007</td>
<td>Engineering Mathematics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENEE612008</td>
<td>Electric Circuit 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ENEE613009</td>
<td>Electric Circuit 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENEE613010</td>
<td>Algorithm & Programming</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENEE613011</td>
<td>Vector and Complex Variable Analysis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ENEE613012</td>
<td>Electric Circuit Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENEE613013</td>
<td>Electrical Power Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENEE613014</td>
<td>Electrical Power Engineering Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENEE613015</td>
<td>Telecommunication Engineering</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CURRICULUM OF INTERNATIONAL PROGRAM ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>Course</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE608408</td>
<td>Sistem Berbasis Pengetahuan</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>22</td>
</tr>
<tr>
<td>ENEC803007</td>
<td>Kendali dan Sistem Cerdas</td>
<td>3</td>
</tr>
<tr>
<td>ENEC803008</td>
<td>Kendali Lanjut Sistem Penggerak Elektrik</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Manaj. & Keekonomian Proyek Teknik</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Publikasi Ilmiah</td>
<td>2</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Tesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td>Course Code</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENEE613016</td>
<td>Telecommunication Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE613017</td>
<td>Probability and Stochastic Process</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>4th Semester</td>
<td>21</td>
</tr>
<tr>
<td>ENEE614018</td>
<td>Control Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE614019</td>
<td>Control Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE614020</td>
<td>Electronics Circuits</td>
<td>3</td>
</tr>
<tr>
<td>ENEE614021</td>
<td>Electronics Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE614022</td>
<td>Electromagnetics</td>
<td>4</td>
</tr>
<tr>
<td>ENEE614023</td>
<td>Electrical Measurements</td>
<td>2</td>
</tr>
<tr>
<td>ENEE614024</td>
<td>Electrical Measurements Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENEE614025</td>
<td>Numerical Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE614026</td>
<td>Signal & Systems</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>5th Semester</td>
<td>20</td>
</tr>
<tr>
<td>ENEE615027</td>
<td>Microprocessor & Microcontroller</td>
<td>4</td>
</tr>
<tr>
<td>ENEE615028</td>
<td>Microprocessor and Microcontroller Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>UIGE610004</td>
<td>Integrated Characteristic Building Subject B</td>
<td>6</td>
</tr>
<tr>
<td>ENEE615029</td>
<td>Digital Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE615030</td>
<td>Communication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENEE615031</td>
<td>Power Electronics and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>6th Semester</td>
<td>20</td>
</tr>
<tr>
<td>ENEE616032</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE616033</td>
<td>Modelling and Simulation</td>
<td>2</td>
</tr>
<tr>
<td>UIGE610005-9</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Characteristic Building Subject A</td>
<td>6</td>
</tr>
<tr>
<td>ENEE616034</td>
<td>Introduction of Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE616035</td>
<td>Communication System Devices</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>7th Semester</td>
<td>18</td>
</tr>
<tr>
<td>UIGE610003</td>
<td>Sports/Arts</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 6 1 0012</td>
<td>Health, Safety & Environment Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENEE617036</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENEE617037</td>
<td>Engineering Enterpreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENEE617038</td>
<td>Electric Power System and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE617039</td>
<td>Process Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE617040</td>
<td>Photonic Devices</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>8th Semester</td>
<td>18</td>
</tr>
<tr>
<td>ENEE618041</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>8th Semester</td>
<td>10</td>
</tr>
</tbody>
</table>
ELECTIVES

<table>
<thead>
<tr>
<th>CODE</th>
<th>Electives</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE617101</td>
<td>Object Oriented Programming and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENEE618102</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Resume

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>15</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>103</td>
</tr>
<tr>
<td>Sum</td>
<td>136</td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
THE SYLLABUS
UNIVERSITY COURSES

UIGE600001 (6 Credits)
MPKT A
Learning Outcomes:
Capable of critical thinking, creative, innovative; have the intellectual curiosity to solve problems at the individual and group level.
Able to provide problem-solving alternative against various problems arising in the environment, society, nation, and country.
Topics:
The power and primacy of the character, the basics of philosophy, logic, foundations of ethics, whether it’s human, individual and group, society and culture
Prerequisites: none
Textbook:

UIGE600002 (6 Credits)
MPKT B
Learning Outcomes:
Capable of critical thinking, creative, innovative; have the intellectual curiosity to solve problems at the individual and group level.
Able to provide problem-solving alternative against various problems arising in the environment, society, nation, and country.
Topics:
The power and primacy of the character, the basics of philosophy, logic, foundations of ethics, whether it’s human, individual and group, society and culture
Prerequisites: none
Textbook:-

UIGE600003 (3 Credits)
ENGLISH
Learning Outcomes:
Able to use spoken and written English well for both academic and non-academics activities.
Topics:
Study skills: active learner, vocabulary building, word formation and using the dictionary, listening strategies, extensive reading
Grammar: Basic grammar of sentences, clause. Reading: reading skills: skimming, scanning, main ideas, supporting ideas; Note taking reading popular science article, reading an academic text
Listening: short conversation, lecture and note-taking, news broadcast, short story
Speaking: discussion, giving presentation
Writing: summary of short articles, self-describing graphs and tables, academic paragraphs, essays
Prerequisites: none
Textbook:
UIGE600020 - UIGE600048
SPORTS/ARTS
See the academic guidebook of Faculty of Engineering

UIGE600010 - UIGE600015
RELIGION
See the academic guidebook of Faculty of Engineering

FACULTY COURSES

ENGGE600003
CALCULUS (4 CREDITS)
Learning Outcomes:
Able to apply advanced mathematical concepts for electrical engineering; Able to apply mathematical concepts of functions and limits, derivative (single/multivariable) and its applications, integrals (single/multifold) and its applications, Taylor series, and Maclaurin series
Topics:
Functions and limits, Derivative (single/multivariable) and applications, integrals (single/multifold) and its applications, Taylor and Maclaurin series
Prerequisites: none
Textbook: none

ENGE600004
LINEAR ALGEBRA (4 CREDITS)
Learning Outcomes:
Able to apply the concept of Linear equations systems, Determinants, vector spaces, the space Results In Time, value and Eigen Vectors, as well as a Linear transformation
Topics:
The concept of Linear equations System, Determinants, vector spaces, the space Results in Time, value and Eigen Vectors, Linear transformation
Prerequisites: none
Textbook: none

ENGE600005
PHYSICS (MECHANICS AND THERMAL) (3 CREDITS)
Learning Outcomes:
Able to apply the concepts of basic physics, mechanics and thermodynamics in understanding nature and engineering phenomena including its applications.
Topics:
Mechanics of motion, gravity, the potential energy of the particle dynamical, works and energy, momentum, rotational motion, collision, kinematics and dynamic, angular momentum Physics Heat-Sound, temperature, heat, laws of thermodynamics I and II, kinetic gas theory I and II, Modern Physics-Quantum
Prerequisites: none
Textbook:

ENGE600006
PHYSICS (MECHANICS AND THERMAL) LABORATORY (1 CREDIT)
See the academic guidebook of Faculty of Engineering

ENGE600007
PHYSICS (ELECTRICITY, MWO) (3 CREDITS)
Learning Outcomes:
Able to apply the concepts of basic physics, electricity, magnetism, optics, and waves in understanding nature and engineering phenomena including its applications.
Topics:
A static electric charge, Coulomb, electric field, Gauss law, electric potential, Capacitor and dielectric. Dynamic power, current, and prisoners, Ohm’s law, electrical, electrochemical potential difference, the electric circuit. Field magnetism, magnetic motive force and flow, the effects of Hall, law ampere, the intensity of the magnetic field B, Biot-Savart’s law, the law of Faraday, inductance, electromagnetics, oscillations, Maxwell’s equations.
Prerequisites: none
Textbook:

ENGE600008
PHYSICS (ELECTRICITY, MWO) LAB
See the academic guidebook of Faculty of Engineering
ENGE600012
HEALTH SAFETY ENVIRONMENT PROTECTION
See the academic guidebook of Faculty of Engineering

ELECTRICAL ENGINEERING COURSES

ENEE611003
ENEE601001
INTRODUCTION TO ELECTRICAL ENGINEERING (2 CREDITS)
Learning Outcomes:
Able to explain the basic concepts of electrical engineering and its application in everyday life.
Topics:
Basic concepts and its applications of: Electronics Engineering, telecommunications engineering,
Control Engineering, electric engineering and energy, and biomedical engineering.
Prerequisites: none
Textbook:
Diktat Pengantar Teknik Elektro UI

ENEE612008
ENEE602002
ELECTRIC CIRCUITS 1 (3 CREDITS)
Learning Outcomes:
Able to calculate the electric charge, current, and voltage in a series basis; Able to explain
voltage source, current source (free/bound), resistors, and capacitors; Being able to compute
the independent circuit using the superposition theorem, the transformation of the source, and
Thevenin-Norton; Able to calculate the electric circuit analysis using the variables node (current
series), mesh, super-node (circuit voltage), super-mesh; Being able to analyze the response time
a series order and order-1-2;
Topics:
Concept: current, voltage, power, and energy; Voltage source, current source (free/bound), resis-
tors, and capacitors; Resistive circuit of series and parallel; Analysis of node, super-node, mesh,
super-mesh; Superposition theorem, the transformation of the source, and Thevenin-Norton;
Response time order series 1 and 2
Equipment:
Prerequisite: Calculus, Physics (electricity, mwo).
Textbook:
Inc., 2000. (Chapter 1-10)

ENEE613009
ENEE603003
ELECTRIC CIRCUITS 2 (3 CREDITS)
Learning Outcomes:
Being able to make a simple electric circuit design; Able to analyze a 3-phase circuit; Able to
analyze electric circuit of frequency response order-1 and order-2; Able to analyze basic circuits
shared ideal transformer and inductance; Able to make design of passive and active filter circuits
by utilizing basic circuits; Able to analyze a 4 poles circuit.
Topics:
3 phase circuits; Laplace transform; frequency response; shared inductance circuits; 1 order filter
circuits passive and active; 4 poles circuits.
Prerequisite: Electric Circuits 1, Vector Analysis and Complex Variables.
Textbook:

ENEE613012 ENEE603004 ELECTRIC CIRCUIT LABORATORY (1 CREDITS)
Learning Outcomes:
- Able to calculate the electric charge, current, and voltage in a series basis;
- Able to explain voltage source, current source (free/bound), resistors, and capacitors;
- Being able to compute the independent circuit using the superposition theorem, the transformation of the source, and Thévenin-Norton;
- Able to analyze circuit ammeter, voltmeter, ohmmeter, and wheat-stone bridge;
- Able to calculate the electric circuit analysis using the variables node, super-node, mesh, super-mesh;
Topics:
- Basic electricity; linearity analysis-mesh and knot; analysis of superposition; Thévenin and Norton;
- poles series circuits; alternating current circuits; three phases circuits;
Prerequisite: Electric Circuits 1
Textbook: Modul Praktikum Rangkaian Listrik - Laboratorium Tegangan Tinggi dan Pengukuran Listrik.

ENEE613011 ENEE603005 VECTOR ANALYSIS COMPLEX VARIABLE (2 CREDITS)
Learning Outcomes:
- Able to apply advanced mathematical concepts to the field of electrical engineering that includes the complex variable, Cauchy-Riemann equation, Integral Cauchy; Able to apply basic vector differential, integral vector (line, surface and volume), Green’s theorem, the Divergence theorem, Gauss and Stokes’; Able to apply the concept of Vector calculus, Complex numbers and functions
Topics:
- Complex variables, complex numbers and functions, polar form, powers and roots, de Moivre’s theorem, dot and cross products, limit, The derivatives, the analytic function, The Cauchy-Riemann equations, Laplace equation, exponential, trigonometric and hyperbolic functions, logarithm and general power, Complex integration, line integrals in complex plane, The Cauchy integral theorem and formula, derivatives of analytic functions, Laurent series, singularities, zeros and infinity, residue integration method and residue, integration of real integrals. With a conformal mapping, Complex analysis and potential theory, Vector differential calculus, vector in 2-space and 3-space. The inner (dot) Product and vector (cross) product, Vector and scalar functions and fields, Derivatives, the gradient of scalar fields, Directional derivatives, The divergence and the curl of the vector field, Line integral, the path independence of line integrals. Double integrals, Green’s theorem in the plane, the Surfaces for surface integrals, Triple integrals. Divergence theorem of Gauss, Stokes’s theorem.
Prerequisite: Calculus, Linear Algebra
Textbook:

ENEE613017 ENEE603006 PROBABILITY AND STOCHASTIC PROCESSES (3 CREDITS)
Learning Outcomes:
- Able to apply the concepts of probability and stochastic processes in the field of electrical engineering.
Topics:
- The distribution function of a random variable, probability, discrete probability distributions, and continuous, normal, Poison, gamma, Chi-squared, Beta logarithm Weibull, the transformation of the probability distribution, the sampling distribution of one and two sample Estimation, hypothesis tests one and two sample, linear regression and stochastic models, its correlation, Autoregressive Moving Average Model, Autoregressive Moving Average models, Markov chains.
Prerequisite: Calculus, Linear Algebra
Textbook:
ENEE603009
ENEE611001
Fund. of Digital System & Laboratory (3 CREDITS)
Learning Outcomes: In this course, students will learn all design phases and implementations of a
digital system. At the end of the course, students will be able to analyze simple digital circuits,
and able to design digital systems using combinational and simple sequential building blocks. This
lecture also involves several practical work in the laboratory to design, implement and verify digital
logic systems using digital circuit simulation software.
Topics: Boolean Algebra Principles and applications; Interface Logic Families; Number System &
Data Encoding; Basic Logic Circuits; Basic Modular Design of Combinational Circuits; Basic Modular
Design of Sequential Circuits.
Practical work: Module 1-Introduction and introduction to Digital Circuit Basics, Module 2 - Boolean
Algebra and Elementary logic gates, Module 3 - Karnaugh Map, Module 4 - complex logic gate, Module
5 - Decoder and Encoder, Module 6 - Multiplexer and De-multiplexer, Module 7- Digital Arithmetic
Circuit, Module 8 - Flip-Flop and Latch, Module 9-Registers and Counters, Module 10 - Group Project
Prerequisite: none.
Textbook:
2. Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss, Digital Systems: Principles and Applica-
tions, 11th ed., Prentice Hall, 2010

ENEE612007
ENEE603007
ENGINEERING MATHEMATICS (4 CREDITS)
Learning Outcomes:
Able to apply differential equations and several transformation functions for solving problems in
the field of electrical engineering.
Topics:
Ordinary Differential Equations (and Constant Coefficient is not constant), Partial Differential Equa-
tions, Difference Equations, Laplace transform, Fourier series, Fourier transform, Z Transformation
Prerequisites : Calculus, Linear Algebra
Textbook:
lishers, 1999.

ENEE612006
ENEE603008
SEMICONDUCTOR DEVICES (2 CREDITS)
Learning Outcomes:
Students are able to explain basic concept of semiconductor material for electronics application,
basic operation of metal-semiconductor junction, p-n junction, bipolar transition, Metal-Oxide-
Semiconductor Field-Effect Transistor, current state of electronic devices
Topics:
Semiconductor Fundamentals: Semiconductor: A general Introduction, Carrier Modeling, Carrier prop-
erties, distributions, concentrations and carrier action, Drift, Diffusion, Recombination-Generation,
pn junction Diodes: Preliminaries, Quantitative Electrostatic Relationship, pn Junction Diode: I-V
characteristics, Ideal Diode Equation, Derivations from the Ideal pn Junction Diode: Small-Signal
Admittance, Reserve Bias Junction Capacitance, Forward-Bias Diffusion Admittance, pn Junction
Diode: Transient Response, Optoelectronic Diodes, Bipolar Junction Transistor Fundamentals, BJT
Static Characteristic, BJT Dynamic Response Modeling, Junction Capacitance, Transient Response,
Metal-Semiconductor Contacts and Schottky Diodes, Ideal MS Contact, Schottky Diode, MOS Fundamentals, Ideal Structure, Electrostatics MOSFET-The Essentials, Qualitative Theory of Operation, Quantitative ID-VD Relationship, ac response Metal-Semiconductor Workfunction Difference, Oxide Charges.
Prerequisites: No
Textbook:

ENEE612005
ENEE604010
BASIC COMPUTER AND LABORATORY (3 CREDITS)
Learning Outcomes:
Able to explain types and function of computer hardware; Able to make the draft algorithms to solve the problem of computation and manipulation of data; Able to make the draft algorithms: Pseudocode, Flowcharts, Looping, selection/Branching; Able to implement the algorithm into a high level programming language and low level; Able to implement the Matlab Script; Able to implement the structure and control in the language of C; Able to implement modular programming in C language.
Topics:
The history of the computer, computer hardware Components, operating systems, computer networks; Pseudocode; Flowchart; Looping; Selection/Branching; Matlab Script; Structure and control in the C language.
Prerequisite: Basic System digital and Practical.
Textbook:

ENEE614020
ENEE604011
ELECTRONIC CIRCUITS (3 CREDITS)
Learning Outcomes:
Able to apply the basic concepts of electronics; Able to analyze basic electronics circuits; Able to compose electronic circuits by using electronic devices
Topics:
Series diode transistor circuits, the circuit configuration of power supply transistors, transistor applications; Frequency Response, a series of amplifiers
Prerequisite: Semiconductor device, Power Series 1, Series 2 Electric
Textbook:

ENEE614021
ENEE604012
ELECTRONIC CIRCUITS LABORATORY (1 CREDIT)
Learning Outcomes:
Able to apply the basic concepts of electronics; Being able to practice the workings of a diode, transistor, circuit configuration, frequency response, amplifiers; Able to use electronic measuring instrument
Topics:
Series diode transistor circuits, the circuit configuration of power supply transistors, transistor applications; response frequency, the circuit amplifier.
Prerequisites: Electronic Circuit.

Textbook: Electronic Circuit Teaching Modules - Electronic Laboratory.

ENEE614022
ENEE604013
ELECTROMAGNETICS (4 CREDITS)
Learning Outcomes:
Able to apply physical concept for electrical engineering; Able to apply Maxwell’s equations on solving the problem of time variation in the form of an integral and differential, energy storage, and quasi static field and analysis of wave in time domain.
Topics:
Electrostatic, Magneto-static, Electromagnetic dynamic, Plane Waves, Maxwell’s Laws, Electromagnetic Interference, transmission line
Prerequisite: Complex Variables and Vector analysis
Textbook:

ENEE614026
ENEE604014
SIGNAL AND SYSTEMS (3 CREDITS)
Learning Outcomes:
Able to apply physical concept for electrical engineering; Able to apply the concept of linear systems for signal processing and digital filter design
Topics:
Other types of signals and linear systems, the characteristics of the system time fixed (LTI), review of the Fourier transform, the discrete time Fourier transform, digital Fourier transform, Laplace, sampling and reconstruction of discrete time signals, the transformation of analog filter design, Z.
Prerequisite: Engineering Mathematics
Textbook:

ENEE611004
ENEE604015
ELECTRICAL MATERIAL (2 CREDITS)
Learning Outcomes:
Able to explain the classification of electric materials; Being able to analyze the problems of electrical material;
Topics:
Description of the electrical material, bonds of the molecule, the arrangement of atoms in the solid, dielectric polarization, electric material classification
Prerequisites:-
Textbook:

ENEE614025
ENEE605016
NUMERICAL COMPUTATION (3 CREDITS)
Learning Outcomes:
Able to apply numerical methods in the form design computing algorithms and data manipulation;
Topics:
The design of algorithms for numerical Methods: a search for roots, numerical methods for the resolution of systems of linear equations, numerical methods a search of curve fitting, numerical methods for differential and integral, numerical methods for ordinary differential equations; The Concept Of Interpolation
Prerequisite: Engineering Mathematics, Basic Computer

Textbook:

ENEE613015
ENEE605017
TELECOMMUNICATION ENGINEERING (3 CREDITS)
Learning Outcomes:
Able to apply the basic concept of telecommunications engineering; Able to apply the concept of global communication systems; Capable of analyzing analog and digital modulation; Able to explain telephony system; Able to calculate the PCM and TDM, Digital Line Coding; Able to analyze telecommunications network: a basic Phone, the technique of grafting, signaling techniques, the concept of Queuing, a communications network radio, microwave, and fiber optics
Topics:
Global communication systems; analog and digital modulation; telephony system; PCM and TDM; Digital Line Coding; telecommunications network: a basic phone, connection, signaling, and the concept of the queue; communications network radio, microwave, and fiber optics
Prerequisites: Probability and stochastic processes, mathematical techniques, and Electromagnetics
Textbook:

ENEE605018
ELECTRIC POWER ENGINEERING (3 CREDITS)
Learning Outcomes:
Able to explain the concept of electric that includes generation, transmission and distribution; Being able to compute the parameters of electric machines.

Topics:
The basic Mechanical and electromagnetic, circuit of Three phase transformer, the basics of Machine Flow back and forth, Synchronous Machine, Parallel Operation of Synchronous Generators, Induction Motors, direct current Motors, transmission line, equation and Representation system, introduction of a power Flow Study, disturbance of symmetric and Asymmetric
Prerequisite: Electrical Circuits.
Textbook:

ENEE605019
ELECTRICAL POWER ENGINEERING LABORATORY (1 CREDITS)
Learning Outcomes:
Capable of testing characteristics of electric machines; Being able to classify the electrical machines
Topics:
Direct Current Machines, Transformers, Synchronous Machines, Induction Machines
Prerequisite: Electrical Circuits.
Textbook:
Electric Power Engineering Teaching Modules-Power Energy Conversion Laboratory
ENEE614018
ENEE605020
CONTROL ENGINEERING (3 CREDITS)
Learning Outcomes:
Able to apply the basic concept of control; Able to apply the concept of block diagrams, Time Response, system stability and steady-state error, root locus, frequency response; Capable of designing controllers with the bode diagram, and is able to analyze the state-space, capable of governing designing state-space.
Topics:
Block diagrams; Time Response; The stability of the system; Steady-state error; Root locus; Frequency response; Design controllers with root locus; Design of controller with bode diagram; The state-space model analysis; Governing state-space design; Design Observer
Prerequisite: Engineering Mathematics
Textbook:

ENEE614019
ENEE605021
CONTROL ENGINEERING LABORATORY (1 CREDITS)
Learning Outcomes:
Able to use the device data acquisition; Able to apply the response time, system stability and steady error, root locus design, frequency response, controllers with root locus, Bode’s diagram with controller design, the introduction of PLC, state-space.
Topics:
Response time, system stability and steady error, root locus design, frequency response, controllers with root locus, Bode’s diagram with controller design, the introduction of PLC, state-space
Prerequisite: Engineering Control
Textbook:
Laboratory Workbook – Control Systems Laboratory.

ENEE613010
ENEE605022
ALGORITHM AND PROGRAMMING (4 CREDITS)
Learning Outcomes:
Able to make the draft algorithms to solve the problem of computation and manipulation of data; Able to apply the concepts: Modular; Iteration and Recursion; Sorting; Searching; Array; Pointers; Linked List
Topics:
Modular; Iteration and Recursion; Sorting; Searching; Array; Pointers; Linked List; Static and dynamic data structures in C language
Prerequisites : Basic of computer
Textbook:
3. Deitel & Deitel, “How to Program”

ENEE616033
ENEE606024
MODELLING AND SIMULATION (3 CREDITS)
Learning Outcomes:
Able to establish mathematical model system, capable of performing the analysis of mathematical models of the system, able to build simulations based on mathematical models, Capable of analyzing simulation system.
Topics:
Basic modelling and simulation, methods of modeling of physical systems, analysis of the model of non-linear dynamical systems, dynamical models of simulation with Matlab/Simulink, Data modeling, system identification, data exploration methods, methods of optimization of the
least squares model, validation, data modeling with Matlab/Simulink.
Prerequisite: Numerical Computation
Textbook:

ENEE613016
ENEE606025
TELECOMMUNICATIONS ENGINEERING LABORATORY (1 CREDIT)
Learning Outcomes:
Able to put into practice the basic concept of telecommunications engineering; Being able to practice the communication system globally; analog and digital modulation; telephony system; PCM and TDM; Digital Line Coding; telecommunication network: telecommunications network: a basic Phone, the technique of grafting, signaling techniques, the concept of Queuing, a communications network radio, microwave, and fiber optic; Able to use the measure of telecommunications.
Topics:
Global communication systems; analog and digital modulation; Telephony system; PCM and TDM; Digital Line Coding; FIR Filters; the parameters of the antenna and wireless communication and channel simulation using software radio mobile; optical communication systems.
Prerequisite: Telecommunications Engineering
Textbook:
Laboratory Workbook - Telecommunication Engineering Laboratory.

ENEE615027
ENEE606026
MICROPROCESSOR AND MICROCONTROLLER (4 CREDITS)
Learning Outcomes:
Able to implement the algorithm into a high level programming language and low level; Able to implement Microprocessors and programming addressing mode in Assembly language for Microprocessors.
Topics:
Microprocessor’s Addressing Modes; Programming Assembly language for Microprocessors
Prerequisite: Basic Computer
Textbook:

ENEE615028
ENEE606027
MICROPROCESSOR AND MICROCONTROLLER LABORATORY (1 CREDITS)
Learning Outcomes:
Able to implement the algorithm into a high level programming language and low level; Capable of practicing Microprocessors and programming addressing mode in Assembly language for Microprocessor.
Topics:
Microprocessor’s Addressing Modes; Programming Assembly language for Microprocessors.
Prerequisite: Microprocessor and Microcontroller
Textbook:
1. Practical module Microprocessor and Microcontroller Digital Laboratory, Department of electrical engineering.

ENEE614023
ENEE606028
ELECTRIC MEASUREMENTS (2 CREDITS)
Learning Outcomes:
Able to explain the philosophy of electric quantity measurement; Able to calculate the threshold quantity of electricity that is safe; able to analyze a series of measurements
Topics:
Introduction of measuring instruments, the fault/error in measurement, the security and safety in Electrical Measurements, Measuring Electrical Quantities in General, measurement of Grounding Prisoners (Grounding Resistance), an Oscilloscope, a Digital gauge
Prerequisite: Electronics Circuits.
Textbook:

ENEE614024
ENEE606029
ELECTRIC MEASUREMENTS LABORATORY (1 CREDITS)
Learning Outcomes:
Capable of measuring electrical quantities; Able to choose the measuring instrument to suit the needs of measurement topics:
Topics:
Gauge 1 phase, 3 phase measurement tool, the tool to measure the energy and power, grounding measuring instrument
Prerequisites:
Measurement of Electrical Quantities
Textbook:
Electric Quantity Measurement lab course modules-high-voltage Laboratory and measurement of electricity.

ENEE617037
ENEE607031
ENGINEERING ENTREPRENEURSHIP (2 CREDITS)
Learning Outcomes:
Able to implement the concepts and skills of entrepreneurship in the field of electrical engineering; Able to perform analysis and make the business plan expertise in innovation/product which corresponds to the development of information technology; Able to implement the concepts and skills of entrepreneurship in the field of electrical engineering
Topics:
Charging for Expertise, Think, Plan, Act Like an Entrepreneur, Making a Business Successful, Taking the Initiative, Enabling an E-Business, Providing Outsourced Services & Building a Contracting Business, guest lectures
Prerequisites : None
Textbook:
2. The material of the lectures given by practitioners of the entrepreneurial
ACADEMIC WRITING (3 CREDITS)
Learning Outcomes:
Able to write scientific papers with good structure
Being able to write down the steps with a detailed and structured research; capable of processing data with research tools statistics
Topics:
Systematics of academic writing; experimental variables and set up; statistical analysis tools, the use of the language of Indonesia is good in scientific works; English usage in scientific papers, word processing software; styling; referencing tools
Prerequisites: none

MAJORING TELECOMMUNICATIONS ENGINEERING

ENEE606301 CODING TECHNIQUE AND APPLICATIONS (3 CREDITS)
Learning Outcomes:
Capable of outlining the types of encoding; Being able to analyze the techniques used in data compression coding and reliable communications.
Topics:
Information measures, source and channel models, various source coding schemes including Huffman coding, run-length coding, linear predictive coding, transform coding, and various channel coding schemes including cyclic codes, BCH codes and convolutional codes. Trellis Coded Modulation. Application for Speech Coding, Image and Video Coding.
Prerequisite: Probability and stochastic processes
Textbook:

ENEE615030 ENEE606302 COMMUNICATION NETWORKS (3 CREDITS)
Learning Outcomes:
Able to explain mathematical concepts with regard to the concept of communication networks; Able to explain the concept of circuit switching and packet switching as well as concepts related to communication traffic; Able to explain the concept of queuing and queue theories for communication network; Able to explain concepts and mechanisms of QoS on the network communication
Topics:
Mathematics for the network, the concept of a communication network (layering); Circuit Switched and Packet Switched, the concept of communication traffic (Erlang B, Erlang C, Engset, Bernoulli, etc.); Various theories of the queue (M/M/1, M/M/c, M/G/1, M/G/c, etc.); Markov chain concept for communication networks, QoS assurance mechanism concept and the communication network.
Prerequisite: Telecommunications Engineering.
Textbook:

ENEE606303 BROADBAND MULTIMEDIA COMMUNICATIONS (3 CREDITS)
Learning Outcomes:
Being able to analyze the concept of broadband multimedia.
UNDERGRADUATE PROGRAM

Topics:
The concept of multimedia technologies, TCP/IP, network protocols, ATM, Frame Relay, MPLS, broadband wireless access technologies, metro Ethernet, NGN and IMS, QoS, Resource management, QoS, the mechanisms work and how to guarantee it, a multimedia network model, the component performance throughput capacity.
Prerequisite: Telecommunications Engineering.
Textbook:

ENEE607304
ANTENNAS AND PROPAGATION (3 CREDITS)
Learning Outcomes:
Able to describe wave propagation and transmission system and its implications on the performance of communication systems; Able to explain various mechanisms of propagation of electromagnetic waves; Able to explain the working principle of antenna and antenna performance parameters; Being able to describe the various types of antenna as a means for transmitting signals; Able to calculate the performance of the simple antenna systems which good in theory or application; Able to calculate the performance of a single element antenna such as a dipole, yagi, antenna loop, funnels, slot antenna and micro-strip antenna; Able to design a simple antenna and measure it; Being able to analyze the types of wave propagation and select the correct antenna for wireless communication system.
Topics:
Working principles of the basic parameters of antenna, the antenna measurement techniques, several types of antennas: dipole antenna, monopole, antenna stacking, aperture antenna and antenna with reflector. Radio wave propagation (ground surface wave, wave, wave, space sky wave, and microwave and millimeter wave);
Prerequisite: Electromagnetics
Textbook:
3. IEEE journal transaction Antenna and Propagation

ENEE607305
OPTICAL COMMUNICATIONS (3 CREDITS)
Learning Outcomes:
Able to explain wired transmission media/fiber optic as well as their principles; Able to explain the components of the optical communication system; Able to analyze optical communication systems
Topics:
Structure and optical fiber waveguide, signal degradation in on optical fiber, optical sources, optical components, optical coherent fiber communication; the techniques of modern systems; The techniques and coding theory; Performance analysis of optical communication systems
Prerequisite: Electromagnetics and Telecommunications Engineering.
Textbook:

ENEE608308
MOBILE AND WIRELESS COMMUNICATIONS (3 CREDITS)
Learning Outcomes:
Able to explain the different types of wireless communication, concept of cellular, wireless communication components; Able to explain concepts, techniques and components of wireless mobile communication; Able to analyze performance of wireless mobile communications system.
Topics:
Overview of wireless communications, cellular concept/fundamentals, large scale fading/path loss,
small scale fading, modulation techniques, equalization, diversity, channel coding/error control coding overview, multiple access, emerging wireless technologies: WLAN, 3G and WCDMA, 4G and LTE, mobile ad hoc networks, body area networks and mobile health, future wireless system.

Prerequisite: Telecommunications Engineering
Textbook:

ENEE616035
ENEE608307
COMMUNICATION SYSTEM DEVICES (3 CREDITS)
Learning Outcomes:
Being able to analyze subsystem of communication systems such as: varieties of transmission line; impedance matching; S-parameter; resonator; other microwave passive devices; microwave active components (diode and transistors). Designing a simple radio communication subsystems devices based on passive and active components.
Topics:
Microwave transmission lines (Waveguide, Coaxial, Stripline, Microstrip, CPW); Microwave Network Analysis (S-parameter, Signal flow graph); Impedance Matching; Passive devices (Power divider, combiner, directional coupler, hybrid, junction); Resonator; Microwave diode and transistor; Simple Amplifier and Oscillator.
Prerequisites: Electromagnetics; Electronics Circuit; Telecommunication Engineering
Textbook:

ENEE607306
SPECIAL COURSE OF TELECOMMUNICATIONS 1 (3 CREDITS)
Learning Outcomes:
Able to follow the development of the telecommunications industry and apply it; Able to follow the development of the latest telecommunications technology aspects;
Topics:
Current issues about aspects of telecommunication technology
Prerequisites: none
Textbook: no

ENEE608309
SPECIAL COURSE OF TELECOMMUNICATIONS 2 (3 CREDITS)
Learning Outcomes:
Able to follow the development of the telecommunications industry and apply it; Able to follow the latest developments in business and telecommunications regulation.
Topics:
Current issues of business and regulation of telecommunications.
Prerequisites: none
Textbook: no

MAJORING
ELECTRICAL POWER ENGINEERING

ENEE606102
POWER ELECTRONICS AND LABORATORY (3 CREDITS)
Learning Outcomes:
Able to design simple application field of electric power; Able to explain the philosophy of power

257
electronics equipment; Capable of calculating parameters on power electronics circuits; Able to design simple circuits using power electronics equipment

Topics:
Introduction to power electronics, electronic components, power converter AC-AC converter, AC-DC, DC-DC converter, DC-AC converter, power electronics applications
Prerequisite: Electric Power Engineering, Electronic Circuit

Textbook:
2. Power Electronics lab course Modules-Electrical energy conversion Laboratory

ENEE606103
MANAGEMENT AND ENGINEERING ECONOMY (3 CREDITS)

Learning Outcomes:
Being able to classify the energy field; Able to explain the basics of business and management; Able to calculate the economics in electric field; Able to analyse the comparison of alternative technologies; Able to analyze alternative replacement; Being able to analyze the latest technology in the field of energy conversion; Able to calculate the economics source of energy; Being able to analyze the potential source of energy.

Topics:
The basic concept of management, organization type, organization resources, economic concepts, and the correlation value is money and time, comparative studies, analysis of replacement, the basics of energy management, energy costs, and calculation of potential energy
Prerequisite: none

Textbook:

ENEE617038
ENEE607104
ELECTRICAL POWER SYSTEM AND LABORATORY (3 CREDITS)

Learning Outcomes:
Being able to analyze the magnetic and electric field high on power system; Able to explain the philosophy of power system; Able to calculate the parameters of power network; Capable of analyzing system of electric power network; Being able to find a solution to the problem of the quality of electric power; Being able to analyze the source of disturbance in the generation, transmission, and distribution of electricity; Capable of minimizing the effects of disturbance on electric power systems.

Topics:
The phenomenon of electric field and magnetic field on the electric power system, the effects of magnetic field and electric field on electric power systems, mitigation of effects of magnetic field and electric field.
Sources of disturbance on electric power systems, the effects of disturbance on mitigation of the effects of power system disturbances in electric power systems
Prerequisite: Engineering Mathematics, Electrical Power Engineering

ENEE606101
ELECTRICAL ENERGY CONVERSION (3 CREDITS)

Learning Outcomes:
Being able to classify the energy field; Being able to decipher the various types of energy as electric generators; Able to calculate the range of potential energy as electricity generation; Being able to analyze the process of converting electric energy; Able to apply the principles of electrical energy conversion; Being able to analyze the latest technology in the field of energy conversion.

Topics:
Basic conversion of energy, sources of energy, new energy Conversion Technology, and renewable
power plants, Thermal power plants, non-thermal power plant.
Prerequisite: Electric Power Engineering.
Textbook:

ENEE607106
BUILDING ELECTRIC INSTALLATION (2 CREDITS)
Learning Outcomes:
Able to make the planning of the electrical installation of the building; Able to calculate the magnitudes of the electrical installation parameters on the building; Able to itemize those parts of the electrical installation of the building
Topics:
Basic electrical installation, the components of the electrical installation, the requirements of the electrical installation technology, security lighting, security and safety, as well as the procedures for electrical installation of buildings
Prerequisite: Electric Power Engineering
Textbook:

ENEE607105
HIGH CURRENT & VOLTAGE ENGINEERING + LABORATORY (3 CREDITS)
Learning Outcomes:
Being able to analyze the magnetic and electric field high on power system; Able to explain the phenomenon of electric field and magnetic field is high; Capable of testing electric power equipment; Able to analyze about the occurrence of interference due to the phenomenon of the high terrain.
Topics:
The concept of a high-voltage, high-voltage test, high voltage generation, impulse generators, direct current testing and flow back and forth, testing electrical equipment
Prerequisite: Electromagnetics, Electric Power Engineering
Textbook:

ENEE608109
ELECTRICAL POWER SYSTEM PROTECTION (3 CREDITS)
Learning Outcomes:
Able to explain the philosophy of electric power system protection; Able to calculate the electrical protection system; Able to evaluate the protection system of electric power; Able to design protection system of electric power.
Topics:
Electrical protection philosophy, types of relay protection, the principle of relay protection, setup relay protection, the coordination principle of protection.
Prerequisite: Electric Power Engineering
Textbook:

ENEE608108
ELECTRICAL POWER TRANSMISSION & DISTRIBUTION (3 CREDITS)
Learning Outcomes:
Able to explain the philosophy of the distribution and transmission of electric power systems; Able to calculate the parameters of the transmission and distribution; Being able to analyze the
transmission and distribution of electric power systems.
Topics:
The introduction of transmission and distribution of electrical power, the circuit of three phase motors, Inductance, Capacitance and Resistance on the transmission network, transmission network performance characteristics, the distribution Transformer, electric power distribution network.
Prerequisite: Electric Power Engineering
Textbook:
2. Iwa Garniwa, “design of electric power Distribution Equipment,” Publisher - high-voltage Laboratory and measurement of electricity, Electrical Engineering Department, FTUI, 2008.
Eocene E607107
SPECIAL COURSE OF ELECTRICAL POWER 1 (2 CREDITS)
Learning Outcomes:
Able to design a simple application in the field of energy and power system.
Topics: customized to class' needs about power system technological development, and can be given by several guest lecturers
Prerequisite: Electrical Power Engineering
Textbook: None
Eocene E608110
SPECIAL COURSE OF ELECTRICAL POWER 2 (2 CREDITS)
Learning Outcomes:
Able to design a simple application in the field of energy and power system.
Topics: customized to class' needs about power system technological development, and can be given by several guest lecturers
Prerequisite: Electrical Power Engineering
Textbook: None
MAJORING
ELECTRONICS ENGINEERING
ENEE617040
ENEE606202
PHOTONIC DEVICES (3 CREDITS)
Learning Outcomes:
Able to explain the working principle of passive and active photonic
Able to apply the principles of physics and mathematics to calculate the variable change device photonic
Being able to determine the independent device photonic
Able to explain passive: photonic device and optical, lattice (grating), polarization; and active photonic device: laser, LED, and photodetector
Being able to compute using Photonic device variables theory of light: the law of Snell, Fresnel equation, Fermat’s law, polarization
Able to determine variables NA, attenuation, dispersion, mode sense, dispersive power, Registrar, power, free spectral range, coherence, vector and matrix Jones
Topics:
The theory of light: the law of Snell, the law of Fresnel, Maxwell’s equation, Fermat’s law, polarization, diffraction, NA, attenuation, dispersion, mode sense, dispersive power, Registrar, power, free spectral range, the coherency matrix, vector, Jones, Photonic passive devices: optical, as well as lattice (grating), polarization; Active photonic device: laser diode, an LED and a photodetector.
Prerequisite: a Semiconductor Device
Textbook:
3. Modul Praktikum Pilihan - Laboratorium Optoelektronika

ENEE607205

VERY LARGE SCALE INTEGRATION (VLSI) (3 CREDITS)

Learning Outcomes:
Able to design VLSI circuit

Topics:
Review of CMOS semiconductor device fabrication, the rules of design, Scale of Lambda, Asynchrony, designing logic gates, Inverter, NAND, NOR, Full custom design, Semi-custom design, validation, Packaging/IO, design for manufacturing, testing and design of fault modeling, Coding for synthesis, characteristics and Estimate the performance series, the high level design Optimization, Programmable logic arrays, subsystem Design, Properties of CMOS Logic: Area, Power, Delay, time Optimization Engine, sequential, and the structure of the regular VLSI.

Prerequisite: Electronics Circuit, semiconductor device Fabrication

Textbook:

ENEE606201

ADVANCED ELECTRONICS CIRCUITS (3 CREDITS)

Learning Outcomes:
Able to analyze: integrated circuits, digital circuits with bipolar digital circuits, MOSFET, power amplifier, high-order active filter, oscillator circuit, Schmidt Trigger, voltage regulators; Able to design: integrated circuits, digital circuits with bipolar digital circuits, MOSFET, power amplifier, high-order active filter, oscillator circuit, Schmidt Trigger, voltage regulators.

Topics:
Integrated circuits, digital circuits with bipolar digital circuits, MOSFET, power amplifier, high-order active filter, oscillator circuit, Schmidt Trigger, voltage regulator

Prerequisite: Electronics Circuits

Textbook:

ENEE616034

ENEE607204

INTRODUCTION OF NANOELECTRONICS (3 CREDITS)

Learning Outcomes:
Able to analyze recent developments in the field of electronics and photonic; Being able to analyze the workings of the Nano-electronic and Nano-photonic device.

Topics:
Nano technology and its application in the field of electronics, from the micro to the Nano, the miniaturization of electronics device, scaling the dimensions of transistor, the workings of the single electron transistors, molecular electronics work, fabrication, and characterization of Nano-devices, Nano-technology and its application in the field of photonic, the workings of the single-photon detector, the workings of the OLED

Prerequisite: A Semiconductor Device, Semiconductor Device Fabrication

Textbook:

ENEE606203

SEMICONDUCTOR DEVICE FABRICATION + LABORATORY (3 CREDITS)

Learning Outcomes:
Able to explain the process of fabricating semiconductor devices; Capable of making a semiconductor fabrication process design on microelectronics devices; Able to use the device fabrication process design.

Topics:
The history of the semiconductor industry, semiconductor, wafer preparation and Crystal growth, contamination control, lithography, oxidation, diffusion, ion implantation, etching, deposition, application usage Supreme ver. 4.
Prerequisite: Device Electronics.
Textbook:
2. Practical semiconductor device Fabrication Module-Electronics Laboratory

ENEE608207
SOLAR CELLS (3 CREDITS)
Learning Outcomes:
Able to identify work areas devices to solar cells; Being able to compute the parameter limit efficiency, loss-power loss in a solar cell device; Being able to analyze the way of working and the solar cell performance, design and fabrication of silicon solar cells.
Topics:
The workings of the solar cell, the Parameter limit efficiency, loss-power loss in a device the solar cell, solar cell device work area, the design of silicon solar cells, and fabrication of silicon solar cells
Prerequisite: Electronics Circuit, Semiconductor Device Fabrication
Textbook:

ENEE608309
MICRO ELECTRONIC MECHANICAL SYSTEM (3 CREDITS)
Learning Outcomes:
Able to design MEMS circuits;
Topics:
Background the development of MEMS, electronics and materials processing, MEMS and microelectronics technology, preparation of standard silicon micromachining, bulk, and the surface of silicon micromachining, MEMS, micro stereo lithography micro-sensor, the SAW, the SAW on a solid object, the measurement parameter micro-sensor IDT, IDT micro-sensor Fabrication Micro-sensor, IDT, smart sensors and MEMS.
Prerequisite: Electronics Circuit, Semiconductor Device Fabrication
Textbook:

ENEE60730 6
SPECIAL COURSE OF ELECTRONICS 1 (2 CREDITS)
Learning Outcomes:
Being able to analyze the development of technology devices and photonic systems; Able to analyze basic photonic system for certain functions
Topics:
Current topics of development of technology devices and systems photonic
Prerequisite: Electronics Circuits
Textbook: none

ENEE607309
SPECIAL COURSE OF ELECTRONICS 2 (2 CREDITS)
Learning Outcomes:
Able to analyze recent developments in the field of electronics;
Topics:
The topics of the current technological development of electronic systems and devices
Prerequisite: Electronics Circuits
Textbook:-

MAJORING
CONTROL ENGINEERING

ENEE607405
ADAPTIVE & PREDICTIVE CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Able to identify the model and application of predictive and Adaptive; Capable of analyzing discrete control system, the stability of non-linear system using Lyapunov method; Capable of designing discrete adaptive and predictive control; Able to evaluate the performance of predictive and adaptive control systems.
Topics:
The basic concept of predictive and adaptive control, recursive parameter estimation, method of pole placement method, minimum variance, dynamic matrix control, model algorithmic control, generalized predictive control, predictive control room situation.
Prerequisite: Control Engineering
Textbook:

ENEE615029
ENEE606400
DIGITAL CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Capable of analyzing discrete control system; Able to explain the characteristics of discrete systems; Capable of analyzing the stability of discrete systems; Able to design a simple discrete controller; Able to make discrete controller design method: root locus, and pole placement; Able to make the design of state observer of discrete Full order observer, and Reduced order observer
Topics:
The basic concept of a digital control system, a review of z-transforms, discrete time transfer functions, methods of realization of discrete control system, Transient and steady state response, analysis of stability of discrete systems, discrete root locus method, design the root locus method control discrete, discrete state space models, canonical forms, discrete state space model analysis (Eigen values, controllability, observability), pole-placement method of discrete, observer design of discrete.
Prerequisite: Control Engineering
Textbook:

ENEE617039
ENEE606402
PROCESS CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Able to identify the model of dynamical systems of industrial processes; Able to explain measurement techniques of dynamical systems of industrial processes; Able to explain the characteristics of industrial processes; Able to describe systems of industrial processes; Able to identify industrial process modeling method
Topics:
Process and characteristics of the problem, the process of measurement methods, sensors and transmitters, signal conditioning and installation, industrial process modeling, PID controllers, tuning PID control, cascade control, feedforward control, smith predictor, a variation on another controller.
Prerequisite: Control Engineering
Textbook:
ENEE607404
ROBOTICS (3 CREDITS)
Learning Outcomes:
Able to identify the needs of the components of Robotics; Being able to analyze the kinematics of the robot; Able to evaluate the drive systems Robotics; Integrated control system capable of designing on simple robotics systems; Able to design kinematics robotics.
Topics:
Robotics Automation system components (sensors, actuators, controllers), the principle of work of system of robotics, kinematics of robots, robotics control systems (position control) robot kinematics-based interconnection system components, robotics, engineering the design of robots, robot programming, simulation with OpenGL, the introduction of a high level of robots.
Prerequisite: Engineering control, algorithms and programming.
Textbook:
1. Robotics: design, control, and artificial intelligence, Andi Publisher by Endra Pitowarno, 2006.

ENEE606403
ELECTRIC DRIVE CONTROL SYSTEM (3 CREDITS)
Learning Outcomes:
Being able to analyze the component controller and electric drive system components; Able to evaluate the performance of the electric drive system with simulation; Able to evaluate simple motor drive systems.
Topics:
Electric drive systems, modeling of electric motors (DC, PMSM, IM), power transfer circuit (PWM 3 phase inverter), the servo motor DC brushless speed controller, and position, the concept of reference frame, vector control, simulation of electric drive system.
Prerequisite: Engineering Control.
Textbook:

ENEE608407
MECHATRONICS (3 CREDITS)
Learning Outcomes:
Being able to analyze the components of the controller; Capable of analyzing the limitations of Mechatronics system components; integrated control system capable of designing in Mechatronics system is simple; capable of designing system of Mechatronics Robotics with applications to accommodate the limitations of the components.
Topics:
Introduction to Mechatronics systems, characteristics and limitations of Mechatronics system Method of improvement reliability of Mechatronics system components, Mechatronics system design, electromechanical system modeling, design and development of application software, control compliant, tele-robotic, bilateral control.
Prerequisite: Robotics
Textbook:

ENEE608408
KNOWLEDGE BASED SYSTEMS (3 CREDITS)
Learning Outcomes:
Able to identify the model of knowledge-based dynamical systems; Being able to analyze the performance of artificial neural network; Able to implement algorithms in programming language for knowledge-based systems.
Topics:
the working system of neurons, cells, artificial neural network architecture (JST); the learning method is JST; back propagation neural networks (BPNN); algorithms and analysis of programming error, function of BPNN in Matlab; optimization of parameters; application of BPNN program as
the system identifier of the pattern, the system control based neural network: an analysis of the use of methods of control, as a system of BPNN identification of neural network-based systems: representation of data and the use of BPNN as identification system, program development system identification using the BPNN full-based system, the development of BPNN and analysis theory and its application, program development system control using the BPNN full system integration based BPNN.
Prerequisite: control Engineering, Algorithms and programming
Textbook:

ENEE607406
SPECIAL TOPIC OF CONTROL ENGINEERING 1 (2 CREDITS)
Learning Outcomes:
Able to follow the development of the control technology and its implementation; Able to follow the development of current aspects of control technology.
Topics:
Current issues about control technological aspects
Prerequisites: none
Textbook: none

ENEE608409
SPECIAL TOPIC OF CONTROL ENGINEERING 2 (2 CREDITS)
Learning Outcomes:
Able to follow the development of the control technology and its implementation; Able to follow the latest development of the control technology business.
Topics:
Current issues about control business technology.
Prerequisites: none
Textbook: none

MAJORING
BIOMEDICAL ENGINEERING

ENEE606502
MEDICAL COMMUNICATION SYSTEM (3 CREDITS)
Learning Outcomes:
-Able to explain some of the technology of communication system for medical applications
-Able to explain the system of e-healthcare and telemedicine
-Able to explain the process of designing the system wired/wireless medical communication
Able to make the design through simulation design of medical devices
Topics:
Introduction to medical communication system, e-healthcare and telemedicine. Several special course will be delivered include body-centric wireless communications, electromagnetic properties and modeling of the human body, portable wearable devices, medical implant communication systems, e-healthcare infrastructure, wireless body area network, mobile-based telemedicine system, and wireless power technology in medical devices.
Communication systems on and off, in the body and how to model the via simulation
Prerequisites: none
Textbook:

ENEE607504
MEDICAL IMAGING TECHNOLOGY (3 CREDITS)
Learning Objective:
After getting the courses the student is expected to:
1. Able to understand some basic concepts in medical imaging technology
2. Able to explain and analyze the basic method of medical image processing in reconstructing, improving the quality of the image, making the image segmentation, image analysis, visualization of image data, and manage medical imagery in order to support the process of imaging/medical imaging in the field of health
Able to apply the methods in environmental biology and basic science to medical applications system
Able to integrate circuit and electronic device to device/instrument of biomedicine
Able to make simulations of imaging methods in medical devices
Being able to make a report of the results of the simulation of a small project
Being able to analyze the signals in the medical system to process the signal with the signal processing technique of medical
Topics:
Introduction to Medical Imaging Technologies (x-ray and Ultrasound, MRI, CT, PET and SPECT, Electrical Impedance Tomography), Image formation and Reconstruction (Acquisition, Digitization, Image Reconstruction Methods), Image Enhancement (Fundamentals of enhancement techniques, Image enhancement with linear, nonlinear, adaptive, and fixed, pixel-based methods), Image Segmentation and Analysis (Fundamentals of Medical Image Segmentation, Image acquisition and preprocessing artefacts, Thresholding, Edge-based techniques, Region-based segmentation, Classification, Morphological Methods for Biomedical Image Analysis), Image Visualization (2-dimensional visualization, 3-dimensional visualization methods: surface rendering, volume rendering, Algorithm for 3-d visualization), Image Management (Fundamentals of Compression Standards, Storage and Communication, Image archive and retrieval, three-dimensional compression).
Medical image processing, artifact acquisition, thresholding, Edge-based techniques, Region-based segmentation, Classification,
The methods of image formation process and its analysis
Image formation, medical imaging tools
Formation of the image of medical signals and image analysis, visualization
Prerequisites: None.
Textbook:

BIOLOGY AND ANATOMY (3 CREDITS)
Learning Objective:
Give the basic knowledge of the mechanisms of biology and anatomy of engineering.
Instructional Objectives:
a. Able to explain the basic concepts of cell biology, molecular, biochemical and genetic engineering
b. Have the knowledge about the essential components and the various functions of the system of molecular cell.
c. Have the knowledge of the techniques and approaches that are commonly used in molecular biology of the cell.
d. Apply the knowledge of biology to biomedical engineering and health sciences.
Able to explain the phenomenon in the medical field with the approach to biology and anatomy of human organs
Able to make reports papers
Able to explain the phenomenon in the medical world with the approach to biology and anatomy of human organs
Topics: constituent molecules of the cell, structure and function of proteins within the cell, metabolism, changes in the cells; Molecular design of biochemical constituents of life, and the genetic revolution, DNA, linkages with biodiversity, biochemical protein synthesis of nucleic acids into a sequence of amino acids-RNA polymerase 2, until the Ribosome for protein synthesis, eukaryotic and
prokaryotic differences; Catalytic reactions in cells: nucleoside monophosphate kinases, proteases; Mechanical chemical in cells: how protein motors to convert chemical energy into mechanical work. Understanding human anatomy, Cytology and Histology, Osteology, Arthrologi, Miologi, digestive system, respiratory system, circulatory system. Constituent molecules of the cells and organs of human body Anatomy

Prerequisites: None
Textbook:

ENEE607505
MEDICAL SYSTEM MODELLING (3 CREDITS)
Learning Outcomes:
Learning Objective:
Understand the components of the medical system, understand the mathematical model of the medical system, understand the modeling method of the medical system, Able to perform simple modelling medical systems and able to simulate. Able to apply the algorithm for a device/instrument of biomedicine
Able to report the results of the coding program

Topic: Introduction to signal and system of medical models, mathematical modeling and signal system in General, analytic modeling of medical system, analysis of analytical models, methods of identification of the medical system, the method of parameter estimation model, the simulation model of the medical system.
Analytic modeling of medical system
Analysis of analytical models, methods of identification of the medical system, the method of parameter estimation model, the simulation model of the medical system.
Prerequisites: None.
Textbook:

ENEE608508
MEDICAL INFORMATICS (3 CREDITS)
Learning Objective:
After getting the courses the student is expected to:
1. Able to understand the basic concepts of information technology to be applied in the field of health
2. Able to apply the basic methods of Informatics with the use of basic knowledge of programming to acquire, organize, combine, and analyze health data sources
3. Able to apply the algorithm for a device/instrument of biomedical engineering
4. Able to apply the basic principles in biology in the concept of medical technology
5. Able to explain the basic biomedical engineering

Able to apply concepts of basic science into principles in biomedicine

Introduction to medical informatics and its method Algorithms and methods of medical informatics
Prerequisites: None.
Textbook:

ENEE606503
INTRODUCTION TO BIOMEDICAL TECHNOLOGIES (3 CREDITS)
Learning Objective:
After completion of the following courses, students are able to:
1. Understand biomedical technology systems
2. Explain the concept of system engineering applications to the problems of human biology
3. Illustrate the concept of detection, measurement, and monitoring of human physiological signal
4. Explain the concept of the diagnosis interpretations through the techniques of signal processing bioelectric data
5. Explain the concept device-device for therapy and rehabilitation
6. Make computer data analysis based on data from patients in the framework of decision making in clinical
7. Explain the concept of device for artificial organs
8. Reviewing the concept of medical imaging techniques
Able to apply the basic principles in biology in the concept of medical technology
Able to explain the basic biomedical engineering
Able to apply concepts of basic science into principles in biomedical engineering
Prerequisites: None.
Textbook:

ENEE608507
BIOMEDICAL INSTRUMENTATIONS + LAB (3 CREDITS)
Learning Outcome:
After following this course, students are able to:
1. Understand the biomedical measurement system
2. Understand and apply various kinds of cardiovascular system measurement
3. Understand and apply various kinds of respiration system measurement
4. Understand and apply various kinds of nervous system
5. Understand patient safety factors that must be considered in the measurement
Able to apply the basic principles in biology in the concept of medical technology
Able to explain the basic engineering science biomedicine
Able to apply concepts of basic science into the principles of biomedical engineering
Able to operate medical equipment
Able to integrate circuit and electronic device to device/instrument of biomedicine
Able to make the design through simulation design of medical devices
Topic: Introduction to biomedical instrumentation; Basic transducer principle (active and passive transducer, the transducer for biomedical application; the source of bioelectric potentials; electrodes; the cardiovascular system; cardiovascular measurement; measurement in respiratory system; non invasive diagnostic instrumentation; measurement in nervous system; sensory and behavioural measurements; electrical safety of medical equipment; role of laser in healthcare.
Prerequisites: None.
Textbook:
1. Biomedical Instrumentation and Measurement, Leslie Cromwell, Fred J. Weibel and Erich A.
ELECTRICAL ENGINEERING UNDERGRADUATE PROGRAM

Pleiffer, Prentice Hall, New Jersey.

EEN608509
SPECIAL COURSE OF BIOMEDICAL 1 (2 CREDITS)
Learning Outcome:
This course provides an understanding of physical principles on the biological mechanisms and process (movement, design, structure, materials and transport).
At the end of the study, students are expected to:
- Apply biomechanical principles to resolve problems in human movement and musculoskeletal such as ergonomic, rehabilitation and training.
- Use of the effective and safe biomechanics instrumentation and equipment for the acquisition/assessing human movement.
- Understand the trend of future problems of biomechanics.
Able to explain the phenomenon in the medical with the approach of biology and anatomy human organs
Topics:
Newton’s laws, fluid mechanics: Bernoulli, Drag forces, Reynold number, Mechanics of static systems and moving system, Kinetics and force on the body as well as the influence on the movement and stability, Basic mathematic in motion/movement, analysis and instrumentation on the motion of the body, the basic concept of human body bones muscle mechanics, Ergometry, The basic concept of energy.
Prerequisites: None.
Textbook:

SPECIAL COURSE OF BIOMEDICAL 2 (2 CREDITS)

EEN618102
SOFTWARE ENGINEERING (3 CREDITS)
Learning Outcomes: In this course, students will learn how to design software with correct steps and able to document them. After following this course, students will able to design software using the stage of the software life cycle with the desired risk level, capable of making design software with the correct stages; capable of documenting the stages of design software
Topics: Hardware and software processes; Requirements analysis and elicitation; System specifications; System architectural design and evaluation; Concurrent hardware and software design; System integration, Software testing and validation; Maintainability, manufacturability, sustainability
Prerequisite: Algorithm and Programming
Textbook:

EEN617101
OBJECT ORIENTED PROGRAMMING + LABORATORY (3 CREDITS)
Learning Outcomes: In this lecture, students will study how to create program with object-oriented concepts. After following this course, students are able to implement a software design into object-oriented programming language; able to establish the concept of object-oriented programming (class, constructor, scope of variables); able to outline the Basic objects (arrays, array list, object collection, iterator); able to describe the concept of design class (coupling, cohesion, refactoring, inheritance, polymorph, substitution); able to implement a GUI-based programming, exception handling and multithreading.
Topics: Java Language Elements; Java Language Operation; Defining and Using Class; System, Strings, String Buffer, Math & Wrapper Classes; Array; Classes & Inheritance; Design Graphical User Interface & Event Driven; Exceptions; Collections; Threads and Javadoc
Prerequisite: Algorithm and Programming
Textbook:

SPECIAL COURSES

ENEE616032
ENEE606023
INTERNSHIP (2 CREDITS)
Learning Outcome:
Able to apply technical knowledge that has been acquired during the study; Able to demonstrate work professionalism, work in teams, discipline, responsibility, initiative & interest, leadership, and attitude/behaviour; Able to present the results of the internship in the internship’s defense.
Topic: None.
Prerequisite:
Have passed the 90 CREDITS. Internship place are industrial or lab associated with electrical engineering on the condition there is a supervisor in the internship place. The selection of the internship place is started with the administrative process through the Department of electrical engineering.
Textbook: None.

ENEE617036
ENEE607030
SEMINAR (2 CREDITS)
Learning Outcome:
Able to propose system, component, and process of the research; Able to write research proposal; Able to present the research proposals.
Syllabus: Introduction; Literature studies; Research design.
Prerequisite: Passed the 90 CREDITS.
Textbook:
1. Technical guidelines on the writing of Thesis students of the University of Indonesia.
2. IEEE Citation Reference.

ENEE618041
ENEE608033
BACHELOR THESIS (4 CREDITS)
Learning Outcome:
Able to make the design of the system, component, and process; Able to carry out the research plan; Able to analyze the research results; Able to convey the results of the study in the bachelor thesis defense.
Topic: Design and implementation of experimental research; Data analysis; Conclusions.
Prerequisite: Passed Seminar
Textbook:
2. IEEE Citation Reference.
4.6. UNDERGRADUATE PROGRAM IN COMPUTER ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.50%</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>16</td>
<td>11.11%</td>
</tr>
<tr>
<td>iii</td>
<td>Basic Electrical Engineering Subject</td>
<td>17</td>
<td>11.80%</td>
</tr>
<tr>
<td>iv</td>
<td>Core subject</td>
<td>76</td>
<td>52.78%</td>
</tr>
<tr>
<td>v</td>
<td>Elective Subject</td>
<td>9</td>
<td>6.25%</td>
</tr>
<tr>
<td>vi</td>
<td>Special Subject (Internship, Seminar, Undergraduate Thesis)</td>
<td>8</td>
<td>5.56%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

13. Classification of Subjects

14. Total Credit Hours to Graduate 144 SKS
Career Prospects

The program graduates are needed in almost all fields of work, e.g. industry, services, banking and all fields requiring the application IT (Information technology). Some professional profiles that are suited to this program’s graduate are IT Manager, Project Manager, Program Manager, Programmer, System Analyst, Software Developer, Data Analyst, Product Specialist, Software Engineer, Computer Hardware Engineer, System Administrator, IT Support, etc.
Learning Outcomes

1. Mampu membuat rancangan sistem, komponen, dan proses berlatar kebutuhan dalam berbagai bidang kehidupan

2. Mampu membuat rancangan jaringan informasi

3. Mampu membuat rancangan perangkat keras untuk sistem berbasis komputer

4. Mampu membuat rancangan perangkat lunak untuk sistem berbasis komputer

5. Mampu membuat algoritma dan mengimplementasikannya ke dalam pemrograman

6. Mampu menerapkan prinsip dasar matematika, fisika dan statistik dalam menyelesaikan permasalahan teknik komputer

7. Mampu menggunakan bahasa lisan dan tulisan dalam Bahasa Indonesia dan Bahasa Inggris dengan baik untuk kegiatan akademik maupun non akademik

8. Memiliki integritas dan mampu berpikir kritis, kreatif, dan inovatif serta memiliki keingintahuan intelektual untuk memecahkan masalah pada tingkat individual dan kelompok

9. Mampu memanfaatkan teknologi informasi komunikasi

10. Mampu memberikan alternatif pemecahan masalah terhadap beragam masalah yang timbul di lingkungan, masyarakat, bangsa dan negara

11. Mampu mengidentifikasi ragam upaya wirausaha yang bercirikan inovasi dan kemandirian yang berlandaskan etika
CURRICULUM STRUCTURE COMPUTER ENGINEERING

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600003</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENCE601001</td>
<td>Fundamental of Digital System and Lab.</td>
<td>3</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600001-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE600020-48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCE602002</td>
<td>Introduction to Computer Engineering +Lab.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE603003</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENCE603004</td>
<td>Basics of Electronic Circuits</td>
<td>2</td>
</tr>
<tr>
<td>ENCE603005</td>
<td>Electric Circuits</td>
<td>2</td>
</tr>
<tr>
<td>ENCE603006</td>
<td>Electric and Electronic Circuits Lab.</td>
<td>1</td>
</tr>
<tr>
<td>ENCE604012</td>
<td>Advanced Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603008</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603009</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603010</td>
<td>Vector Analysis and Complex Variables</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE604011</td>
<td>Signal and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENCE603007</td>
<td>Algorithm</td>
<td>3</td>
</tr>
<tr>
<td>ENCE604013</td>
<td>Digital System Design and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENCE604014</td>
<td>Computer Based Systems</td>
<td>4</td>
</tr>
<tr>
<td>ENCE604015</td>
<td>Computer Based Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENCE604016</td>
<td>Computer Networks and Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENCE605017</td>
<td>Probability and Stochastic Process</td>
<td>3</td>
</tr>
<tr>
<td>ENCE605018</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCE605019</td>
<td>Embedded System 1</td>
<td>2</td>
</tr>
<tr>
<td>KODE</td>
<td>SUBJECT</td>
<td>CRED-ITS</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>ENCE605020</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENCE605021</td>
<td>Design & Management Computer Networks +Lab</td>
<td>4</td>
</tr>
<tr>
<td>ENCE605022</td>
<td>Database Systems and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>ENCE607031</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENCE606024</td>
<td>Telecommunication Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606025</td>
<td>Computer Networks Security and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606026</td>
<td>Embedded Systems 2 and Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606027</td>
<td>Professionalism and Ethics in IT</td>
<td>2</td>
</tr>
<tr>
<td>ENCE606028</td>
<td>Object Oriented Programming + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENCE606029</td>
<td>Wireless Technology</td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CRED-ITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCE606023</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607030</td>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607032</td>
<td>Entrepreneurship in Information Technology</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607033</td>
<td>Capita Selecta in Computer Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENCE607034</td>
<td>Telecommunication Networks Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCE607035</td>
<td>Human Computer Interaction</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CRED-ITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCE608036</td>
<td>Bachelor Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENCE608037</td>
<td>Project Management in IT</td>
<td>3</td>
</tr>
<tr>
<td>ENCE608038</td>
<td>Multimedia Signal Processing</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

ELECTIVES COMPUTER ENGINEERING

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CRED-ITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCE607101</td>
<td>Regulation & Public Policy on ICT Sector</td>
<td>3</td>
</tr>
<tr>
<td>ENCE607102</td>
<td>Data Analysis Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Even Semester		
ENCE608103	VLSI Design	2
ENCE608104	Big Data Technology	3
Resume

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>16</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>101</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
</tr>
<tr>
<td>Elective Subjects</td>
<td>9</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
Syllabus of courses in Computer Engineering according to the structure of the curriculum:

UIGE600002
MPKT B
6 CREDITS
See The Engineering Syllabus

ENGE600007
Physics (Electricity, MWO)
3 CREDITS
See The Engineering Syllabus

ENGE600008
Physics (Electricity, MWO) Laboratory
1 CREDITS
See The Engineering Syllabus

ENGE600003
Calculus
4 CREDITS
See The Engineering Syllabus

ENCE601001
Fundamental of Digital System + Laboratory
3 CREDITS
Learning Outcomes: In this course, students will learn all design phases and implementations of a digital system. At the end of the course, students will be able to analyze simple digital circuits, and able to design digital systems using combinational and simple sequential building blocks. This lecture also involves several practical work in the laboratory to design, implement and verify digital logic systems using digital circuit simulation software.
Topics: Boolean Algebra Principles and applications; Interface Logic Families; Number System & Data Encoding; Basic Logic Circuits; Basic Modular Design of Combinational Circuits; Basic Modular Design of Sequential Circuits.
Practical work: Module 1-Introduction and introduction to Digital Circuit Basics, Module 2 - Boolean Algebra and Elementary logic gates, Module 3 - Karnaugh Map, Module 4 - complex logic gate, Module 5 - Decoder and Encoder, Module 6 - Multiplexer and De-multiplexer, Module 7- Digital Arithmetic Circuit, Module 8 - Flip-Flop and Latch, Module 9-Registers and Counters, Module 10 - Group Project
Prerequisite: none.
Textbook:

UIGE600003
English
3 CREDITS
See The Engineering Syllabus

UIGE600001
MPKT A
6 CREDITS
See The Engineering Syllabus

UIGE600010 - UIGE600015
Religion
2 CREDITS
See The Engineering Syllabus

UIGE600020 - UIGE600048
SPORTS/ARTS
1 CREDITS
See The Engineering Syllabus

ENGE600002
LINEAR ALGEBRA
4 CREDITS
See The Engineering Syllabus

ENGE600005
PHYSICS (MEchanics AND THERmal)
3 CREDITS
See The Engineering Syllabus

ENGE600006
PHYSICS (MEchanics AND THERmal) LABORATORY
1 CREDITS
See The Engineering Syllabus

ENCE602002
INTRODUCTION TO COMPUTER ENGINEERING + LABORATORY
3 CREDITS
Learning Outcomes: This course is the introduction to the computer engineering world. This lecture discusses topics that are the basics required in computer engineering. At the end of the course students will be able to explain the components of a computer system both hardware and software, able to design simple algorithms in pseudocode and able to implement them into programs by using a particular programming language.
Practical work: Module 1 - Introduction, Module 2- computer hardware, Module 3- computer software, Module 4- Flowchart, Module 5 - Pseudocode, Module 6- Introduction to Programming in C language, Module 7- Branching in C Language, Module 8- Looping in C language, Module 9-Project in C Language.
Prerequisite: Basic Digital System
Textbook:

ENCE603003
ENGINEERING MATHEMATICS
4 CREDITS
See Electrical Engineering Syllabus

ENCE603004
BASICS OF ELECTRONICS CIRCUITS
2 CREDITS
Learning Outcomes: In this course students will learn the basic electronics components as well as its circuitry. At the end of this course, students will be able to describe the properties of materials and the operation of a basic electronics component, such as a diode, transistors, op-amps, filters etc.
Topics: Electronics Materials, diodes, bipolar transistors and; MOS transistor circuit, timing, and power; Storage cell Architecture; Operational Amplifiers
Prerequisite: Physics Electricity, Magnetism, Optics and waves

Textbook:

ENCE603005
ELECTRIC CIRCUIT
2 CREDITS
Learning Outcomes: In this course, students will learn the basic electric circuits. At the end of this course, students will be able to analyze simple electronic and electric circuits using appropriate techniques, analyze the resistive circuits, their AC and DC properties as the basics of electric engineering.
Topics: Introduction, resistive circuits, the dependent sources and op. amps, analysis methods, energy - storage elements, first - order circuits, second - order circuits, phasors, sources and sinusoidal AC steady state analysis, air conditioning - steady - state power.
Prerequisites: Physics electricity, magnetism, Optics and waves
Textbook:

ENCE603006
ELECTRIC AND ELECTRONIC CIRCUITS LABORATORY
1 CREDITS
Learning Outcomes: In this course students will learn the practical skills in handling components and basic electronic and electric circuit. At the end of this lab practice, students will be able to analyze the operation of electric and electronics circuit using simple techniques.
Topics: Module 1-Introduction; Module 2-Diode; Module 3-BJT Amplifiers; Module 4-FET Amplifier; Module 5-Op-Amp Amplifier; Module 6-Filter; Module 7-basic Electricity; Module 8-Mesh and Node analysis of Linearity; Module 9-Thevenin and Norton Superposition Analysis;
Prerequisite: Physics electricity, magnetism, Optics and waves, Electrical Circuits, basic Electronics Circuits
Textbook:
4. Module electrical and electronic Circuit Teaching

ENCE603007
ALGORITHM
3 CREDITS
Learning Outcomes: In this course students learn how to evaluate the algorithm. After following this course, the student will be able to explain the basis of the analysis of algorithms; able to explain classic algorithms; able to evaluate algorithm by its complexity
Topics: The basic of algorithms analysis; The algorithm strategy; Classical algorithms for common tACREDITS; Analysis and design of algorithms for specific application; Parallel algorithms and multi-threading; Algorithm complexity
Prerequisite: Advanced Programming
Textbook:
ENCE600008
COMPUTER ORGANIZATION & ARCHITECTURE
3 CREDITS
Learning Outcomes: In this course, the architecture and the organization of computer system is discussed. After following this course, the student will be able to distinguish the meanings of computer organization and architecture computer, capable of analyzing the computer architecture, particularly the design of instruction-set, the correlation between clock-speed and CPU performance and the influence of the structure of the bus for computing speed, was able to decipher the role of cache memory to improve memory access time, including its organization and updates mechanism. Student will also be able to develop small programs using the basic instruction set of hypothetical processor. Students will also be able to elaborate on the influence of the programming techniques for computational speed. Students will also be able to analyze advanced processor design in improving performance computing like pipelining, parallel processors and multicore processors.
Topics: The basic Instruction set architecture; Organization Of The Processor; Memory; Peripheral subsystems; Multi-many core architectures; Pipelining
Prerequisite: Intro to Computer Engineering + Lab
Textbook:

ENCE603009
DISCRETE STRUCTURES
3 CREDITS
Learning Outcomes: In this course students will learn the basic principles of discrete mathematics and apply it to examine and study the modern computing techniques and build a foundation for analyzing problems in computer engineering and developing solutions. After following this course, the student will be able to create sets and functions, applying the techniques of proof, as well as being able to use the theory of graph, tree, iteration and recursion in various cases of problems in the field of computer engineering.
Topics: set; relation; function; Boolean algebra; proofing techniques; basic proof; graph; tree; iteration; recursion
Prerequisite: none
Textbook:

ENCE603010
COMPLEX VARIABLES AND VECTOR ANALYSIS
2 CREDITS
See Electrical Engineering Syllabus

ENCE604011
SIGNAL AND SYSTEMS
3 CREDITS
See Electrical Engineering Syllabus

ENCE604012
ADVANCED PROGRAMMING
3 CREDITS

Learning Outcomes: In this course, the student is expected to learn regarding programming using high-level languages. After following this course, the student is expected to be able to implement modular programming in the form of a function (by value and by reference); being able to implement recursion algorithm into the C language; capable of using arrays in C program; able to make programs with data structures; able to make programs with dynamic data structures.

Topics: Programming constructs and paradigms: pointer, Array, linked list; Problem-solving strategies: searching, sorting; Data structures; Recursion

Prerequisite: Introduction to computer engineering and Practical

Textbook:

ENCE604013

DIGITAL SYSTEM DESIGN + LABORATORY

3 CREDITS

Learning Outcomes: In this course, it will discussed the principles in designing digital systems. After following this course, the student is expected to be able to design and analyze sequential and combinational circuit using a hardware modeling language definition language (HDL) and able to do synthesis into the PLD, CPLD and FPGA-like.

Topics: Modular Design of Combinational Circuits; Modular Design of Sequential Circuits; Control and Data-path design; design with programmable logic; system design constraints; fault models & testing

Prerequisite: Fundamental of Digital System + Lab

Textbook:
2. Bryan mealy, Fabrizio Tappero, Free Range VHDL, freerangefactory.org
3. Digital System Design Lab Modules

ENCE604014

COMPUTER BASED SYSTEMS

4 CREDITS

Learning Outcomes: In this course, it will be discussed about microprocessor and microcontroller technology. After following this course, the student is expected to be able to do the process interface to the I/O equipments; able to make simple programs in Assembly language for embedded systems; capable of designing embedded systems with a simple microcontroller

Topics: Introduction to computer systems, addressing modes, data transfer, programming microprocessor with Assembly language, memory interface, introduction of computer-based systems, programming Input/Output, interrupt handling, timer

Prerequisite: Computer Organization & Architecture, Basic Electronic Circuit

Textbook:

ENCE604015

COMPUTER BASED SYSTEMS LABORATORY

1 CREDITS

Learning Outcomes: In this subject, students will conduct hands-on programming the microprocessor and microcontroller-based embedded systems, as well as interfacing microcontroller. After following this lab course students are expected to be able to conduct interfacing to the I/O tools, able to make simple programs in Assembly language for embedded systems and capable of designing embedded systems with a simple microcontroller 8051 and ARM

Topics: Module 1-Introduction to Practical Microprocessors & microcontroller, module 2-Programming the microprocessor with Assembly language, module 3 - Program Control Instruction Modules,
module 4-Procedure and Macro, module 5-Project Microprocessor, Module-6 Microcontroller Programming with Assembly language, Module 7 - Subroutines, Module 8- Input/Output, Module 9-Introduction to Microcontroller Programming with C language, Module 10-Microcontroller Project

Prerequisite: Computer Based Systems

Textbook:
1. Lab Module System of Computer-Based Digital Laboratory, Department of Electrical Engineering

ENCE604016
COMPUTER NETWORKS AND LABORATORY
4 CREDITS

Learning Outcomes: In this course, students study the topics about computer networks comprehensively from layer 1 to layer 7. After following this course, the student will be able to implement the various Protocol TCP/IP and Ethernet network technology as well as the right addressing in a simple network, able to implement simple network-based VLAN and applying various routing protocols such as static routing, RIP, Single Area OSPF and make use of Access Control lists, DHCP and NAT to support networking capabilities, and is able to implement basic access control features in computer networks and are able to utilize the concept of dynamic addressing and implementing network address translation in simple computer network

Topics: architecture and network topology, Protocol and communications networks; OSI and TCP/IP Layer; technology access network on the LAN and WAN; Ethernet technology; network layer; IP Address & Subnetting; transport network and application protocol; Basic switched networks; VLAN & InterVAN; The concept of routing static & dynamic; Routing Protocol RIP; Single Area OSPF; Access Control List Standard & Extended; DHCP Server & Client, Relay, Static & Dynamic NAT

Prerequisite: Intro to Computer Engineering + Laboratory

Textbook:

ENCE605017
PROBABILITY AND STOCHASTIC PROCESSES
3 CREDITS

See Electrical Engineering Syllabus

ENCE605018
SOFTWARE ENGINEERING
3 CREDITS

Learning Outcomes: In this course, students will learn how to design software with correct steps and able to document them. After following this course, students will able to design software using the stage of the software life cycle with the desired risk level, capable of making design software with the correct stages; capable of documenting the stages of design software

Topics: Hardware and software processes; Requirements analysis and elicitation; System specifications; System architectural design and evaluation; Concurrent hardware and software design; System integration, Software testing and validation; Maintainability, manufacturability, sustainability

Prerequisite: Advanced Programming

Textbook:
ENCE605019
EMBEDDED SYSTEMS 1
2 CREDITS
Learning Outcomes: In this course, students learn to make embedded systems design (hardware and software) for specific applications. After following this course, students will be able to design embedded systems with sensors and actuators in synchronous and asynchronous system.
Topics: Characteristics of embedded systems; Asynchronous and synchronous serial communication; Data acquisition, control, sensors, actuators
Prerequisite: Computer-Based Systems, Electric Circuits, Basics of Electronics Circuits
Textbook:

ENCE605020
OPERATING SYSTEM
3 CREDITS
Learning Outcomes: In this subject, it will be discussed the basic principles of early generation and up-to-date operating system. After following this course, the student will be able to explain the system resource management of computer systems, able to explain the memory management techniques; able to explain the techniques of data storage management; able to explain the techniques of management of computer resources; able to explain the architecture of distributed systems
Topics: Operating Systems Structures; Process; Thread; CPU Scheduling; Concurrency; Memory-system management, storage management; distributed system architectures
Prerequisite: Computer Organization & Architecture
Textbook:

ENCE60 5021
DESIGN & MANAGEMENT COMPUTER NETWORKS + LABORATORY
4 CREDITS
Learning Outcomes: On this subject it will be studied how to design a network with a larger scale taking into account aspects of scalability and reliability. After following this course the student will be able to implement the various techniques of redundancy and LAN Link Aggregation to increase scalability and reliability of the network, being able to use the Routing Protocol EIGRP and OSPF in the scale of a larger network, as well as capable of designing a network WAN and Internet as well as applying the principles of network management and procedures
Topics: Network Scalability; LAN redundancy; Link Aggregation; Wireless LAN; Multi-area OSPF Multi-access and; EIGRP. Hierarchical Network Design; WAN technologies; Point to Point connection and Frame Relay; Broadband Solutions; Internet VPN; Network Monitoring; Troubleshooting the networks; Network performance evaluation. Project: The design of computer network in an organization of a company.
Prerequisite: Computer Network + P
Textbook:

ENCE60 5022
DATABASE SYSTEMS AND LABORATORY
3 CREDITS
Learning Outcomes: In this course, students will learn the concepts of database systems and applications. After following this course, the student is able to design a structured database in the software design and implement it into a SQL database system
Topics: Database systems; Event-driven and concurrent programming; Using application program-
Prerequisite: Discrete Structures

Textbook:

ENCE607031
ACADEMIC WRITING
2 CREDITS

Learning Outcomes: In this course students will learn how to create a proposal and scientific papers for publication. After following this course the student will be able to write scientific papers with a good structure, able to use the Bahasa Indonesia and English in scientific writing, and being able to use the software to write scientific papers with a good format.

Topics: Systematics of scientific writing; experimental variables and sets up; statistical analysis tools; The use of the Bahasa Indonesia in scientific works; The use of English languages in scientific works; Word processing software; styling; referencing tools

Prerequisite: none

Textbook:

ENEE606024
TELECOMMUNICATION NETWORKS
3 CREDITS

Learning Outcomes: This courses discusses the telecommunications network system. After following this course, the students will able to explain the principles and basic methods of Telecommunication Engineering as well as the use of telecommunication devices in the network system, capable of outlining the techniques of modulation and multiplexing; able to explain the functions of telecommunications devices in the network system

Topics: Introduction to Telecommunication Networks; Modulation (Amplitude and frequency); Digital Modulation; Multiplexing Techniques; Coding; Telephony Systems; Technology of Telecommunications Devices

Prerequisite: Signals and systems

Textbook:

ENCE606025
COMPUTER NETWORKS SECURITY + LABORATORY
3 CREDITS

Learning Outcomes: In this subject, student will study security techniques in computer networks. After following this course, students are able to analyze and implement security aspects on the network computer, capable of analyzing the security and integrity of your data and perform protection, able to apply the techniques of cryptography and authentication in network security and web.

Topics: Security and integrity of Data; Vulnerabilities; Resource Protection; Private & Public Key Cryptography; Authentication; Network and Web Security.

Prerequisite: Design and management of computer networks + Lab

Textbook:
ENCE606026
EMBEDDED SYSTEMS 2 + LABORATORY
3 CREDITS

Learning Outcomes: In this course, students learn to optimize resources in embedded systems that include the CPU, memory and other resources. After following this course, the student will be able to make advanced embedded systems design with attention to efficient power, and for mobile and networking purposes.

Topics: Periodic interrupts, waveform generation, time measurement; Implementation strategies for complex embedded systems; Techniques for low-power operation; Mobile and networked embedded systems.

Prerequisite: Embedded Systems 1, Operating Systems, Digital System Design + Lab

Textbook:

ENCE606027
PROFESSIONALISM AND ETHICS IN INFORMATION TECHNOLOGY 2 CREDITS

Learning Outcomes: In this course, students will learn the concept of professionalism and ethics in the field of information technology. After following this course, the student is able to describe the current issues in the code of conduct IT; able to elaborate on professional ethics, the role of professional organizations against its members; able to explain the current job classification in the field of IT and professional certification IT field; capable of outlining the importance of the code of ethics of the profession and its impact on the wider community; able to explain the social responsibility in the field of IT; able to apply the concepts of professionalism and ethics in certain cases.

Topics: Ethics; Job, profession and professional; Profession in information technology; Organization and code of Ethics of IT experts; cyber ethics; intellectual copyright; Internet crime

Prerequisite: none

Book Reference:
2. Tavani, Herman t., *“Ethics & Technology: Ethical Issues in an Age of Information and Communication Technology”*, John Wiley & Sons, 2004

ENCE606028
OBJECT ORIENTED PROGRAMMING + LABORATORY
3 CREDITS

Learning Outcomes: In this lecture, students will study how to create program with object-oriented concepts. After following this course, students are able to implement a software design into object-oriented programming language; able to establish the concept of object-oriented programming (class, constructor, scope of variables); able to outline the Basic objects (arrays, array list, object collection, iterator); able to describe the concept of design class (coupling, cohesion, refactoring, inheritance, polymorph, substitution); able to implement a GUI-based programming, exception handling and multithreading.

Topics: Java Language Elements; Java Language Operation; Defining and Using Class; System, Strings, String Buffer, Math & Wrapper Classes; Array; Classes & Inheritance; Design Graphical User Interface & Event Driven; Exceptions; Collections; Threads and Javadoc

Prerequisite: Advanced Programming

Textbook:
2. Bart Baesens URet.al., *“Beginning Java Programming: The Object-Oriented Approach”*, Wrox, 2015

ENCE606029
WIRELESS TECHNOLOGY
3 CREDITS

Learning Outcomes: In this course, students learn the basics of wireless technologies including how it works, techniques, and standardizing on wireless network and mobile. After following this course, the participant is able to explain the basics of wireless technology, techniques in wireless network technology, the standard IEEE 802.11, 802.15 and capable of analyzing projections of future wireless technologies.

Topics: The technology 802.11 (Wireless LAN); Technology 802.15 (Bluetooth, Zigbee, WPAN)

Prerequisite: Computer Networks + Laboratory

Textbook:

ENCE607030

SEMINAR

2 CREDITS

Learning Outcomes: In this subject, students learn how to make bachelor thesis proposal to design system, component, and process in the field of embedded systems or computer networks within the research framework.

Topics: Introduction and research background; literature studies; research design

Prerequisite: already passed 120 CREDITS

Textbook: -

ENCE606023

INTERNSHIP

2 CREDITS

Learning Outcomes: In this subject, students will learn how to work in a company. After following this subject, the student will be able to participate significantly in the team to complete the work related to the field of ICT. In this course, the student is required to be able to be active for working with the team. Students will also be able to deliver the results of his/her work in the internship report seminar.

Topics: Practical work in the company

Prerequisite: already passed 90 CREDITS

Textbook: -

ENCE607032

ENTREPRENEURSHIP IN INFORMATION TECHNOLOGY

2 CREDITS

Learning Outcomes: In this course students learn the basic concepts of project management and marketing specialized in the field of information technology. After following this course the students are able to implement the concepts and skills of entrepreneurship in innovation of information technology in the form of a business plan expertise in innovation/product which corresponds to the development of information technology.

Topics: Charging for Expertise, Think, Plan, Act Like an Entrepreneur, Making a Business Successful, Taking the Initiative, Enabling an E-Business, Providing Outsourced Services & Building a Contracting Business, guest lectures

Prerequisite: Computer-Based Systems

Textbook:

ENCE607033

CAPITA SELECTA IN COMPUTER ENGINEERING

2 CREDITS

Learning Outcomes: In this course, students will learn about the current topics in computer engi-
neering industry. After following this course the students are able to analyze the development of the industry in the field of computer engineering and the problems faced in General.

Topics: The concept of the latest computer technology; Latest computer technology applications; Tradeoff in the new technology of computer science; The latest issues in computer engineering

Prerequisite: none

Textbook: to be determined later

ENCE607034

TELECOMMUNICATION NETWORKS LAB

1 CREDITS

Learning Outcomes: This course aims to provide experience to students in doing experiments that analyze and demonstrate the concepts of Telecommunication Engineering. After completing this course, students are able to explain the techniques of modulation and multiplexing; able to describe the workings of all components of telecommunications devices in the network system

Topics: Introduction to telecommunication networks, Amplitude Modulation, frequency modulation, Telephony Systems, PCM and TDM, Digital Modulation, Line Coding, Digital Filters FIR

Prerequisite: Telecommunications Network

Textbook:
1. Telecommunications Engineering Teaching Modules - Laboratory of Telecommunications.

ENCE607035

HUMAN COMPUTER INTERACTION

2 CREDITS

Learning Outcomes: In this course, students learn and apply HCI theory and analytical approach in producing a prototype of human and computer interaction that is high quality, effective, and efficient. After following this course, the student will be able to design and analyse an interface of computer-based systems.

Topics: factors in HCI; input and output devices; interaction; interaction design; HCI in software process; design rules; implementation support; evaluation techniques; universal design

Prerequisite: none

Textbook:

ENCE608036

BACHELOR THESIS

4 CREDITS

Learning Outcomes: In this special course, students will learn to examine and engage in a research team. After following this course, students will be able to design systems, components, and processes in the field of embedded systems or computer networks within the framework of research. Students will be able to carry out the planned research, be able to analyze the results of the study, able to convey the results of the research in thesis defense.

Topics: Design and implementation of experimental research; Data analysis; Conclusion

Prerequisite: Seminar

Textbook:
-

ENCE608037

PROJECT MANAGEMENT IN INFORMATION TECHNOLOGY

3 CREDITS

Learning Outcomes: In this subject, students will discuss the managerial principle in IT projects. After following this course, students are expected to be able to apply project management,
including team management, scheduling, project management, information management, and
design of the project plan

Topics: Project management principles; Risk, safety, dependability and fault tolerance; IT Project
Collaboration strategies; Relevant tools, standards and/or engineering constraints

Prerequisite: Software Engineering

Textbook:
 2013.

ENCE608036
MULTIMEDIA SIGNAL PROCESSING
3 SKS

Learning Outcomes: In this course students will learn multimedia signal processing technology to
support the delivery of multimedia information through the Internet. At the end of this course,
the student will be able to perform analysis of multimedia signals in the network using appropriate
techniques. Students will be able to describe components in multimedia files, multimedia
compression techniques, are able to perform analysis and processing of multimedia data such as
image, sound and video. Students will also be able to apply a digital image processing algorithms
to analyze the information in it.

Topic: Introduction to Multimedia network, Coding and compression of Multimedia Signals (images,
sounds, video), improvement the quality of an image, image processing, image Segmentation,
representation and description, object recognition

Prerequisite: Advanced Programming

Textbook:
1. J.N. Hwang, Multimedia Networking: From Theory to Practice, Cambridge University Press,
 2009.

ELECTIVES OFFERED IN COMPUTER ENGINEERING STUDY PROGRAM:

ENCE607101
VLSI DESIGN
2 SKS

Learning Outcomes: At the end of this course, student will be able to describe the stages of the
CMOS design process, implement the Scale of Lambda design, evaluate the characteristics and
performance of the power transistor circuit and CMOS digital, as well as the explain the optimization
of high level design techniques.

Topics: Mixed-signal circuits; Design parameters issues; Circuit modelling & Simulation methods

Prerequisite: Fundamental of Digital System + P

Textbook:

ENCE607102
DATA ANALYSIS ENGINEERING
3 CREDITS

Learning Outcomes: In this course the student is directed to implement the data analysis algorithm into the program. At the end of this course the student will be able to use mathematical and statistical techniques commonly used in basic pattern recognition. Students will be able to use some of the techniques common learning algorithm either supervised or unsupervised in conducting pattern recognition, classification and clustering.

Topics: An introduction to pattern recognition, artificial neural networks, the back-propagation algorithm, unsupervised learning, Principal Component Analysis

Prerequisite: Complex Variables and Vector Analysis, probability & process Stochastic Programming, Advanced

Textbook:
1. Christopher M. Bishop, “Pattern Recognition and Machine Learning

ENCE608103
BIG DATA TECHNOLOGY
3 CREDITS

Learning Outcomes: In this course students will learn the technology that can be used in utilizing big data to solve different fields (for example: internet, telecommunications, retail). At the end of this course, students will be able to manage (collection, preparation, processing, validation, interpretation) and analyze large amounts of structured and random data.

Topics: Introduction to Data Engineering, Hadoop Architecture, The Hadoop Distributed File system, Setting Up Hadoop clusters, administering Hadoop, Map Reduce Framework, developing a Database Application, Hive Map Reduce, Spark Processing, Big Data Analytic Project

Prerequisite: Data Base System

Textbook:

ENCE608104
REGULATION & PUBLIC POLICY on ICT SECTOR
3 CREDITS

Learning Outcomes: In this course students will be exposed on the basics of drafting process and the development of regulatory and public policies, especially in the era of vast development in information and communication technology (ICT). At the end of this course, the student will be able to explain the basics of public policy, law and regulation in telecommunication industry, and Internet governance. This course will also provide examples of applicable regulation and policy in the field of telecommunications and the Internet, to anticipate the pace of change and the community dynamics implied by the development of ICT.

Topics: Public administration, public policy significance, range of research methods and policy research, comparative studies, introduction to law and policy regulation in telecommunications, economic analysis of telecommunications regulation, key issues of telecommunication regulation, understanding internet governance, the internet governance stakeholder, the internet governance process

Prerequisite: -

Textbook:
4.6. UNDERGRADUATE PROGRAM IN BIOMEDICAL ENGINEERING

Program Specification

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Awarding Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>2.</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3.</td>
<td>Programme Title</td>
<td>Undergraduate Program in Biomedical Engineering</td>
</tr>
<tr>
<td>4.</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5.</td>
<td>Final Award</td>
<td>Sarjana Teknik (S.T)</td>
</tr>
<tr>
<td>6.</td>
<td>Accreditation / Recognition</td>
<td>Early accreditation by BAN PT for new study program</td>
</tr>
<tr>
<td>7.</td>
<td>Language(s) of Instruction</td>
<td>Bahasa Indonesia</td>
</tr>
<tr>
<td>8.</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9.</td>
<td>Entry Requirements</td>
<td>High school /equivalent AND pass the entrance exam.</td>
</tr>
<tr>
<td>10.</td>
<td>Study Duration</td>
<td>Designed for 4 years</td>
</tr>
<tr>
<td>Type of Semester</td>
<td>Number of Semester</td>
<td>Number of weeks / semester</td>
</tr>
<tr>
<td>Regular</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Graduate Profiles:
Biomedical Engineering Graduates that are capable of design and build device prototype, equipment and technology which support the industry and national and international health services.

Expected Learning Outcomes:
Biomedical Engineering Graduates are expected to have the following competence:

1. Able to apply mathematics, science, and engineering principles.
2. Able to model and simulate a biological system mathematically using the computer.
3. Able to implement the basic principles in mathematics, biology, physics, and engineering.
4. Able to design and conduct experiment, analyze and interpret data.
5. Able to make measurement and interpret living and non-living material data.
6. Able to design system, components, or process to fulfill the needs in realistic limitation such as: economic, environment, social, political, ethics, health and safety, feasibility of manufacture, and sustainability.
7. Able to identify, formulate and solve engineering problems.
8. Able to perform independent and life-long learning.
9. Able to use the technique, ability, and modern help tools needed in engineering practices.
10. Able to implement professional aspects and responsibility ethics.
11. Understand the contemporary and future issues faced by the society in local, global, social and business environment related to the engineering areas.
12. Able to think critically, creatively, and innovatively and have an intellectual curiosity to solve problems in the individual and group level.
13. Possess entrepreneur spirit characterized in innovation and independence based on ethics.
14. Able to use spoken and written Bahasa Indonesia and English well for academic and non-academic activities.
15. Possess sensitivity and empathy towards issues in the environment, society, nation, and country.
16. Able to operate and use the information communication technology.
17. Able to analyze medical information/data in connection with human physiology condition.
18. Able to design simple medical equipment prototype in the individual and group level.
19. Able to analyze medical information management technique to solve problems in medical equipment.
20. Able to characterize and integrated electronic device and circuit.
21. Able to implement control algorithm design for biomedical devices/instruments.
13. Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.50%</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>19</td>
<td>13.19%</td>
</tr>
<tr>
<td>iii</td>
<td>Expertise Subjects</td>
<td>90</td>
<td>62.5%</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>9</td>
<td>6.25%</td>
</tr>
<tr>
<td>v</td>
<td>Special Subjects (KP, Seminar, and Undergraduate Thesis)</td>
<td>8</td>
<td>5.56%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

14. Total Credit Hours to Graduate 144 SKS

Carrier Prospects

Graduates from Biomedical Engineering Study Program can work in various types of companies and health industries, information technology, education, government or regulator, and other industries related to health facilities, such as hospitals and health clinics.
LEARNING OUTCOMES

Graduate Profile:
Engineering Graduates that are capable of designing and building device prototype, equipment and technology which support the industry and national and international health services

Able to implement control algorithm for biomedical equipment/ instrument.
Able to design simple medical equipment prototype in the individual and group level
Able to analyze medical information/data in connection with human physiology condition
Able to analyze medical information management technique to solve problems in medical equipment.

Able to design system, components, or process to fulfill the needs in realistic limitation such as: economic, environment, social, political, ethics, health and safety, feasibility of manufacture, and sustainability.
Able to characterize and integrated electronic device and circuit.
Able to model and simulate a biological system mathematically using the computer
Able to make measurement and interpret living and non-living material data

Able to apply mathematics, science, and engineering principles.
Able to identify, formulate and solve engineering problems.
Able to applied natural science and engineering.
Able to design and conduct experiment, analyze and interpret data.

Able to perform independent and life-long learning
Able to use the technique, ability, and modern help tools needed in engineering practices
Able to implement professional aspects and responsibility ethics
Understand the contemporary and future issues faced by the society in local, global, social and business environment related to the engineering areas

Able to think critically, creatively, and innovatively and have an intellectual curiosity to solve problems in the individual and group level
Possess entrepreneur spirit characterized in innovation and independence based on ethics
Able to operate and use the information communication technology
Possess sensitivity and empathy towards issues in the environment, society, nation, and country
Able to use spoken and written Bahasa Indonesia and English well for academic and non-academic activities

Possess sensitivity and empathy towards issues in the environment, society, nation, and country
Possess entrepreneur spirit characterized in innovation and independence based on ethics
Able to operate and use the information communication technology
Able to use spoken and written Bahasa Indonesia and English well for academic and non-academic activities
LEARNING OUTPUT

<table>
<thead>
<tr>
<th>KKNI Level 6</th>
<th>General Competency</th>
<th>Output</th>
</tr>
</thead>
</table>
| Able to applied their expertise and use science, technology, and/or art in their respective fields in solving problems and able to adapt to any situation faced. | • Able to apply mathematics, science, and engineering principles.
• Able to implement the basic principles in mathematics, biology, physics, and engineering.
• Able to model and simulate a biological system mathematically using the computer.
• Able to design simple medical equipment prototype in the individual and group level.
• Able to characterize and integrated electronic device and circuit.
• Able to implement control algorithm design for biomedical devices/instruments. | • Undergraduate Thesis
• Paper
• Publication, including a summary article of undergraduate thesis with journal format on UI repository.
• Internship training report. |
| Able to master theoretical concept in certain knowledge of a field in general and deep specialized theoretical concept in said field and able to formulate problem-solving procedures | • Able to identify, formulate and solve engineering problems.
• Able to implement the basic principles in mathematics, biology, physics, and engineering.
• Able to use the technique, ability, and modern help tools needed in engineering practices.
• Able to design system, components, or process to fulfill the needs in realistic limitation such as economic, environment, social, political, ethics, health and safety, feasibility of manufacture, and sustainability. | • Undergraduate Thesis
• Paper
• Publication, including a summary article of undergraduate thesis with journal format on UI repository.
• Internship training report. |
| Able to make the correct decision based on information and data, and able to give instruction in choosing from a variety of solution alternatives both independently and in group. | • Able to analyze medical information management technique to solve problems in medical equipment.
• Able to analyze medical information/data in connection with human physiology condition.
• Able to design and conduct experiment, analyze and interpret data.
• Able to make measurement and interpret living and non-living material data.
• Able to analyze medical information management technique to solve problems in medical equipment. | • Undergraduate Thesis
• Paper
• Publication, including a summary article of undergraduate thesis with journal format on UI repository. |
| Be responsible for their own work and can be given responsibility in achieving organization’s output | • Able to think critically, creatively, and innovatively and have an intellectual curiosity to solve problems in the individual and group level.
• Understand the contemporary and future issues faced by the society in local, global, social and business environment related to the engineering areas.
• Possess entrepreneur spirit characterized in innovation and independence based on ethics. | • Undergraduate Thesis
• Paper
• MPKT concept map.
• Publication, including a summary article of undergraduate thesis with journal format on UI repository. |
COURSE STRUCTURE
UNDERGRADUATE PROGRAM IN BIOMEDICAL ENGINEERING

Semester 1

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ENGE600003</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>ENBE601001</td>
<td>Biology Engineering</td>
<td>2</td>
</tr>
</tbody>
</table>

Sub-Total: 19

Semester 2

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>UIGE600020-48</td>
<td>Sport/Art</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>ENBE602002</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>ENBE602003</td>
<td>Digital Circuits & Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ENGE600009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
</tbody>
</table>

Sub-Total: 20

Semester 3

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENBE603004</td>
<td>Electrical Circuit</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ENEE603005</td>
<td>Vector Analysis and Complex Variables</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ENBE603034</td>
<td>Biomedical Statistic and Probability</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ENEE603007</td>
<td>Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ENBE603004</td>
<td>Basic Anatomy and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ENBE603005</td>
<td>Introduction to Biomedical Technology</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ENBE603006</td>
<td>Ethics of Biomedical Technology</td>
<td>2</td>
</tr>
</tbody>
</table>

Sub-Total: 20
Semester 4

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENEE604014</td>
<td>Signal and System</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ENBE604007</td>
<td>Basic Computer and Programming</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ENBE604008</td>
<td>Analog Electronics</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ENBE604009</td>
<td>Analog Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>ENBE604010</td>
<td>Electromagnetic Field Theory</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ENBE604011</td>
<td>Introduction to Biomedical Technology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>ENBE604012</td>
<td>Introduction to Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>ENBE604013</td>
<td>Introduction to Medical Informatics</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub-Total: **20**

Semester 5

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENBE605014</td>
<td>Medical Imaging Technology</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ENEE605016</td>
<td>Numerical Computing</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ENBE605015</td>
<td>Modelling of Medical System</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ENGE600012</td>
<td>Health, Safety and Environmental Protection</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>ENBE605016</td>
<td>Basic Control System</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ENBE605017</td>
<td>Biomechanics and Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ENBE605018</td>
<td>Medical Signal Processing</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub-Total: **19**

Semester 6

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENBE606019</td>
<td>Scientific Writing</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ENEE606026</td>
<td>Microprocessor and Microcontroller</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ENEE606027</td>
<td>Microprocessor and Microcontroller Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>ENBE606020</td>
<td>Design of Biomedical Sensors</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ENBE606021</td>
<td>Biomedical Engineering Standards & Regulation</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>ENBE606022</td>
<td>Medical Communication System</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ENBE606024</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub-Total: **18**
Semester 7

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENEE607031</td>
<td>Engineering and Entrepreneur</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ENBE607023</td>
<td>Knowledge Base Intelligent Systems</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ENBE607024</td>
<td>RF and Microwave System Device</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ENBE607025</td>
<td>Embedded Biomedical System</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ENBE607026</td>
<td>Internship (Special Subjects)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>ENBE607027</td>
<td>Seminar (Special Subjects)</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total</td>
<td>18</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENBE608029</td>
<td>Bachelor Thesis (Special Subjects)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>144</td>
</tr>
</tbody>
</table>

Elective Subjects for Biomedical Engineering Study Program are as follow:

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENBE607028</td>
<td>Biomedical Special Topic 1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ENBE608030</td>
<td>Biomedical Special Topic 2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ENBE608031</td>
<td>Medical Therapy Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective subjects can also be taken across study programs, departments, and faculties. For students to take subjects from other faculty, they must follow Universitas Indonesia regulation and procedure.
UNIVERSITY COURSES

INTEGRATED CHARACTER BUILDING A
UIGE600001
6 credits

General Purpose: Facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Learning Outcome:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Topics: Interactive lecture, Experiential Learning, Collaborative Learning (CL), Problem Based Learning (PBL), Project-Based Assignment and Computer Mediated Learning (CML)

Prerequisites: OBM (New Student Orientation)

Textbook: According to the topic

Integrated Character Building B
UIGE600002
6 credits

General Purpose: Facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Learning Outcome:
Students have an ethic, moral, personality and good character in completing the task at hand;
Students role as citizens who take pride and love of the homeland and support the continuity of life;
Students are able to work together and have a high sensitivity and awareness to the community and the environment;
Students are able to think logically, critically and creatively;
Students are able to use mathematics to solve problems quantitatively;
Students are able to use information and communication technology (ICT) for development;
Students are able to analyze the system of nature integrative and comprehensively;
Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Topics: Interactive lecture, Experiential Learning, Collaborative Learning (CL), Problem Based Learning (PBL), Project-Based Assignment and Computer Mediated Learning (CML)

Prerequisites: OBM (New Student Orientation)

Textbook: According to the topic

ENGLISH
UIGE600003
3 credits
Learning Outcomes: After finishing this course, student is expected to have the ability to use English in supporting the learning process in the University and increase their language ability independently.

Syllabus: Learning ability (to be a person that is active in learning, building diction, word format, and use the dictionary, listening strategy and extensive reading), Grammar (Basic Grammar Revision, Adjective Clause Type, Adverb Clause, Verb Clause), Reading (reading skills: skimming, scanning, main idea, supporting idea, reading popular science article, reading academic text), Listening (listening to short conversation, listening to lectures, listening to the news and listening to short stories), Conversation (participation in discussion and meetings, giving presentation), Writing (writing summary of short story, articulating graphic and table, write an academic paragraph, writing basic academic essay).

Prerequisites: None
Textbook: Poerwoto, C. et.al. Reading Comprehension for Engineering Students

RELIGION
UIGE600010-15
2 credits

SPORT/ART
UIGE600020-48
1 credit

BASIC ENGINEERING COURSES

CALCULUS
ENGE600003
4 credits
Learning Outcomes: Able to apply advanced mathematical concepts for electrical engineering; Able to apply mathematical concepts of functions and limits, derivative (single/multivariable) and its applications, integrals (single/multifold) and its applications, Taylor series, and Maclaurin series.
Syllabus: Functions and limits, Derivative (single/multivariable) and applications, integrals (single/multifold) and its applications, Taylor and Maclaurin series
Prerequisites: None

PHYSICS (ELECTRICITY, MWO)
ENGE600007
3 credits
Learning Outcomes: this subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.
Syllabus: electricity charge and Coulomb law, static electric field and Gauss law, electric potential, capacitor, DC current and basic circuit analysis, magnetic field, induction and electromagnet, Faraday law and inductance, magnetic material characteristic, transient, AC current, wave,
sound, polarization, interference, diffraction, optical geometric, light and measurement of light intensity, electricity laboratory: electrolysis, Wheatstone bridge, Kirchhoff law, earth magnetic field, temperature coefficient, RLC series grid characteristic, Ohm Law, Transformer. Optic Laboratory: polarmeter, lenses, prism index bias, spectrometer, diffraction grid, Newton’s ring.

Prerequisites: None
Textbook:

PHYSICS (ELECTRICITY, MWO) LAB
ENGE600008
1 credit
Syllabus:

PHYSICS (MECHANICS AND THERMAL)
ENGE600005
3 credits
Learning Outcomes: This subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill.
Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyze the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.
Syllabus: scale, object kinematic, object mechanic, linier momentum conservation law and energy, harmonic movement, gravitation, dynamic and hard object kinematic, introduction to basic concept (pressure, thermodynamic system, system environment, temperature), expansion, energy equilibrium (thermal equation), energy transfer, ideal gas, thermodynamic first law, enthalpy and entropy, application of thermodynamic first law for open and shut system, thermodynamic second law, kinetic theory for ideal gas. Mechanical Practice, measurement, inertia moment, gravitation speed, liquid density, friction coefficient, collision, movement torque, liquid viscosity, modulus young, newton liquid viscosity, liquid surface pressure, oscillatory. Heat Practice: disruptive coefficient, heat conductivity, thermocouple calibration, calorimeter, joule constant, Laplace constant, heat collector, determine air Cp/Cv value, liquid disruptive and water anomaly.
Prerequisites: None
Textbook:
Giancoli D.C, General Physics, Prentice Hall Inc, 1984
Sears-Salinger, Thermodynamics, Kinetic theory and statistical thermodynamics, Wesley, 1975.
1 credit

Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

BASIC CHEMISTRY

ENGE600009

2 credits

Learning Outcomes: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry.

Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

Syllabus: Introduction to chemistry science and engineering application, material and measurement, atom, molecule and ion, chemistry equation and Mol concept, chemical reaction solution, atomic structure and periodic property, thermochemical, chemical kinetic, chemistry equilibrium, electrochemical, metal material and substance.

Prerequisites: None

Textbook:

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION

ENGE60001

2 credits

Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organizations that all engineers need to be equipped to appreciate understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organization). Whilst the level of risk and degree of control is dependent on the industry sector concerned, the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipment, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment.

Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY

ENGE600010

3 credits

Learning Outcomes: Statistics and probability has been known as applied mathematics, which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision-making.

The course of Statistics and Probability is intended to give a basic ability for students to handle
quantitative data and information. There are two stages that are delivered which is descriptive
and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting
the data in a scientific manner. Then, inductive/inference stage includes the process of estimating
and drawing conclusion based on available data and relations between variables. Hence, stu-
dents are expected to apply their knowledge of statistics in conducting experiments in laboratory
works/assignments as well as research studies in their final projects.

Syllabus: Probability concept, random variables and probability distribution, mathematic expect-
tancy, probability distribution function, probability transformation, stochastic process, random
walk, spectrum, mean square estimation, entropy, Markov process, central limit theorem.

Prerequisites: None

Textbook:
Guojun Lu, “Communication and Computing for Distributed Multimedia Systems,” John Wiley and
Sons

BIOMEDICAL ENGINEERING COURSES

ENBE601001
BIOLoGY ENGINEERING
2 credits
Learning Outcomes: Give basic knowledge on Mechanism Biology from engineering perspectives.
Instruction:
Able to explain the basic concept on cell, molecular biology, biochemistry and genetic engineer-
ing.
Possess comprehensive knowledge on important components, and various functions of molecular
cell system.
Have the knowledge on techniques and approaches often used in biology molecular cell.
Applied biological knowledge for Biomedical Engineering and Health Science.
Syllabus: Molecules of cell, structure and function of protein, metabolism in cell, changes in
cell: constituent of life molecule design, biochemistry and genetic revolution, DNA, biochemistry
linkages with biodiversity, protein synthesis from nucleate acid to amino-.2 acid sequence, RNA
polymerase to ribosome for protein synthesis, the difference between prokaryotic and eukaryotic;
catalyst reaction to cell: protease, nucleoside monophosphate kinases; mechanical chemistry on
cell: how protein motors convert chemical energy into mechanical work.
Prerequisites: None
Textbook:
Alberts, 2003, Molecular Biology of the cell.

ENBE602002
ENGINEERING DRAWING
2 credits
Learning Outcomes: Students are able to change geometry component by drawing according to
the drawing standard of International Standard Organization (ISO). Students understand the drawing
theory and procedures based on ISO standard. Students have the ability to read, interpret
and moving 2D/3D geometry images from components or construction. Students are able to draw
orthogonal projection based on ISO standard.
Syllabus: Function and benefit of engineering drawing; SAP; measurement and evaluation; Intro-
duction to drawing tools; understanding basic geometry, paper format, drawing rules, line, plane,
line configuration, basic shape geometry; geometric visualization, isometric and unsymmetrical
projection, function and type of lines, geometric configuration shape, orthogonal projection, pro-
jection standard, viewing concept, width of view principle, advance orthogonal projection, the
concept of circumpolar regions, the concept of special areas, cutting concept, wide display and
refraction.
Prerequisites: None
Textbook:
ENBE602003
DIGITAL CIRCUITS AND LABORATORY
3 credits

Learning Outcomes: This course is aim for students to understand the many level of planning and implementation of digital system by using simple logic gate, logic function component, and simple memory unit. This course includes several laboratory classes in design, Implementation and verification of digital logic sequence. Tools such as Xilinx and other digital sequence simulation will be use.

Syllabus: Introduction to AND, OR, and NOT logic gates: combination logic sequence, Multiplexer-Decoder, Full Adder, Biner Memory Unit: SR latch, D and JK flip-flops, sequential sequence: Ripple Counter, Register and Counter: Universal Shift Register, Ring Counter and BCD counter, design and simulation.

Prerequisites: None

Textbook:

ENBE603004
ELECTRICAL CIRCUIT
3 credits

Learning Outcomes: After finishing this course, students are expected to be able to use star and delta circuit, calculate current phase, conductor, three-phase electric power system, electric circuit complex frequency, and use Laplace and Fourier transformation and its invers on electric circuit.

Syllabus: Balanced three-phase sequence, complex frequency, magnetic clutched circuit; Laplace transformation, Laplace transformation circuit, frequency selection, active filter sequence, two polar sequence, Fourier series review, circuit with Fourier transformation, resistive circuit, dependent sources and opamp, analysis method, energy saving element, orde 1 circuit, orde 2 circuit, sources and fasor sinusoidal, analysis the state of AC tunak, tunak AC power condition.

Prerequisites: None

Textbook:

ENBE603005
BASIC ANATOMY AND PHYSIOLOGY
3 credits

Learning Outcomes: After finishing this course, students are expected to have the ability to analyze the human body structure and the physiological function of the human body.

Prerequisites: None

Textbook:
Marieb EN and Hoen K. Human Anatomy & Physiology. 10th ed.Elsevier Inc. 2015
ENBE603006
INTRODUCTION TO BIOMEDICAL TECHNOLOGY
3 credits
Learning Outcomes:
After finishing this course, students are expected to have the following abilities:
- Have an understanding of the biomedical technology system.
- Have the ability to explain the concept of engineering system application to solve human biology problems.
- Able to illustrate the concept of detection, measurement, and monitoring of the human physiological signal.
- Able to convey the diagnosis interpretation concept through bioelectric data signal processing technique.
- Able to explain the concept of devices for therapy and rehabilitation.
- Able to make analysis based on computer data of a patient data in connection with making clinical decision.
- Able to explain the concept of device for artificial organ.
- Able to analyze the concept of medical imaging technique.
Prerequisites: None
Textbook:

ENBE603007
ETHICS OF BIOMEDICAL TECHNOLOGY
2 credit
Learning Outcomes:
Able to explain the ethic and ethical code in medical field both in the international level and in Indonesia.
Able to analyze the ethics problem in medical field.
Syllabus: The procedures and ethics that must be followed while planning to conduct experiment on subject of animal and human; the ethical dilemma in biomedical engineering research and the importance of considering all sides of the problems; the health technology impact for the society; several equality concept for gender, culture, and ethic.
Prerequisites: None
Textbook:
Ethics, Research Methods and Standards in Biomedical Engineering, Monique Frize, Publisher: Morgan & Claypool, 2011.
Ethics and Community in the Health Care Professions, Michael Parker, Publisher: Routledge, 1999.

ENBE604008
BASIC COMPUTER AND PROGRAMMING
3 credits
Learning Outcomes: Students are able to explain the hardware and software of computer system, able to design simple algorithm like pseudo code and implemented said algorithm to programming language.
Syllabus: Introduction to computer system, Introduction to computer hardware, Introduction to computer software, algorithm, pseudo code, Introduction to programming language C, programming process on programming language C, structured program for programming language C.
Prerequisites: None
Textbook:
ENBE604009
ELECTRONIC ANALOG
3 credits
Learning Outcomes: After finishing this course, students are expected to be able to explain, characterize diode, FET, JFET, MOSFET, VMOS, CMOS, and MESFET; able to analyze BJT application sequence: small-signal model and large-signal for electronic circuit and able to analyze FET application circuit.
Syllabus: Diode basic principles, transistor circuit, FET, JFET, MOSFET, VMOS, CMOS, MESFET, BJT common source circuit, common base, common emitter, and common collector, BJT applications, small signal and large signal BJT model; current and voltage amplifier; MOSFET depletion and enhancement type, FET application.
Prerequisites: Electrical Circuit
Text Books:
ENBE604010
ELECTRONIC ANALOG LABORATORY
1 credit
Learning Outcomes: After finishing this course, students are expected to able to design one stage, two stages, and multi stages of amplifier sequence and multi vibrator, oscillator, and op amp circuit.
Syllabus: the defining experiment of device characteristic, diode circuit, amplifier one stage, compound transistor stages, multi vibrator circuit, oscillator circuit, op amp circuit.
Prerequisites: Electrical Circuit
Textbook:
Electrical Circuit Laboratory Module
ENBE604011
ELECTROMAGNETIC FIELD THEORY
3 credits
Learning Outcomes: After finishing this course, students area expected to able to apply the Maxwell Law 1, 2, 3, and 4.
Prerequisites: Calculus, Engineering Mathematics
Textbook:
ENBE604012
INTRODUCTION TO BIOMEDICAL TECHNOLOGY LABORATORY
1 credit
Learning Outcomes: After finishing the course, students are expected to
Syllabus: Basic Anatomy and Physiology Module, Basic Module on Medical Instrumentation, System Module for Body Monitoring.
Prerequisites: Introduction to Biomedical Technology
Textbook:
Biomedical Engineering Laboratory Module
ENBE604013
INTRODUCTION TO BIOMEDICAL INSTRUMENTATION
3 credits
Learning Outcomes: After finishing this course, students are expected to have the following abilities:
Understand biomedical measurement system.
Understand and applied various types of cardiovascular system measurements.
Understand and applied various types of respiration system measurements.
Understand and applied various types of nerve system.
Understand safety patient factors that needed to be paid attention to in measurement.
Syllabus: Introduction to biomedical instrumentation; basic transducer principle (active and passive transducer, transducer for biomedical application; source of bioelectric potentials; electrodes; the cardiovascular system; cardiovascular measurement; measurement in respiratory system; noninvasive diagnostic instrumentation; measurement in nervous system; sensory and behavioral measurements; electrical safety of medical equipment; role of laser in healthcare.
Prerequisites: None
Textbook:

ENBE604014
INTRODUCTION TO MEDICAL INFORMATICS
3 credits
Learning Outcomes:
After this course, students are expected to:
Able to understand the basic concept of information technology for application in the medical field.
Able to implement information basic method by combining basic knowledge of programming to acquire, organize, combine, and analyze health data sources.
Prerequisites: None
Textbook:
Biomedical Informatics: Computer Applications in Health Care and Biomedicine (Health Informatics) 4th ed. 2014 Edition.

ENBE605015
MEDICAL IMAGING TECHNOLOGY
3 credits
Learning Outcomes:
After this course, students are expected to:
Able to understand several basic concept in medical imaging technology.
Able to explain and analyze basic method of medical imaging process in reconstruction, improve image quality, creating image segmentation, image analysis, image visualization, and manage medical image data in relation with supporting the medical imaging process in health field.
Syllabus: Introduction to Medical Imaging Technologies (X-Ray and CT, MRI, Ultrasound, PET and SPECT, Electrical Impedance Tomography), Image formation and Reconstruction (Acquisition, Digitization, Image Reconstruction Methods), Image Enhancement (Fundamentals of enhancement techniques, Image enhancement with linear, nonlinear, fixed, adaptive, and pixel-based methods), Image Segmentation and Analysis (Fundamentals of Medical Image Segmentation, Image processing and acquisition artifacts, Thresholding, Edge-based techniques, Region-based segmentation, Classification, Morphological Methods for Biomedical Image Analysis), Image Visualization
(2-dimensional visualization, 3-dimensional visualization methods: surface rendering, volume rendering, Algorithm for 3-D visualization), Image Management (Fundamentals of Standards Compression Storage and Communication, Image archive and retrieval, three-dimensional compression).

Prerequisites: None

Textbook:

ENBE605016
MODELING OF MEDICAL SYSTEM
3 credits

Learning Outcomes: Students should understand the medical system components, understand the medical mathematic system model, understand the medical system modelling method, able to conduct simple medical system modelling and able to simulate.

Syllabus: Introduction to modelling system and medical signal, general system and signal mathematic model, analytic modelling medical system, analytic modelling analysis, medical system identification method, modelling parameter estimation method, and medical system modelling simulation.

Prerequisites: None

Textbook:

ENBE605017
BASIC CONTROL SYSTEM
3 credits

Learning Outcomes: This course is aimed to give students the ability to draw static or dynamic response from order system one, two, and higher, determine pole and zero from system, and dominant pole on a higher order system, explain Routh-Hurwitz, Nyquist diagram, TKA, and create Bode diagram.

Syllabus: continuous characteristic system order 1, 3 and approach for higher system order, stability analysis method of continuous linear system.

Textbook:

ENBE605018
BIOMECHANIC
3 credits

Learning Outcomes: This course gives the understanding of physical principal, which based the biological process and mechanism (movement, design, structure, material and transport). At the end of the course, students are expected to:
Apply the biomechanics principle to solve problems in human movement and musculoskeletal such as ergonomic, rehabilitation, and training.
Use effectively and safely biomechanics instrument and tools to acquire or appraise human movement.
Understanding the trend and issue in the future in regards to biomechanics.

Syllabus: Newton Law, Fluid Mechanics, Bernoulli, Drag Forces, Reynold Number, Static System Mechanic and Moving System, the Body’s Kinetic and Force and the influence on Movement and Stability, Basic Mathematics on Movement, Analysis and Instrumentation on body motion, the Basic concept of the human body bone and muscle mechanics, ergometry, the Basic concept of energy.

Prerequisites: None

Textbook:

ENBE605019
MEDICAL SIGNAL PROCESSING
3 credits
Learning Outcomes: This course is meant to introduce the students to basic signal processing management and use software for signal processing or image. After finishing this course, students are expected to able to explain the basic of digital signal processing and able to use the software for basic simulation for signal processing or image and familiar with the function within the signal or image processing toolbox (ex: Metlab).
Syllabus: Introduction to signal, visual and digital image, image transformation, color representation, image enhancement (domain spatial), image enhancement (frequency domain), convolution and correlation, image segmentation, object feature characteristic, image compression, pattern recognition, image restoration, image morphology, wavelet transformation.
Prerequisites: Basic Computer and Programming
Textbook:

ENBE606020
SCIENTIFIC WRITING
3 credits
Learning Outcomes: Students are able to write scientific paper with good structure that includes the usage of formal Bahasa Indonesia and English in scientific writing and the use of software to write a well-formatted scientific paper.
Syllabus: scientific writing systematic, experimental variables and set up; statistical analysis tools, the use of excellent Bahasa Indonesia in scientific writing; the use English in scientific writing, word processing software; styling; referencing tools.
Prerequisites: None
Textbook:
Technical Guidance for Universitas Indonesia Students’ Final Project
IEEE - Publish a Paper with IEEE (www.ieee.org)

ENBE606021
DESIGN OF BIOMEDICAL SENSORS
3 credits
Learning Outcomes:
Able to understand the development of microelectronics technology up until MEM.
Able to understand fabrication process of MEMS and Micro sensor.
Able to explain micro sensor performance and smart device.
Able to design biosensor for medical application.
Syllabus: various sensors for biology and medical, electronic materials and their process, biosensor material, standard microelectronic technology, micro sensor, SAW device, IDT micro sensor measurement parameter, IDT micro sensor fabrication, IDT micro sensor, smart sensor and MEMS.
Prerequisites: Analog Electronic, Electricity Current
Textbook:
Biological and Medical Sensor Technologies, Krzysztof Iniewski, Publisher: CRC Press, 2012.
ENBE606022
BIOMEDICAL ENGINEERING STANDARD AND REGULATION
2 credits
Learning Outcomes:
Able to analyze standard and regulation for biomedical engineering.
Able to analyze patient’s safety and security.
Syllabus: Medical devices design and manufacturing control, ISO 13485, How to Manufacture Good Health Device (CPAKB) in Indonesia, International Standard for Medical Devices: IEC 60601; EC Medical device directed (MDD), Medical devices design and control in the hospital. Patient safety and the biomedical engineer, Risk management, Patient safety best practices model, Hospital safety program, System approach to medical device safety, Electromagnetic interference in the hospital; Electrical safety in the hospital Accident investigation, Medical devices Failure modes, accidents and liability.
Prerequisites: None
Textbook:
National Institutes of Health (NIH), Ethical Guidelines & Regulations.
Ethics, Research Methods and Standards in Biomedical Engineering, Monique Frize, Publisher: Morgan & Claypool, 2011.

ENBE606023
MEDICAL COMMUNICATION SYSTEM
3 SKS
Learning Outcomes:
Able to explain the concept of several communication system technology for medical application.
Able to explain e-healthcare and telemedicine system.
Able to explain the design process for wired and wireless medical communication system.
Syllabus: Introduction to medical communication system, e-healthcare and telemedicine. Several special topics will be delivered include body-centric wireless communications, electromagnetic properties and modeling of the human body, portable wearable devices, medical implant communication systems, e-healthcare infrastructure, wireless body area network, mobile-based telemedicine system, and wireless power technology in medical devices.
Prerequisites: None
Textbook:

ENBE606024
BIOMATERIALS
3 credits
Learning Outcomes:
This course focuses on the basic biomaterial, characterization, biocompatibility, biodegradable, toxicity and the potential in commercial application. During class period, students are expected to have an understanding of the biomaterial concept and the characteristic it possess. At the end of the course, students are expected to:
Understand the basic concept of biomaterial and its characteristics.
Use modern analysis technique for biomaterial characterization.
Use engineering computation for biomaterial.
Understand the issue in surface area and toxicity.
Understand the material process and cost analysis.
Syllabus: Introduction and Overview/Importance of biomaterials, Classes of Materials Used in Medicine, Metallic Biomaterials, Polymeric Materials and composite, Ceramic biomaterials, Biodegradable materials, Soft and Hard tissue replacement, Tissue Engineering, Surface Properties and characterization of Biomaterials, Surface & Protein Interactions, Dental Implants, Biosensors, Bio devices, Targeted drug delivery, Biomaterials corrosion and degradation.
Prerequisites: None
Textbook:

ENBE607025
KNOWLEDGE BASED SMART SYSTEM
3 credits
Learning Outcomes: The course will discuss how to solve problems by using non-conventional method based on real mathematics value. The discussed method includes tolerant algorithm towards “imprecision”, “uncertainty”, and “limited knowledge” on system. The aim is to obtain an effective working system by using trained expert knowledge in the system.
Syllabus: Introduction to artificial intelligence system, concept and definition of fuzzy logic, fuzzy sets, fuzzy relations, fuzzy number operation, linguistic description, fuzzy inference, and fuzzy algorithm. Fuzzy control system, the Basic Concept of Artificial Neural Network (ANN), ANN training, back-propagation algorithm, other ANN algorithm, ANN application on fuzzy system, genetic algorithm, application.
Prerequisites: Engineering Mathematics, Basic Computer and Programming.
John Yen and Reza Langari, “Fuzzy Logic, Intelligence, Control and Information”, Prentice Hall, Inc. New Jersey, 1999

ENBE607026
RF SYSTEM DEVICE AND MICROWAVE
3 credits
Learning Outcomes:
Able to understand the principle of RF working sequence and microwave.
Able to design RF equipment and microwave.
Able to understand problem in designing RF sequence and microwave.
Able to suggest original idea to develop microwave technology in the future for Indonesia.
Able to implement microwave circuit instrument in interdisciplinary field.
Syllabus: Introduction to microwave engineering, Transmission line theory, Transmission Line and Waveguide, Network analysis, Impedance matching and tuning, Microwave Resonators, Microwave power dividers and couplers, Microwave Filters, Noise in Microwave Circuits & Active RF Components, Microwave Amplifier, Microwave Oscillators and Mixers.
Prerequisites: None
Textbook: Microwave Engineering, David M. Pozar, Publisher: John Wiley & Sons, 4th Ed. 2012.
RF & Microwave Design Essentials, Matthew M. Radmanesh, Publisher: AuthorHouse, 2007.

ENBE607027
BIOMEDICAL EMBEDDED SYSTEM
3 credits
Learning Outcomes: This course teaches students to implement medical application from embedded system. By the end of the course, students should be able to explain the development concept of embedded system and its implementation by using programming language such as Assembly Language, C Programming Language and other Programming Language.
Prerequisites: Microprocessor and Microcontroller

ENEE603005
VECTOR ANALYSIS AND COMPLEX VARIABLES
3 credits
Learning Outcomes: After completing this course, students are expected to have the ability to use complex function on electric circuit, implement Cauchy Riemann method on Laplace and Poisson equation, use Cauchy integral method on Cartesius coordinate and polar.

Syllabus: Number and complex function, polar form, De Moivre theory, dot multiplication and cross limit complex function, derivative, del, gradient, divergence, curl in complex function, analytical and harmonic function, Cauchy-Riemann equation, Laplace and Poisson, complex integral, Cauchy integral and residue integration, real integrals using complex function, vector on two dimension and three dimension space, vector operation, dot and cross.

Prerequisites: Calculus.

Textbook:

ENEE603007
ENGINEERING MATHEMATICS
3 credits

Learning Outcomes: After finishing this course, students are expected to implement the Green theory, Gauss and Stoke divergence for line and surface integral to determine series convergence to convert function towards Taylor series, MacLaurin and Fourier, and use function linearization, use Laplace, Fourier, and Z transformation.

Syllabus: The use and operation of vector, Derivative, del, gradient, divergence, curl from vector, line, surface integral, Gauss divergence, Stoke and Green theory, the use in electromagnetic field, definition of order, series, type of series, series test, ratio test, integral test, comparison test, root test, Raabe test, Gauss test, Taylor and MacLaurin series, Fourier series in complex form, Laplace, Fourier, and Z transformation.

Prerequisites: Calculus

Textbook:

ENEE604014
SIGNAL AND SYSTEM
3 credits

Learning Outcomes: This course is focus to introduce students on tools and technique on digital and analog signal analysis. After completing this course, students are expected to be able to process and transform signal to Fourier, Laplace, and Hilbert function, able to design a simple filter, capture signal to discrete (Z transform), able to design IIR and FIR filter on a continuous system.

Syllabus: Fourier transformation and its characteristics, Discrete Time Fourier Transformations and its characteristics, continuous time system, Laplace transformation and its characteristics. System function, windows, filter design. Hilbert transformation. Discreet time signals, sampling, reconstruction theory, Z-transformation and its characteristics. System function, discreet simulation of continuous system, windows, IIR and FIR filter design.

Prerequisites: Engineering Mathematics

Textbook:

ENEE605016
NUMERIC COMPUTATION
3 credits

Learning Outcomes: Able to solve problem using computational method.

Syllabus: Biner Computing System, computer memory, algorithm and system efficiency, the dynamics and Monte Carlo, Stochastic and random, error and error reduction.

Prerequisites: Engineering Mathematics

Textbook:

ENEE606026
MICROPROCESSOR AND MICROCONTROLLER
4 credits
Learning Outcomes: This course teaches students on microprocessor and microcontroller technology. After this course, students are expected to be able to create Intel Microprocessor 16 bits and 32 bits and 8051 Microcontroller (8 bits) program using low level programming and be able to design embedded system based on microcontroller 8051.
Prerequisites: Digital Sequence and Laboratory, Basic Computer and Programming.
Textbook:

ENEE606027
MICROPROCESSOR AND MICROCONTROLLER LABORATORY
1 credit
Learning Outcomes: This course teaches students on microprocessor and microcontroller technology. After this course, students are expected to be able to create Intel Microprocessor 16 bits and 32 bits and 8051 Microcontroller (8 bits) program using low level programming and be able to design embedded system based on microcontroller 8051.
Prerequisites: Digital Sequence and Laboratory, Basic Computer and Programming
Textbook:
Digital Laboratory, “Microprocessor and Microcontroller Laboratory Modules”

ENEE607031
ENGINEERING AND ENTREPRENEURSHIP
2 credits
Learning Outcomes: In this course, students studied the basic concept of management and marketing project specifically on information technology field. Upon completion from this course, students are expected to be able to create outline concept of IT product marketing, IT organization based on business concept, explain the concept of accounting and financial management in an IT company, and able to conduct an analysis on IT project. Students are also expected to be able to explain the entrepreneurship concept, marketing, and risk analysis in an IT project.
Syllabus: Introduction to marketing, Business organization, Accounting management, Business Finance, Business Analysis for new project proposal, Introduction to Entrepreneurship concept, Marketing risk analysis.
Prerequisites: None
Textbook: None (Lecture presented by professionals in the field of Information Technology.
ELECTIVES COURSES

ENBE607028
INTERNSHIP
2 credits
Learning Outcomes: In this course, students will be expected to participate in an internship in industries, institutions, or laboratories related to biomedical engineering. Upon completion of this course, students are expected to be able to combine and implement engineering knowledge that they've learnt before with new knowledge given by their supervisors. Students are also expected to be able to show professional conduct such as teamwork, discipline, responsibility, initiative, and interest, leadership, and improvement prospect.
Syllabus: Not Available
Prerequisites: Earn 90 credits. Internship locations are industries, institutions, and laboratories connected to biomedical engineering with appointed supervisors and person in charge that can guide the students daily. The choice of companies or laboratories will start with an administrative process in the Biomedical Engineering Study Program.
Textbook: Not Available

ENBE607029
SEMINAR
2 credits
Learning Outcomes: In this course, students are directed to implement their learnt knowledge into a full research supervised by a lecturer. After finishing this course, students are expected to be able to design and analyze a guided research, and able to write the findings of said research into a scientific writing in the form of seminar book. Students are also expected to showed their research in front of lecturers.
Syllabus: Not Available
Prerequisites: Earns more than 90 credits.
Textbook:
Technical Guidance for Universitas Indonesia Students' Final Project
IEEE Citation Reference

ENBE608033
UNDERGRADUATE THESIS
4 credits
Learning Outcomes: In this course, students are directed to implement their learnt knowledge into a research supervised by a lecturer. Upon completion of this course, students are expected to create a research concept by implementing existing theory. Under the guidance of a lecturer, students are expected to integrate and implement their concept and write their research results into scientific writing in the form of undergraduate thesis book. Students are also expected to present and defend their concept and findings in front of a panel of examiners on thesis examination day.
Syllabus: Not Available
Prerequisites: Earns more than 120 credits
Textbook:
Technical Guidance for Universitas Indonesia Students’ Final Project
IEEE Citation Reference

ELECTIVE COURSES FOR BIOMEDCIAL ENGINEERING

ENBE60703
BIOMEDIC SPECIAL TOPIC
3 credits
Learning Outcomes: Able to follow the latest development of biomedical engineering, including technology, business, and regulation aspects.
Syllabus: The latest issues on technology, application, business, and regulation aspects in the health field.

Prerequisites: None

Textbook: None

ENBE608031
BIOMEDIC SPECIAL TOPIC 2
3 credits

Learning Outcomes: Able to follow the latest development of biomedical engineering including the technology, business, and regulation aspects.

Syllabus: The latest issues on technology, application, business, and regulation aspects in the health field.

Prerequisites: None

Textbook: None

ENBE608032
MEDICAL THERAPY TECHNOLOGY
3 credits

Learning Outcomes: Able to analyze cancer and tumor issues and their treatment solution with radiotherapy and thermal therapy methods.

Prerequisites: None

Program Specification

| | 1. **Awarding Institution** | Universitas Indonesia
Double degree : Universitas Indonesia & partner universities |
| | 2. **Teaching Institution** | Universitas Indonesia
Double degree : Universitas Indonesia & partner universities |
| | 3. **Programme Title** | Undergraduate Program in Metallurgy and Materials Engineering |
| | 4. **Class** | Regular, Parallel, International |
| | 5. **Final Award** | Sarjana Teknik (S.T)
Double Degree : Sarjana Teknik (S.T) and Bachelor of Engineering (B.Eng) |
| | 6. **Accreditation / Recognition** | BAN-PT : “A” Grade
AUN-QA : Accredited |
	7. **Language(s) of Instruction**	Bahasa Indonesia and English	
	8. **Study Scheme (Full Time / Part Time)**	Full Time	
	9. **Entry Requirements**	High school graduate/equivalent, or Vocational/Polytechnics graduate	
	10. **Study Duration**	Programmed for 4 Years	
	Type of Semester	Number of semester	Number of weeks /semester
	Regular	8	17
	Short (optional)	3	8
	11. **Graduate Profiles:**	Undergraduate is able to design environmental friendly in metallurgy and material process, analyzing material degradation, and are capable of playing active and dynamic role with professional ethic in national, regional and international communities	
	12. **Expected Learning Outcomes:**	1. Able to implement the knowledge of mathematic and science in problems of metallurgy and materials technology process	
2. Able to implement the principle of mineral extraction and processing from the ore preparation to semi-finished product
3. Able to select the material based on design, engineering and standards
4. Able to decide the proper manufacturing process to produce high quality product
5. Able to implement corrosion and material degradation principle as well the corrective action and prevention
6. Able to design analysis procedures for material failure.
7. Able to analyze the data from the experiment.
8. Able to use skill, technique and modern tools needed in engineering practice.
9. Able to implement environment management principle also health and safety environment.
10. Able to implement general management principle and quality assurance in industrial environment.
11. Able to participate in multidisciplinary team
12. Able to learn independently and sustainably (long life learning).
13. Able to think in critical, creative, innovative and have the intellectual capability to solve problems individually or in groups.

14. Able to identify various attempts in entrepreneurship which characterized by innovation and self-reliance based on ethics.
15. Able to use both good bahasa Indonesia and English language in the form of oral and written for the academic and non academic purposes.
16. Able to provide alternative solution to the various problem that arise in the communities, nation and country.
17. Able to take advantage in Information Communication Technology.

Classification of Subjects

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Basic University Courses</td>
<td>20</td>
<td>14 %</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Courses</td>
<td>22</td>
<td>15 %</td>
</tr>
<tr>
<td>iii</td>
<td>Compulsory Courses</td>
<td>85</td>
<td>59 %</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Courses</td>
<td>10</td>
<td>7 %</td>
</tr>
<tr>
<td>v</td>
<td>Internship, Seminar, Thesis, Projects</td>
<td>7</td>
<td>5 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

14. Total Credit to Graduate 144 SKS

Employment Prospects

Bachelor of Engineering in Metallurgy and Materials graduates can work in various sectors, both private and government, such as industry, automotive, manufacturing, heavy equipment, mining, material consultant, oil and gas, research and development institutions, and academia, both domestic and abroad.
Undergraduate is able to design environmentally friendly in metallurgy and material process, analyzing material degradation, and are capable of playing active and dynamic role with professional ethic in national, regional and international communities.

14. Able to identify various attempts in entrepreneurship which characterized by innovation and self-reliance based on ethics.

16. Able to provide alternative solution to the various problem that arise in the communities, nation and country.

6. Able to design analysis procedures for material failure.

7. Able to analyze the data from the experiment.

9. Able to implement environment management principle also health and safety environment.

10. Able to implement general management principle and quality assurance in industrial environment.

1. Able to implement the knowledge of mathematics and science in problems of metallurgy and materials technology process.

2. Able to implement the principle of mineral extraction and processing from the ore preparation to semi-finished product.

3. Able to select the material based on design, engineering and standards.

4. Able to decide the proper manufacturing process to produce high quality product.

5. Able to implement corrosion and material degradation principle as well the corrective action and prevention.

13. Able to think in critical, creative, innovative and have the intellectual capability to solve problems individually or in groups.

15. Able to use both good Bahasa Indonesia and English language in the form of oral and written for the academic and non-academic purposes.

17. Able to take advantage in information Communication Technology.

8. Able to use skill, technique and modern tools needed in engineering practice.

11. Able to participate in multidisciplinary team.

12. Able to learn independently and sustainably (long life learning).
<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>ENGE 6 0 0001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 0009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 1 001</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 1 002</td>
<td>Introduction to Engineering Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 1 003</td>
<td>Basic Chemistry Lab.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>19</td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE600020 - 48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 6 0 004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 6 0 002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 005</td>
<td>Physics - Mechanics and Heat</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 006</td>
<td>Physics - Mechanics and Heat Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td>ENGE 6 0 007</td>
<td>Physics - Electricity, MWO</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 0 008</td>
<td>Physics - Electricity, MWO Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 6 0 010</td>
<td>Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 3 004</td>
<td>Electrochemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 0 3 005</td>
<td>Chemical Characterization of Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 3 006</td>
<td>Physical Metallurgy 1</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 6 0 3 007</td>
<td>Static & Mechanic of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 0 3 008</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>21</td>
</tr>
<tr>
<td>ENMT 6 0 4 009</td>
<td>Technique of Microstructural Analysis</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 4 010</td>
<td>Polymer Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 6 0 4 011</td>
<td>Numerical Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 4 012</td>
<td>Physical Metallurgy 2</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 0 4 013</td>
<td>Mineral Processing</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 6 0 4 014</td>
<td>Testing of Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 0 4 015</td>
<td>Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 0 4 016</td>
<td>Chemical Characterization of Materials Lab.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>21</td>
</tr>
</tbody>
</table>
Undergraduate Program

<table>
<thead>
<tr>
<th>5th Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE 6 0 0012</td>
<td>HSE Protection</td>
</tr>
<tr>
<td>ENMT 6 0 5 017</td>
<td>Industrial Management</td>
</tr>
<tr>
<td>ENMT 6 0 5 018</td>
<td>Non Ferrous Extractive Metallurgy</td>
</tr>
<tr>
<td>ENMT 6 0 5 019</td>
<td>Heat Treatment & Surface Eng.</td>
</tr>
<tr>
<td>ENMT 6 0 5 020</td>
<td>Metal Manufacturing Process</td>
</tr>
<tr>
<td>ENMT 6 0 5 021</td>
<td>Polymer Technology</td>
</tr>
<tr>
<td>ENMT 6 0 5 022</td>
<td>Technique of Microstructural Analysis Lab</td>
</tr>
<tr>
<td>ENMT 6 0 5 023</td>
<td>Testing of Materials Lab.</td>
</tr>
<tr>
<td>Sub Total</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6th Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 6 0 6 024</td>
<td>Corrosion & Protection of Metals</td>
</tr>
<tr>
<td>ENMT 6 0 6 025</td>
<td>Materials Joining</td>
</tr>
<tr>
<td>ENMT 6 0 6 026</td>
<td>Iron & Steel Making Process</td>
</tr>
<tr>
<td>ENMT 6 0 6 027</td>
<td>Ceramic Technology</td>
</tr>
<tr>
<td>ENMT 6 0 6 028</td>
<td>Composite Technology</td>
</tr>
<tr>
<td>ENMT 6 0 6 029</td>
<td>Corrosion & Protect of Metals Laboratory</td>
</tr>
<tr>
<td>ENMT 6 0 6 030</td>
<td>Extractive Metallurgy Lab.</td>
</tr>
<tr>
<td>ENMT 6 0 6 031</td>
<td>Metal Manufacturing Process Lab</td>
</tr>
<tr>
<td>Sub Total</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7th Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 6 0 7 032</td>
<td>Engineering Design of Products</td>
</tr>
<tr>
<td>ENMT 6 0 7 033</td>
<td>Capita Selecta</td>
</tr>
<tr>
<td>ENMT 6 0 7 034</td>
<td>Fracture Mech & Failure Analysis</td>
</tr>
<tr>
<td>ENMT 6 0 7 035</td>
<td>Internship</td>
</tr>
<tr>
<td>ENMT 6 0 7 036</td>
<td>Seminar</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
</tr>
<tr>
<td></td>
<td>Elective 2</td>
</tr>
<tr>
<td>Sub Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8th Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 6 0 7 037</td>
<td>Final Project/Thesis</td>
</tr>
<tr>
<td></td>
<td>Elective 3</td>
</tr>
<tr>
<td></td>
<td>Elective 4</td>
</tr>
<tr>
<td></td>
<td>Elective 5</td>
</tr>
<tr>
<td>Sub Total</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>144</td>
</tr>
</tbody>
</table>

Resume

University Subjects	18
Faculty Subjects	24
Compulsory Subjects	92
Total	**134**
Elective Subjects	10
Total Credit Hours to Graduate	**144**
ELECTIVES

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 607038</td>
<td>Polymer Additives</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607039</td>
<td>Special Steels & Superalloys</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607040</td>
<td>Biomaterial</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607041</td>
<td>Metallurgical Plant Design</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607042</td>
<td>High Temperature Corrosion</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607043</td>
<td>Electronic Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607044</td>
<td>Research Methodology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607045</td>
<td>Plastic Processing</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607046</td>
<td>Refractory Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607047</td>
<td>Quality Management Systems</td>
<td>2</td>
</tr>
</tbody>
</table>

ELECTIVES EVEN SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 608948</td>
<td>Analysis of Deformation</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608949</td>
<td>Industrial Ecology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608950</td>
<td>Concrete Corrosion</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608951</td>
<td>Energy Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608952</td>
<td>Advanced Extractive Metallurgy</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608953</td>
<td>Industrial Mechanic Equipment</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608954</td>
<td>Advanced Surface Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608955</td>
<td>Material Standardization</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608956</td>
<td>Polymer Recycling Technology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608957</td>
<td>Rubber Technology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608958</td>
<td>Nanotechnology</td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE STRUCTURE INTERNATIONAL UNDERGRADUATE METALLURGICAL & MATERIALS ENGINEERING

1st Semester

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE 610001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>UIGE610002</td>
<td>Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 610009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 611001</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 611002</td>
<td>Introduction to Engineering Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 611003</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 611004</td>
<td>Basic Chemistry Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Sub Total 20
2nd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE 6 1 0004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 6 1 0002</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 1 0007</td>
<td>Physics (Electric, Magnet, Wave & Optic)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 1 0008</td>
<td>Physics (Electric, Magnet, Wave & Optic) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 6 1 0010</td>
<td>Statistics & Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 2 005</td>
<td>Polymer Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 6 1 2 006</td>
<td>Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

3rd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE 6 1 0012</td>
<td>Health, Safety & Environment</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 3 007</td>
<td>Chemical Characterization of Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 3 008</td>
<td>Electrochemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 3 009</td>
<td>Heat Treatment & Surface Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 3 010</td>
<td>Physical Metallurgy 1</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 6 1 3 011</td>
<td>Polymer Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 3 012</td>
<td>Static & Mechanic of Materials</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 6 1 4 013</td>
<td>Corrosion & Protection of Metals</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 4 014</td>
<td>Iron & Steel Making Process</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 4 015</td>
<td>Mineral Processing</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 6 1 4 016</td>
<td>Numerical Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 4 017</td>
<td>Physical Metallurgy 2</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 4 018</td>
<td>Technique of Microstructural Analysis</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 4 019</td>
<td>Testing of Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 4 020</td>
<td>Chemical Characterization of Materials Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENMT 6 1 4 021</td>
<td>Corrosion & Protection of Metals Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Sub Total</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

5th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIGE610004</td>
<td>Integrated Character Building Subject B</td>
<td>6</td>
</tr>
<tr>
<td>ENMT 6 1 5 022</td>
<td>Industrial Management</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 6 1 5 023</td>
<td>Metal Manufacturing Process</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 6 1 5 024</td>
<td>Non Ferrous Extractive Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 5 025</td>
<td>Technique of Microstructural Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENMT 6 1 5 026</td>
<td>Testing of Materials Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Sub Total</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

6th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIGE610001</td>
<td>Integrated Character Building Subject A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE610005 - 9</td>
<td>Religious Studies</td>
<td>2</td>
</tr>
<tr>
<td>UIGE610003</td>
<td>Sport & Art</td>
<td>1</td>
</tr>
<tr>
<td>ENMT 6 1 6 027</td>
<td>Ceramic Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 6 028</td>
<td>Composite Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 6 1 6 029</td>
<td>Materials Joining</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Undergraduate Program

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 616030</td>
<td>Extractive Metallurgy Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENMT 616031</td>
<td>Metal Manufacturing Process Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 617032</td>
<td>Capita Selecta</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 617033</td>
<td>Engineering Design of Products</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 617034</td>
<td>Fracture Mechanics & Failure Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 610035</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 610036</td>
<td>Seminar of Final Project Proposal</td>
<td>1</td>
</tr>
<tr>
<td>Elective 1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Elective 2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 610037</td>
<td>Final Project/Thesis</td>
<td>4</td>
</tr>
<tr>
<td>Elective 3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Elective 4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Elective 5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

TOTAL 144

Electives

Electives Odd Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 607938</td>
<td>Polymer Additives</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607939</td>
<td>Special Steels & Super Alloys</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607940</td>
<td>Biomaterial</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607941</td>
<td>Metallurgical Plant Design</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607942</td>
<td>High Temperature Corrosion</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607943</td>
<td>Electronic Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607944</td>
<td>Research Methodology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607945</td>
<td>Plastic Processing</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607946</td>
<td>Refractory Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 607947</td>
<td>Quality Management Systems</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives Even Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 608948</td>
<td>Analysis of Deformation</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608949</td>
<td>Industrial Ecology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608950</td>
<td>Concrete Corrosion</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608951</td>
<td>Energy Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608952</td>
<td>Advanced Extractive Metallurgy</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608953</td>
<td>Industrial Mechanic Equipment</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608954</td>
<td>Advanced Surface Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608955</td>
<td>Material Standardization</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608956</td>
<td>Polymer Recycling Technology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608957</td>
<td>Rubber Technology</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 608958</td>
<td>Nano Technology</td>
<td>2</td>
</tr>
</tbody>
</table>
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment

Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)

Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method: Active learning, Contextual language learning, small group discussion.

Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test
3 sks
Learning Objectives: After attending this subject, students are expected to be capable of using English to support their studies in university and improve language learning independently.
Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary, Listening strategies Extensive reading) Grammar: (Revision of Basic grammar, Types of sentences, Adjective clauses, Adverb clauses, Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking, Reading popular science articles, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and note-taking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article, Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks
Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).
Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.
Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)
Prerequisites: OBM (New Student Orientation)
Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005
2 sks
General instructional objectives: The cultivation of students who have concern for social, national and country issues based on Islamic values which is applied in the development of science through intellectual skills.
Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing
Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human’s basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam’s motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)
CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.
Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society.

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks
General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.
Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language
Syllabus: History (Historical terms): Status of the Bible, the existence of God and Morality, Christ the Savior, the Holy Spirit as existence reformer and outlook on the world: Faith and Knowledge of Science, Church and service, Ecclesiology, Spiritual and enforcement of Christian Human Rights and the world of ethics: Christian Ethics, Christian and worship, Christianity and politics, Christian love and social reality: Christian Organizations, Students and Service, Christian and expectations.

HINDU STUDY
UIGE600013/UIGE610008
2 sks
Syllabus: Hindu religion, Hindu history, Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahmah (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakaran), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks
Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture (the responsibility of religious society in the realization of critical thinking (academic), work hard
and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be chosen:
Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025), Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029), Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be chosen:
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043), Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.

LINEAR ALGEBRA
ENGE600004/ENGE610004
Syllabus : This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

Physics (Mechanics and Thermal)
ENGE600005/ENGE610005
3 sks
Syllabus : Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill.
Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

Physics (Mechanics and Thermal) Laboratory
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, laboratory is not mandatory.

Physics (Electricity, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus : Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.
PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry.
Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis.
Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations
that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment.

Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

Curriculum of 2016 - Subjects Syllabus
Bachelor Degree - Dept. of Metallurgy & Materials Engineering

ENMT 601001 - ENGINEERING DRAWING - (2 Credit Points)
Illustration: Function and benefit of Engineering Drawing; SAP; Measurement and Evaluation; Introduction to drawing equipment; Basic definition of geometric, paper format, draw regulation, line, fill, line configuration, basic geometric form; Visualization geometric: Skew projection and isometric, function and line types, configuration geometric form; Orthogonal Projection: Projection standard, viewing concept, width display principle; Advanced orthogonal projection: Circle region concept, special region concept, trimming concept, display width, refraction.
Prerequisite: -

ENMT 601002 - INTRODUCTION TO ENGINEERING MATERIALS - (2 Credit Points)
(1) Types of engineering materials and their applications; (2) Structures of engineering materials; (3) Properties of material; (4) Manufacturing and Processing of Metallic Materials; (5) Steel and iron: production and properties; (6) Aluminium: production and properties; (7) Other non-ferrous alloys: production and properties; (8) Polymer: processing and properties; (9) Ceramic: processing and properties; (10) Composite: processing and properties
Prerequisite: -

ENMT 601003 - BASIC CHEMISTRY LABORATORY - (1 Credit Point)
Physical and chemical properties; Separation and purification of the substance; Identification of alkali metal ions, alkaline earth, ammonium, sulfate, iodid, bromide and nitrate; acid-base titration; metal and acid reaction; Water crystals
Prerequisite: -

ENMT 603004 - ELECTRO-CHEMISTRY - (3 Credit Points)
Basic concepts and applications of electrochemistry, and conductivity solution, Faraday’s law, and their application. Elektrode electrochemical cell (definition, potential, equation Nerst, electrical double layer, the polarization, the measurement of potential, free energy and electrode potential, equilibrium potential), the reference electrode, Construction Pourbaix diagram and its application. Electrochemical kinetics, electrode reaction speed, mixed potential theory, Evans-diagram, the mixed-potential diagram
Prerequisite: -

ENMT 603005 - CHEMICAL CHARACTERIZATION OF MATERIAL - (2 Credit Points)
Review of structure and physiochemical characteristics of materials, concept of material analysis (qualitative and quantitative), principal of analysis instrument from spectroscopy method (UV/ VIS, FTIR, XRF, Spark Emission) and thermal method (TGA, DSC/DTA, MFI and Vicat), material characterization strategy.
Prerequisite: -
ENMT 603006 - PHYSICAL METALLURGY 1 - (4 Credit Points)
(1) Definition of crystal; (2) Crystal lattice; (3) Unit cell; (4) Bravais lattice; (5) Miller index for planes and direction; (6) Stereographic projection; (7) Crystal symmetry; (8) Formation of crystal; (9) Identification of crystal; (10) Crystal defects: point defects, line defects (dislocations), edge dislocations, screw dislocations, burgers vector, movement of dislocations, energy of dislocation, dislocations in FCC, BCC and HCP structures, planar defects; (11) Fatigue and Fracture of Materials; (12) Creep of Materials; (13) Strengthening Mechanism: strain (work) hardening, grain boundary strengthening, solid solution strengthening, precipitation (two-phase) strengthening, steel alloys strengthening, composite strengthening, study case in materials strengthening.
Prerequisite: -

ENMT 603007 - STATIC & MECHANIC OF MATERIALS - (3 Credit Points)
General principle of mechanics, Vector and forces, Equilibrium points, Resultant of forces, Structure analysis, Center of gravity and centroid, Moment inertia, Internal forces, Friction. The concept of stress strain, Relation of stress and strain in axial loading, Twisting, Buckling, Transversals loading, Stress design, Analysis of shaft and beam, Beam deflection, Structural joints, Column and thick cylinder, Energy method.
Prerequisite: -

ENMT 603008 - THERMODYNAMICS OF MATERIALS - (3 Credit Points)
Definition of thermodynamics, first, second, and third law of thermodynamics, statistical interpretation of entropy, auxiliary functions, heat capacity, enthalpy and entropy, phase equilibrium in a component, gas and solution behavior, free energy, binary system composition, reaction of pure condensation phase and gas phase, equilibrium reaction of a system in a solution component
Prerequisite: -

ENMT 604009 - TECH. OF MICROSTRUCTURAL ANALYSIS - (2 Credit Points)
Techniques of microstructure analysis, Phase formation and general characteristic of material structures, Microstructure of steel; stable and metastable phases and the formation and mechanism, Microstructure of non-ferrous alloys; aluminum, copper, titanium, Macrostructure, Sampling techniques, Samples preparation, Observation techniques with optical and electron microscopes, Special measurements; micro-hardness, coating thickness, roughness, Quantitative metallography; grain size, volume fraction of phases and precipitates.
Prerequisite: Physical Metallurgy 1

ENMT 604010 - POLYMER CHEMISTRY - (4 Credit Points)
Fundamentals of organic chemistry (bonding atom and molecule, polar molecules, free radicals, the nomenclature of organic compounds, isomer, conjugation and resonance). Reaction types of organic compounds, addition reactions, nucleophilic and electrophilic substitution, elimination, rearrangement, and radical reaction mechanism. Basic Properties of Polymer Chemistry
Prerequisite: -

ENMT 604011 - NUMERICAL COMPUTATION - (2 Credit Points)
Introduction to models, types of models, basics of Matlab, array in Matlab, if and switch selection, loop in Matlab, function and m-file in Matlab, linear equation, Taylor expansion method, Euler, differential equation, basic of solid works, solid modeling, basics of simulink, first and second order simulink
Prerequisite: -

ENMT 604012 - PHYSICAL METALLURGY 2 - (3 Credit Points)
(1) Concept of Equilibrium: single component system, binary component system, the phase rule, binary phase diagrams; (2) Fe-Fe3C Phase Diagram; (3) Ternary Equilibrium: ternary system representation, ternary system containing 2 phase, ternary system containing 3 phase; (4) Diffusion in Materials: atomic mechanism of diffusion, interstitial diffusion, substitutional diffusion; (5) Crystal Interfaces and Microstructure: interfacial free energy, grain boundary, interphase interfaces in solids, interface migration; (6) Solidification: nucleation in pure metals, growth of a pure solid, solidification of alloy, solidification of ingots and castings, solidification of fusion welds, rapid solidification; (7) Diffusional Transformation in Solids: homogeneous and heterogeneous nucleation in solids, precipitate growth, transformation kinetics, eutectoid transformation, ordering transformation; (8) Diffusionless Transformation in Solids: theories of martensite nucleation, martensite growth,
tempering of ferrous martensite, martensite transformation in nonferrous metals, case study in diffusionless transformation
Prerequisite: Thermodynamics of Materials

ENMT 604013 - MINERAL PROCESSING - (4 Credit Points)
Understanding mineralogy, classification of minerals, mineral properties, mineral that has economic value. Terminology and basic concepts of processing mineral / ore, potential sources of mineral / ore that can be processed in a technically and economically, the processes of size reduction (commu- nation): The process of crushing, screening process, grinding process, the classification process, process of separation/concentration: Gravity concentration: Concentration Heavy Jigging Flowing Film, Media Separation, Flotation process, Magnetic Separation, High Tension Separation, Dewater- ing and Thickening process
Prerequisite: Physical Metallurgy 1

ENMT 604014 - TESTING OF MATERIALS - (2 Credit Points)
Introduction to material testing, Review of mechanical behavior of materials, Data analysis and presentation of test results, Testing procedures, Testing machine and instruments, Standardization of materials testing, Destructive testing (tensile, compression, shear, fatigue, stress relaxation, and wear), Non-destructive (visual, penetrant, ultrasonic, radiography, eddy current and magnetic particle)
Prerequisite: Physical Metallurgy 1

ENMT 604015 - TRANSPORT PHENOMENON - (3 Credit Points)
Mass transfer, Fluid flow concept, Laminar flow, momentum conservation, Turbulent flow, Enthalpy & heat transfer, Solid & liquid diffusion mass transport
Prerequisite: Thermodynamics of Materials

ENMT 604016 - CHEMICAL CHARACTERIZATION OF MATERIAL LABORATORY - (1 Credit Point)
Quantitative analysis of organic and anorganic matter using titrimetry method
Prerequisite: Chemical Characterization of Material

ENMT 605017 - INDUSTRIAL MANAGEMENT - (2 Credit Points)
Introduction to industrial management, organization and management functions, theories and techniques of decision-making, management of production / operations, the strategic decisions of products and processes, location and layout, management and control of stocks (inventory), R & D, project management, QC and productivity, management production practices, marketing and industrial management, HR management, IT and manufacturing industry, manufacturing industry in Indonesia
Prerequisite: -

ENMT 605018 - NON-FERROUS EXTRACTIVE METALLURGY - (3 Credit Points)
Basic principles of extractive metallurgy (pyrometallurgy, hydrometallurgy and electrometallurgy). Process/treatment process of ore to be extracted. Leaching method of oxide and sulfide ores, Bayer process, Al, Au leaching by cyanidation (Leaching; precipitation techniques; ion exchange; solvent extraction; reverse osmosis). Electrometallurgy (Electro winning and electro refining). Molten salt electro winning. Hall process. Electro winning of Mg, Ti. Secondary metals. Obtaining metals from scrap and secondary sources by using pyro, hydro, and electrometallurgy. Pyrometallurgy, mineral separation, slag, blast furnace, raw materials, reactions, material balance, iron ore, roasting, smelting, refining of Sn, Ni, Cu, Zn, Pb.
Prerequisite: Electro-chemistry, Mineral Processing

ENMT 605019 - HEAT TREATMENT & SURFACE ENGINEERING - (3 Credit Points)
Definition of heat treatment, phase transformation and microstructure, TTT and CCT diagram, the influence of heating and cooling rate, stable and metastable microstructure, hardenability, the influence of alloying element, hardening, softening, temper brittleness, distortion and its prevention, carburization, nitro-carburizing, nitriding, boronizing, non-ferrous heat treatment, various heat-treating furnace and its atmosphere, deviation in heat treatment process, special heat treatment, case study of heat treatment and surface engineering
Prerequisite: Physical Metallurgy 1
ENMT 605020 - METAL MANUFACTURING PROCESS - (4 Credit Points)
The forming of metals as a part of design process and manufacture; fundamentals of metal casting (mould, molten metal, solidification), mould (sand, ceramic, metal), pouring system (pattern, riser, pressure and unpressure, chill) and its simulation, solidification of cast iron and aluminum, liquid treatment for ferrous metals (inoculation, Mg treatment) and non-ferrous (modifier, grain refiner), various methods of casting, casting defect; common principle of solid forming of a metal, techniques of metal forming through: pressing, forging, rolling, extrusion, wire drawing, sheet metal forming; thermo-mechanical processing (TMP). General principle of powder metallurgy, powder fabrication and mechanism of powder forming, powder characteristics and characterization, mechanical alloying, pre-compaction process, compaction, precursor characteristic, sintering and powder consolidation, full density processing, sintering equipment and related aspects, application of powder metallurgy products
Prerequisite: Physical Metallurgy 1

ENMT 605021 - POLYMER TECHNOLOGY - (3 Credit Points)
Relationship of structure and behaviour of polymer molecule, polymer material characteristics (thermal, chemical, mechanic, optic and electrical), fabrication process stages (formulation, continuous & discontinuous manufacturing, product finalization) on thermoplastic, thermostetting and rubber product, polymer raw material formulation, case study of polymer product in packaging, automotive, electronic and construction application
Prerequisite: Polymer Chemistry

ENMT 605022 - TECH. OF MICROSTRUCTURAL ANALYSIS LABORATORY - (1 Credit Point)
Metallographic sample preparation (techniques of cutting, grinding, polishing and etching), microstructural analysis techniques of metal (ferrous and non-ferrous) with an optical microscope
Prerequisite: Tech. of Microstructural Analysis

ENMT 605023 - TESTING OF MATERIALS LABORATORY - (1 Credit Points)
Tensile test, Compressive test, Micro and Macro Hardness test, Impact Test, Wear Test
Prerequisite: Testing of Materials

ENMT 606024 - CORROSION & PROTECTION OF METALS - (3 Credit Points)
Principles of corrosion, kinetics of corrosion, polarization, passivation, measurement of corrosion rate, metallurgical aspects, corrosion tests, forms of corrosion, high temperature corrosion, cathodic protection, anodic protection, coating, inhibition, materials selection and design, monitoring and inspection, analysis of corrosion driven-damage, standards related to corrosion
Prerequisite: Electro-Chemistry

ENMT 606025 - MATERIALS JOINING - (3 Credit Points)
Principles of various material joining and its classification, adhesive bonding, mechanical joining, methods of welding: fusion welding (electric arc), electrical resistance welding, pressure welding (solid state welding), other welding process (EBW, laser welding, thermit welding, underwater welding), soldering and brazing, design of joint and welding symbol, welding metallurgy: carbon steel, low alloy steel, stainless steel, concrete steel, non ferrous, WPS and welding standards and code, weld defect and its prevention, control of joint and its testing
Prerequisite: Physical Metallurgy 1, Testing of Materials

ENMT 606026 - IRON & STEEL MAKING PROCESS - (2 Credit Points)
Classification and the development of steel (iron ores, reductor, etc.) and their preparatory process, thermodynamics and kinetics of iron and steel making process, blast furnace reduction of iron ores, direct reduction (hylsa, midrex, rotary kiln SL-RN, rotary hearth), smelting reduction, desulfurization, deoxidation, dephosphorisation, degassing, steel making in EAF (Electric Arc Furnace) and BOF (Basic Oxygen Furnace), secondary metallurgy process, continuous casting, hot and cold rolling, special steel making
Prerequisite: Mineral Processing

ENMT 606027 - CERAMIC TECHNOLOGY - (3 Credit Points)
Introduction to ceramics (general), crystal structure, glass structure, phase diagrams, phase transformations. Properties of ceramics: thermal, optical, mechanical, electrical and magnetic fields, as well as the nature dielektris. Manufacture of ceramic technology and applications: conventional
ceramic (aluminum-silicate; clay, glaze); cement and concrete; glass and advanced ceramics (advanced ceramics). The processes for modern ceramics, ceramic thin film, ceramic for field application of mechanical, electronic, optical and magnetic. Based ceramic matrix composites. Refractory ceramics. Refractory raw materials, types of refractories: refractory system Aluminum - silica, silica refractories, refractory magnesite, chromite refractories, refractory carbon, special refractories. Manufacture of refractories, the use of refractory metals in the industry and others, as well as the failure mechanism of refractory.
Prerequisite: Physical Metallurgy 2

ENMT 606028 - COMPOSITE TECHNOLOGY - (3 Credit Points)
The concept, definition and clarification of the composite, matrix and reinforcement type for composites, metal matrix composite, polymer matrix composite, ceramic matrix composite, fiber composite nature. Reinforced fibers and Whiskers, the rule of mixtures, the interface in composite materials, interfacial area, Interfacial Wettability, interfacial bonding
Prerequisite: Polymer Technology

ENMT 606029 - CORROSION & PROTECTION OF METALS LABORATORY - (1 Credit Point)
Corrosion cells, corrosion potential measurement of selected metals, polarization of stainless steel, cathodic protection, surface treatment.
Prerequisite: -

ENMT 606030 - EXTRACTIVE METALLURGY LABORATORY - (1 Credit Point)
Metals extraction test and electrometallurgy (e.g. Electroplating, froth flotation)
Prerequisite: Non Ferrous Extractive Metallurgy

ENMT 606031 - METAL MANUFACTURING PROCESS LABORATORY - (2 Credit Points)
(1) Sand particle size distribution, water content calculation, additive substance (bentonite) content in mould, sand flowability, relation of water and additive content in sand with permeability, shear and compressive strength of sand, (2) utilization of simulation software in calculation and design of casting, (3) Design of inlet and riser, mould making from patterns, making of the core of the mould, melting and pouring of molten metal to the mould, analysis of casting defect, analysis of casting product related to the alloying element and casting process. (4) Solid silinder forging, (5) Sheet metal rolling, (6) Sheet metal forming which includes non-simulative testing (tensile testing for n and r value), and simulative testing (stretching and deep-drawing, LDH and LDR)
Prerequisite: Metal Manufacturing Process

ENMT 607032 - ENGINEERING DESIGN OF PRODUCT - (3 Credit Points)
Introduction to Engineering Design, total design activity, group dynamics and design management, problem identification and design specification, creativity and the conception of design, modeling, optimallisation, materials and process selection, design communication and presentation.
Prerequisite: Polymer Technology, Composite Technology, Ceramic Technology, Iron & Steel Making Process

ENMT 607033 - CAPITA SELECTA - (2 Credit Points)
Specific topics that have not been included in Subjects and supplied by external resource persons which is experienced in industry
Prerequisite: Metal Manufacturing Process, Corrosion & Protection of Metals

ENMT 607034 - FRACTURE MECHANICS & FAILURE ANALYSIS - (4 Credit Points)
Aspects of failure engineering and its analysis, sources/factors contributing the material’s failure, explanation of failure factors, types of fractures, stress system and residual stress, theories of fracture mechanics and introduction to the risk-based inspection, failure due to: fatigue, creep, wear, brittleness, heat behavior, residual stress, corrosion and environment, case study.
Prerequisite: Physical Metallurgy 1, Testing of Materials, Tech. of Microstructural Analysis, Corrosion & Protection of Metals

ENMT 600035 - INTERNSHIP - (2 Credit Points)
Specify the job objectives in the proposal; Implement an internship at a site that has been approved and in accordance with its specifity; Study and describe the process of technical work, quality control, project management, project specifications, engineering drawings and other aspects; Identify the problem related to the technical work, quality control, project management, project
specifications, engineering drawings and other aspects; Conduct problems that occur at each stage of the project; Determine ways or solutions to overcome the problems associated with the project learned; Prepare a final report includes project description, existing problems and problem solving

ENMT 600036 - SEMINAR OF FINAL PROJECT PROPOSAL - (1 Credit Points)
Final assignment writing guide including initial research, abstract writing guide, research methodology, type of references, discussion, also conclusion. To make scientific paper from existing final report which then be presented according to certain journal term or final assignment proposal presentation.
Prerequisite: Student has obtained minimum of 105 credits

ENMT 600037 - FINAL PROJECT - (4 Credit Points)
Implementation/application of various lectures taken by students on integration in a research to solve a problem in metallurgy and material engineering field. The research result is presented in a form of scientific report and presented in front of the judging lecturers.
Prerequisite: Student has obtained minimum of 125 credits

ELECTIVES

ENMT 607938 - POLYMER ADDITIVES - (2 Credit Points)
Strategic role of polymer compounding industries, additives type and functions, modification of polymer product according to market, mixing theory in polymer base material, polymer compounding fabrication process for thermoplastic and rubber, success evaluation for polymer compounding, dispersion test / observation and additives distribution in plastic pellet product
Prerequisite: Polymer Technology

ENMT 607939 - SPECIAL STEELS & SUPERALLOYS - (2 Credit Points)
Classification, alloying elements and microstructures of special steels and super alloys which include: stainless steels (ferritic, austenitic, duplex, martensitic, and precipitation hardened), heat resistant steels, wear resistant steels, tool steels, Ni and Co based steels.
Prerequisite: Iron & Steel Making Process

ENMT 607940 - BIOMATERIALS - (2 Credit Points)
Overview of Biomaterials and Their Use in Medical Devices, Physical and Mechanical Requirements for Medical Device Materials, Metallic Materials, Corrosion of Metallic Implants and Prosthetic Devices, Failure Analysis of Metallic Orthopedic Implants, Ceramic Materials, Polymeric Materials, Adhesives, Coatings, Biomaterials for Dental Applications, Tarnish and Corrosion of Dental Alloys, Friction and Wear of Dental Materials
Prerequisite: Statics & Mechanics of Materials, Corrosion & Protection of Metals

ENMT 907941 - METALLURGICAL PLANT DESIGN - (2 Credit Points)
Risk-based approach to plan design, process economic and selection, business case, site selection, project development, managing technology risk, costum designed equipment, sustainability in plant design, design for safety, plant layout and logistics, project implementation
Prerequisite: Non Ferrous Extractive Metallurgy, Iron & Steel Making Process

ENMT 607942 - HIGH TEMPERATURE CORROSION - (2 Credit Points)
Metal oxidation reaction thermodynamics, Ellingham diagram, oxide structure, type-n and type-p oxidation, Pilling-Bedworth ratio, oxide growth mechanism and rate, high temperature corrosion in specific environment (hot corrosion, boiler, carburization, thermal cycle), protection method (material selection, high temperature resistant alloy, coating / surface engineering)
Prerequisite: Corrosion & Protection of Metals

ENMT 607943 - ELECTRONIC MATERIALS - (2 Credit points)
Elementary concepts of electron theory (wave - particle duality, free electrons, nearly free electrons, band structure, insulators - conductors - semiconductors). Modern theory of solids (band theory of solids, density of states, Boltzmann and Fermi-Dirac statistics, electron effective mass and Fermi energy). Electrical conduction in materials (classical electron theory, quantum mechanical considerations, magnetism, superconductivity, dielectrics and insulator, thermoelectric phenomena). Semiconductors (intrinsic and extrinsic semiconductors, degenerate semiconductors, recombina-
tion ad minority carrier junction, Schottky junctions and Ohmic contacts, semiconductor devices)
Prerequisite: Transport Phenomenon

ENAT 607944 - RESEARCH METHODOLOGY - (2 Credit Points)
Scientific understanding, research method, problem specification, hypothesis, literature study, data collection and processing, elaboration of research proposal and scientific work presentation
Prerequisite: -

ENAT 607945 - PLASTIC PROCESSING - (2 Credit Points)
Introduction of polymer and its product, polymer characteristics related to process, polymer rheology, polymer equipment (injection molding, blow molding, calendaring, thermoforming), polymer composites (reinforcing process, laminating process)
Prerequisite: Polymer Technology

ENAT 607946 - REFRUCTORY MATERIALS - (2 Credit Points)
Introduction to refractory materials. Types of refractory materials (acid, basic, neutral refractory). Shape of refractory materials. Industrial application.
Prerequisite: Ceramic Technology

ENAT 607947 - QUALITY MANAGEMENT SYSTEMS - (2 Credit Points)
General introduction, ISO 9004 system approach and its connection with environment and safety, quality management system requirement, internal audit, correction and preventive procedure
Prerequisite: Statistic & Probability

ENAT 608948 - ANALYSIS OF DEFORMATION - (2 Credit Points)
Review of Stress and Strain, Energy-Balance Analysis, Force-Balance Analysis, Upper Bound Analysis, Slip Line Field Analysis, Finite Element Analysis, Circle Grid Analysis, Distortion and Deformations Analysis
Prerequisite: Statics & Mechanics of Materials, Metal Manufacturing Process, Engineering Design of Products

ENAT 608949 - INDUSTRIAL ECOLOGY - (2 Credit Points)
Prerequisite: Non Ferrous Extractive Metallurgy, Iron & Steel Making Process

ENAT 608950 - CONCRETE CORROSION - (2 Credit Points)
Cement material characteristics (types, water ratio, porosity, permeability), transport process of cement (water content and diffusion), cement degradation (sea water attack, acid attack), corrosion mechanism in cement, electrochemistry aspects, carbonated corrosion, chloride corrosion, stray current corrosion, hydrogen corrosion, corrosion protection (inhibitor, surface engineering, cathodic protection, inspection, monitoring, repair)
Prerequisite: Corrosion & Protection of Metals

ENAT 608951 - ENERGY MATERIAL - (2 Credit Points)
Introduction to energy material, photovoltaic material, dye-sensitized solar cell, lithium ion battery, copper nanoparticles, carbon nanotubes, applications and manufacturing process
Prerequisite: Polymer Technology, Composite Technology, Ceramic Technology

ENAT 608952 - ADVANCED EXTRACTIVE METALLURGY - (2 Credit Points)
Waste characterization for raw material, innovation in hydrometallurgy and pyrometallurgy for energy efficient process, metal recycle process, by-product process and utilization, mineral processing from tailing, metal recovery from red mud and water sludge, updated technology for metal recycle process.
Prerequisite: Non Ferrous Extractive Metallurgy

ENAT 608953 - INDUSTRIAL MECHANIC EQUIPMENTS - (2 Credit Points)
Code and Standard, Pipes and Pipe Fittings, Special Items, Valves, Pipe Connection to Process Equipments (Tanks, Pressure Vessels, Heat Exchangers, Columns, Pumps, Compressors), Piping System for Oil, Gas, LNG, Geothermal, Water, Chemical, Piping System for Instrumentation, Piping and Instrument Diagram (P & ID), Plot Plan, Isometric, Cross Section, Pipe Fabrication Drawings,
Process Pipes, Utility Pipes, Onshore and Offshore
Prerequisite: Metal Manufacturing Process, Corrosion & Protection of Metals

ENMT 608954 - ADVANCED SURFACE ENGINEERING - (2 Credit Points)
Fundamental of surface engineering, conventional surface engineering, advanced surface engineering practices, surface coatings and surface modifications, advanced topics on characterizations for thin film
Prerequisite: Heat Treatment & Surface Engineering

ENMT 608955 - MATERIAL STANDARDIZATION - (2 Credit points)
Introduction to material standard. Types of material standard. Industrial standard of materials.
Prerequisite: -

ENMT 608956 - PLASTIC RECYCLING TECHNOLOGY - (2 Credit Points)
National and international regulation on polymer recycling, polymer material cycle, classification of polymer industry in Indonesia, ecology and polymer product, basic principal for recycling, selection of polymer recycle methods, physical and chemical engineering of polymer recycle product, case study of polymer recycle (PET, PP, PE, PS, Styrofoam, PVC, polyacrylate, thermoplastic, ABS, rubber, thermoset)
Prerequisite: Polymer Technology

ENMT 608957 - RUBBER TECHNOLOGY - (2 Credit points)
Introduction, types and characteristics of rubber raw material and products, additives for rubber product, manufacturing process and equipment for rubber product, testing methods and applications of rubber products
Prerequisite: Polymer Technology

ENMT 608958 - NANO TECHNOLOGY - (2 Credit Points)
Scope and definition of nanotechnology, physical and chemical of solid surface, nanostructures (zero, one and two dimensional), special nanomaterials, fabrication processes (lithography, nanolithography, soft lithography, assembly), nanomaterial characterizations (physical, chemical and structural) and applications (MEMS, DNA chips, photonics, crystal)
Prerequisite: Polymer Technology, Composite Technology, Ceramic Technology
Curriculum of 2016 - Subjects Syllabus
International Program - Bachelor Degree
Dept. of Metallurgy & Materials Engineering

ENMT 611001 - ENGINEERING DRAWING - (2 Credit Points)
Illustration: Function and benefit of Engineering Drawing; SAP; Measurement and Evaluation; Introduction to drawing equipment; Basic definition of geometric, paper format, draw regulation, line, field, line configuration, basic geometric form; Visualization geometric: Skew projection and isometric, function and line types, configuration geometric form; Orthogonal Projection: Projection standard, viewing concept, width display principle; Advanced orthogonal projection: Circle region concept, special region concept, trimming concept, display width, refraction.
Prerequisite: -

ENMT 611002 - INTRODUCTION TO ENGINEERING MATERIALS - (2 Credit Points)
(1) Types of engineering materials and their applications; (2) Structures of engineering materials; (3) Properties of material; (4) Manufacturing and Processing of Metallic Materials; (5) Steel and iron: production and properties; (6) Aluminium: production and properties; (7) Other non-ferrous alloys: production and properties; (8) Polymer: processing and properties; (9) Ceramic: processing and properties; (10) Composite: processing and properties
Prerequisite: -

ENMT 611003 - THERMODYNAMICS OF MATERIALS - (3 Credit Points)
Definition of thermodynamics, first, second, and third law of thermodynamics, statistical interpretation of entropy, auxiliary functions, heat capacity, enthalpy and entropy, phase equilibrium in a component, gas and solution behavior, free energy, binary system composition, reaction of pure condensation phase and gas phase, equilibrium reaction of a system in a solution component
Prerequisite: -

ENMT 611004 - BASIC CHEMISTRY LABORATORY - (1 Credit Point)
Physical and chemical properties; Separation and purification of the substance; Identification of alkali metal ions, alkaline earth, ammonium, sulfate, iodid, bromide and nitrate; acid-base titration; metal and acid reaction; Water crystals
Prerequisite: -

ENMT 612005 - POLYMER CHEMISTRY - (4 Credit Points)
Fundamentals of organic chemistry (bonding atom and molecule, polar molecules, free radicals, the nomenclature of organic compounds, isomer, conjugation and resonance). Reaction types of organic compounds, addition reactions, nucleophilic and electrophilic substitution, elimination, rearrangement, and radical reaction mechanism. Basic Properties of Polymer Chemistry
Prerequisite: -

ENMT 612006 - TRANSPORT PHENOMENON - (3 Credit Points)
Mass transfer, Fluid flow concept, Laminar flow, momentum conservation, Turbulent flow, Enthalpy & heat transfer, Solid & liquid diffusion mass transport
Prerequisite: Thermodynamics of Materials

ENMT 613007 - CHEMICAL CHARACTERIZATION OF MATERIAL LABORATORY - (1 Credit Point)
Quantitative analysis of organic and anorganic matter using titrimetry method
Prerequisite: Chemical Characterization of Material

ENMT 613008 - ELECTRO-CHEMISTRY - (3 Credit Points)
Basic concepts and applications of electrochemistry, and conductivity solution, Faraday’s law, and their application.Elektro electrode electrochemical cell (definition, potential, equation Nerst, electrical double layer, the polarization, the measurement of potential, free energy and electrode potential, equilibrium potential), the reference electrode, Construction Pourbaix diagram and its application. Electrochemical kinetics, electrode reaction speed, mixed potential theory, Evans-diagram, the
mixed-potential diagram
Prerequisite: -

ENMT 613009 - HEAT TREATMENT & SURFACE ENGINEERING - (3 Credit Points)
Definition of heat treatment, phase transformation and microstructure, TTT and CCT diagram, the influence of heating and cooling rate, stable and metastable microstructure, hardenability, the influence of alloying element, hardening, softening, temper brittleness, distortion and its prevention, carburization, nitro-carburizing, nitriding, boronizing, non-ferrous heat treatment, various heat-treating furnace and its atmosphere, deviation in heat treatment process, special heat treatment, case study of heat treatment and surface engineering
Prerequisite: Physical Metallurgy 1

ENMT 613010 - PHYSICAL METALLURGY 1 - (4 Credit Points)
(1) Definition of crystal; (2) Crystal lattice(3) Unit cell; (4) Bravais lattice; (5) Miller index for planes and direction; (6) Stereographic projection; (7) Crystal symmetry; (8) Formation of crystal; (9) Identification of crystal; (10) Crystal defects: point defects, line defects (dislocations), edge dislocations, screw dislocations, burgers vector, movement of dislocations, energy of dislocation, dislocations in FCC, BCC and HCP structures, planar defects; (11) Fatigue and Fracture of Materials; (12) Creep of Materials; (13) Strengthening Mechanism: strain (work) hardening, grain boundary strengthening, solid solution strengthening, precipitation (two-phase) strengthening, steel alloys strengthening, composite strengthening, study case in materials strengthening.
Prerequisite: -

ENMT 613011 - POLYMER TECHNOLOGY - (3 Credit Points)
Relationship of structure and behaviour of polymer molecule, polimer material characteristics (thermal, chemical, mechanic, optic and electrical), fabrication process stages (formulation, continuous & discontinuous manufacturing, product finalization) on thermoplastic, thermosetting and rubber product, polimer raw material formulation, case study of polymer product in packaging, automotive, electronic and construction application
Prerequisite: Polymer Chemistry

ENMT 613012 - STATIC & MECHANIC OF MATERIALS - (3 Credit Points)
General principle of mechanics, Vector and forces, Equilibrium points, Resultant of forces, Structure analysis, Center of gravity and centroid, Moment inertia, Internal forces, Friction. The concept of stress strain, Relation of stress and strain in axial loading, Twisting, Buckling, Transversals loading, Stress analysis, Design of shaft and beam, Beam deflection, Structural joints, Column and thick cylinder, Energy method.
Prerequisite: -

ENMT 614013 - CORROSION & PROTECTION OF METALS - (3 Credit Points)
Principles of corrosion, kinetics of corrosion, polarization, passivation, measurement of corrosion rate, metallurgical aspects, corrosion tests, forms of corrosion, high temperature corrosion, cathodic protection, anodic protection, coating, inhibition, materials selection and design, monitoring and inspection, analysis of corrosion driven-damage, standards related to corrosion
Prerequisite: Electro-Chemistry

ENMT 614014 - IRON & STEEL MAKING PROCESS - (2 Credit Points)
Classification and the development of steel (iron ores, reductor, etc.) and their preparatory process, thermodynamics and kinetics of iron and steel making process, blast furnace reduction of iron ores, direct reduction (hylsa, midrex, rotary kilin SL-RN, rotary hearth), smelting reduction, desulfurization, deoxidation, dephosphorisation, degassing, steel making in EAF (Electric Arc Furnace) and BOF (Basic Oxygen Furnace), secondary metallurgy process, continuous casting, hot and cold rolling, special steel making
Prerequisite: Mineral Processing
ENMT 614015 - MINERAL PROCESSING - (4 Credit Points)
Understand mineralogy, classification of minerals, mineral properties, mineral that has economic value. Terminology and basic concepts of processing mineral / ore, potential sources of mineral / ore that can be processed in a technically and economically, the processes of size reduction (commi- nation): The process of crushing, screening process, grinding process, the classification process, process of separation/concentration: Gravity concentration: Concentration Heavy Jigging Flowing Film, Media Separation, Flotation process, Magnetic Separation, High Tension Separation, Dewater- ing and Thickening process
Prerequisite: Physical Metallurgy 1

ENMT 614016 - NUMERICAL COMPUTATION - (2 Credit Points)
Introduction to models, types of models, basics of Matlab, array in Matlab, if and switch selection, loop in Matlab, function and m-file in Matlab, linear equation, Taylor expansion method, Euler, differential equation, basic of solid works, solid modeling, basics of simulink, first and second order simulink
Prerequisite: -

ENMT 614017 - PHYSICAL METALLURGY 2 - (3 Credit Points)
(1) Concept of Equilibrium: single component system, binary component system, the phase rule, binary phase diagrams; (2) Fe-Fe3C Phase Diagram; (3) Ternary Equilibrium: ternary system representation, ternary system containing 2 phase, ternary system containing 3 phase; (4) Diffusion in Materials: atomic mechanism of diffusion, interstitial diffusion, substitutional diffusion; (5) Crystal Interfaces and Microstructure: interfacial free energy, grain boundary, interphase interfaces in solids, interface migration; (6) Solidification: nucleation in pure metals, growth of a pure solid, solidification of alloy, solidification of ingots and castings, solidification of fusion welds, rapid solidification; (7) Diffusional Transformation in Solids: homogeneous and heterogeneous nucleation in solids, precipitate growth, transformation kinetics, eutectoid transformation, ordering transformation; (8) Diffusionless Transformation in Solids: theories of martensite nucleation, martensite growth, tempering of ferrous martensite, martensite transformation in nonferrous metals, case study in diffusionless transformation
Prerequisite: Thermodynamics of Materials

ENMT 614018 - TECH. OF MICROSTRUCTURAL ANALYSIS - (2 Credit Points)
Techniques of microstructure analysis, Phase formation and general characteristic of material structures, Microstructure of steel; stable and metastable phases and the formation and mecha- nism, Microstructure of non-ferrous alloys; aluminum, copper, titanium, Macrostructure, Sampling techniques, Samples preparation, Observation techniques with optical and electron microscopes, Special measurements; micro-hardness, coating thickness, roughness, Quantitative metallography; grain size, volume fraction of phases and precipitates.
Prerequisite: Physical Metallurgy 1

ENMT 614019 - TESTING OF MATERIALS - (2 Credit Points)
Introduction to material testing, Review of mechanical behavior of materials, Data analysis and presentation of test results, Testing procedures, Testing machine and instruments, Standardization of materials testing, Destructive testing (tensile, compression, shear, fatigue, stress relaxation, and wear), Non-destructive (visual, penetrant, ultrasonic, radiography, eddy current and magnetic particle)
Prerequisite: Physical Metallurgy 1

ENMT 614020 - CHEMICAL CHARACTERIZATION OF MATERIAL LABORATORY - (1 Credit Point)
Quantitative analysis of organic and anorganic matter using titrimetry method
Prerequisite: Chemical Characterization of Material
ENMT 614021 - CORROSION & PROTECTION OF METALS LABORATORY - (1 Credit Point)
Corrosion cells, corrosion potential measurement of selected metals, polarization of stainless steel, cathodic protection, surface treatment.
Prerequisite: -

ENMT 615022 - INDUSTRIAL MANAGEMENT - (2 Credit Points)
Introduction to industrial management, organization and management functions, theories and techniques of decision-making, management of production / operations, the strategic decisions of products and processes, location and layout, management and control of stocks (inventory), R & D, project management, QC and productivity, management production practices, marketing and industrial management, HR management, IT and manufacturing industry, manufacturing industry in Indonesia
Prerequisite: -

ENMT 615023 - METAL MANUFACTURING PROCESS - (4 Credit Points)
The forming of metals as a part of design process and manufacture; fundamentals of metal casting (mould, molten metal, solidification), mould (sand, ceramic, metal), pouring system (pattern, riser, pressure and unpressure, chill) and its simulation, solidification of cast iron and aluminum, liquid treatment for ferrous metals (inoculation, Mg treatment) and non-ferrous (modifier, grain refiner), various methods of casting, casting defect; common principle of solid forming of a metal, techniques of metal forming through: pressing, forging, rolling, extrusion, wire drawing, sheet metal forming; thermo-mechanical processing (TMP). General principle of powder metallurgy, powder fabrication and mechanism of powder forming, powder characteristics and characterization, mechanical alloying, pre-compaction process, compaction, precursor characteristic, sintering and powder consolidation, full density processing, sintering equipment and related aspects, application of powder metallurgy products
Prerequisite: Physical Metallurgy 1

ENMT 615024 - NON-FERROUS EXTRACTIVE METALLURGY - (3 Credit Points)
Basic principles of extractive metallurgy (pyrometallurgy, hydrometallurgy and electrometallurgy). Process/treatment process of ore to be extracted. Leaching method of oxide and sulfide ores, Bayer process, Al, Au leaching by cyanidation (Leaching; precipitation techniques; ion exchange; solvent extraction; reverse osmosis). Electrometallurgy (Electro winning and electro refining). Molten salt electro winning. Hall process. Electro winning of Mg, Ti. Secondary metals. Obtaining metals from scrap and secondary sources by using pyro, hydro, and electrometallurgy. Pyrometallurgy, mineral separation, slag, blast furnace, raw materials, reactions, material balance, iron ore, roasting, smelting, refining of Sn, Ni, Cu, Zn, Pb.
Prerequisite: Electro-chemistry, Mineral Processing

ENMT 615025 - TECH. OF MICROSTRUCTURAL ANALYSIS LABORATORY - (1 Credit Point)
Metallographic sample preparation (techniques of cutting, grinding, polishing and etching), microstructural analysis techniques of metal (ferrous and non-ferrous) with an optical microscope
Prerequisite: Tech. of Microstructural Analysis

ENMT 615026 - TESTING OF MATERIALS LABORATORY - (1 Credit Points)
Tensile test, Compressive test, Micro and Macro Hardness test, Impact Test, Wear Test
Prerequisite: Testing of Materials

ENMT 616027 - CERAMIC TECHNOLOGY - (3 Credit Points)
Introduction to ceramics (general), crystal structure, glass structure, phase diagrams, phase transformations. Properties of ceramics: thermal, optical, mechanical, electrical and magnetic fields, as well as the nature dielektris. Manufacture of ceramic technology and applications: conventional ceramic (aluminum-silicate; clay, glaze); cement and concrete; glass and advanced ceramics (advanced ceramics). The processes for modern ceramics, ceramic thin film, ceramic for field application of mechanical, electronic, optical and magnetic. -Based ceramic matrix composites.
Refractory ceramics. Refractory raw materials, types of refractories: refractory system Alumininum-silica, silica refractories, refractory magnesite, chromite refractories, refractory carbon, special refractories. Manufacture of refractories, the use of refractory metals in the industry and others, as well as the failure mechanism of refractory.

Prerequisite: Physical Metallurgy 2

ENMT 616028 - COMPOSITE TECHNOLOGY - (3 Credit Points)
The concept, definition and clarification of the composite, matrix and reinforcement type for composites, metal matrix composite, polymer matrix composite, ceramic matrix composite, fiber composite nature. Reinforced fibers and Whiskers, the rule of mixtures, the interface in composite materials, interfacial area, Interfacial Wettability, interfacial bonding

Prerequisite: Polymer Technology

ENMT 616029 - MATERIALS JOINING - (3 Credit Points)
Principles of various material joining and its classification, adhesive bonding, mechanical joining, methods of welding: fusion welding (electric arc), electrical resistance welding, pressure welding (solid state welding), other welding process (EBW, laser welding, thermit welding, underwater welding), soldering and brazing, design of joint and welding symbol, welding metallurgy: carbon steel, low alloy steel, stainless steel, concrete steel, non ferrous, WPS and welding standards and code, weld defect and its prevention, control of joint and its testing

Prerequisite: Physical Metallurgy 1, Testing of Materials

ENMT 616030 - EXTRACTIVE METALLURGY LABORATORY - (1 Credit Point)
Metals extraction test and electrometallurgy (e.g. Electroplating, froth flotation)

Prerequisite: Non Ferrous Extractive Metallurgy

ENMT 616031 - METAL MANUFACTURING PROCESS LABORATORY - (2 Credit Points)
(1) Sand particle size distribution, water content calculation, additive substance (bentonite) content in mould, sand flowablity, relation of water and additive content in sand with permeability, shear and compressive strength of sand, (2) utilization of simulation software in calculation and design of casting, (3) Design of inlet and riser, mould making from patterns, making of the core of the mould, melting and pouring of molten metal to the mould, analysis of casting defect, analysis of casting product related to the alloying element and casting process. (4) Solid slinder forging, (5) Sheet metal rolling, (6) Sheet metal forming which includes non-simulative testing (tensile testing for n and r value), and simulative testing (strechting and deep-drawing, LDH and LDR)

Prerequisite: Metal Manufacturing Process Metal

ENMT 616032 - CAPITA SELECTA - (2 Credit Points)
Specific topics that have not been included in Subjects and supplied by external resource persons which is experienced in industry

Prerequisite: Metal Manufacturing Process, Corrosion & Protection of Metals

ENMT 616033 - ENGINEERING DESIGN OF PRODUCT - (3 Credit Points)
Introduction to Engineering Design, total design activity, group dynamics and design management, problem identification and design specification, creativity and the conception of design, modeling, optimallisation, materials and process selection, design communication and presentation.

Prerequisite: Polymer Technology, Composite Technology, Ceramic Technology, Iron & Steel Making Process

ENMT 616034 - FRACTURE MECHANICS & FAILURE ANALYSIS - (4 Credit Points)
Aspects of failure engineering and its analysis, sources/factors contributing the material’s failure, explanation of failure factors, types of fractures, stress system and residual stress, theories of fracture mechanics and introduction to the risk-based inspection, failure due to: fatigue, creep, wear, brittleness, heat behavior, residual stress, corrosion and environment, case study.

Prerequisite: Physical Metallurgy 1, Testing of Materials, Tech. of Microstructural Analysis, Corrosion & Protection of Metals
ENMT 616035 - INTERNSHIP - (2 Credit Points)
Specify the job objectives in the proposal; Implement an internship at a site that has been approved and in accordance with its specificity; Study and describe the process of technical work, quality control, project management, project specifications, engineering drawings and other aspects; Identify the problem related to the technical work, quality control, project management, project specifications, engineering drawings and other aspects; Conduct problems that occur at each stage of the project; Determine ways or solutions to overcome the problems associated with the project learned; Prepare a final report includes project description, existing problems and problem solving
Prerequisite: Student has obtained minimum of 100 credits

ENMT 616036 - SEMINAR OF FINAL PROJECT PROPOSAL - (1 Credit Points)
Final assignment writing guide including initial research, abstract writing guide, research methodology, type of references, discussion, also conclusion. To make scientific paper from existing final report which then be presented according to certain journal term or final assignment proposal presentation.
Prerequisite: Student has obtained minimum of 105 credits

ENMT 616037 - FINAL PROJECT - (4 Credit Points)
Implementation/application of various lectures taken by students on integration in a research to solve a problem in metallurgy and material engineering field. The research result is presented in a form of scientific report and presented in front of the judging lecturers.
Prerequisite: Student has obtained minimum of 125 credits
4.8. UNDERGRADUATE PROGRAM IN ARCHITECTURE

Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia, for Double Degree Program: Universitas Indonesia and partner university</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teaching Institution</td>
<td>Universitas Indonesia Double Degree: Universitas Indonesia and Partner Universities</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Undergraduate Program in Architecture</td>
</tr>
<tr>
<td></td>
<td>Class</td>
<td>Regular, Parallel, International</td>
</tr>
<tr>
<td></td>
<td>Degree Offered</td>
<td>Sarjana Arsitektur (S.Ars) for Double Degree: Sarjana Arsitektur (S.Ars) and Bachelor of Architecture (B.Arch)</td>
</tr>
<tr>
<td></td>
<td>Accreditation / Recognition</td>
<td>Accredited from BAN-PT AUN-QA</td>
</tr>
<tr>
<td></td>
<td>Language of Instruction</td>
<td>Bahasa Indonesia and English</td>
</tr>
<tr>
<td></td>
<td>Study Scheme (Full time/Part time)</td>
<td>Full time</td>
</tr>
<tr>
<td></td>
<td>Entry requirement</td>
<td>SMA Graduate/equal or D3/Polytechnic graduate</td>
</tr>
<tr>
<td></td>
<td>Duration of Study</td>
<td>4 years / program</td>
</tr>
<tr>
<td></td>
<td>Semester</td>
<td>Total of semester Weeks / Semester</td>
</tr>
<tr>
<td>Regular</td>
<td>8</td>
<td>16-17</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Graduates Profile:
Sarjana Arsitektur is a graduate who has the ability to design architecture with respect to context and local needs and is based on the application of basic knowledge of architecture. Graduates are expected to have the ability as:
- **An Initiator**: able to provide solutions to spatial problems critically and creatively with respect to local context and needs
- **A Designer**: have the skill in assembling architectural elements and materials, have an understanding of built aspects, and have a sensibility in creating meaningful architectural design.
- **A Communicator**: able to communicate ideas through words, writings, drawings, modeling and other media.
- **A Collaborator**: able to work together with various stakeholders to propose creative solutions for real problems
12 Learning Outcome
1. Able to create architectural design by integrating basic architectural knowledge, applying design and communication skills, applying ability for imagination, creative thinking, innovation and three-dimensional thinking.
2. Able to synthesize the knowledge of architectural history and theories, including knowledge on art, culture, and humanities that could influence the quality of architectural design.
3. Able to analyze context in which architecture is designed and integrate it through design that responds appropriately to the context.
4. Able to analyze the needs and characteristics of the users and integrate them as the basis to define contextual and functional requirements for different types of built environment.
5. Able to construct the knowledge of architectural design methods.
6. Able to construct the knowledge of structural systems, building materials and construction, and building utility.
7. Able to integrate the knowledge of natural and environmental systems into a sustainable architectural design.
8. Aware of various roles of architects in the society.
9. Able to gather information, formulate problems, perform analysis and synthesis that are related to architecture.
10. Able to apply mathematics, science, and basic engineering into the solution of complex technical problems.
11. Have integrity, able to demonstrate critical, creative, and innovative thinking, and have intellectual curiosity in solving the problems both at individual and group levels.
12. Able to offer alternative solutions towards various problems in the society, the community, and the nation.
13. Able to utilize information and communication technology.
14. Able to use verbal and written language in Bahasa Indonesia and English fluently in academic and non-academic activities.
15. Able to identify various innovative and independent entrepreneurial endeavors with respect to ethics.

13 Course Composition

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Course</th>
<th>Credits</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12,5%</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>11</td>
<td>7,6%</td>
</tr>
<tr>
<td>iii</td>
<td>Architecture Core Subjects</td>
<td>87</td>
<td>60,4%</td>
</tr>
<tr>
<td>iv</td>
<td>Electives</td>
<td>28</td>
<td>19,5%</td>
</tr>
<tr>
<td>v</td>
<td>Total</td>
<td>144</td>
<td>100%</td>
</tr>
</tbody>
</table>

14 Total credits for graduation: 144 Credit Semester Units

Job Opportunity
Graduates of Strata-1 Architecture Program UI hold a Sarjana Arsitektur with pre-professional qualifications. The graduate will be able/can may work as an intern in a professional practice or to continue on to a Professional Architectural Education Program (PPARS) (Architect). To obtain professional certification, a graduate has to perform an internship and pass the qualification assessment by the professional association (IAI/Indonesian Institute of Architects).
A graduate holding a Sarjana Arsitektur UI can work in various fields of the construction industry such as architecture, interior design or construction supervision. In addition to pursuing a career in the architectural field, graduates are able to develop a career as an assessor for project feasibility studies, building and environmental management, to work in the building materials industries as well as working in the public sector related to government buildings, construction and the built environment. In addition to these areas, graduates can also work in various fields of work that employ creative abilities and critical thinking skills.
Network Competencies

Graduates' Profile:
Sarjana Arsitektur is a graduate who has the ability to design architecture with respect to context and local needs and based on the application of basic knowledge of architecture.

- Able to synthesize the knowledge of architectural history and theories, including knowledge on art, culture, and humanities that could influence the quality of architectural design.
- Able to analyze context in which architecture is designed and integrate it through design that responds appropriately to the context.
- Able to analyze the needs and characteristics of the users and integrate them as the basis to define contextual and functional requirements for different types of built environment.
- Able to construct the knowledge of structural systems, building materials and construction, and building utility.
- Able to integrate the knowledge of natural and environmental systems into a sustainable architectural design.
- Able to create architectural design by integrating basic architectural knowledge, applying design and communication skills, applying ability for imagination, creative thinking, innovation and three-dimensional thinking.
- Able to construct the knowledge of architectural design methods.
- Aware of various roles of architects in the society.
- Able to gather information, formulate problems, perform analysis and synthesis that are related to architecture.
- Able to apply mathematics, science, and basic engineering into the solution of complex technical problems.
- Have integrity, able to demonstrate critical, creative, and innovative thinking, and have intellectual curiosity in solving the problems both at individual and group levels.
- Able to offer alternative solutions towards various problems in the society, the community, and the nation.
- Able to utilize information and communication technology.
- Able to use verbal and written language in Bahasa Indonesia and English fluently in academic and non-academic activities.
- Able to identify various innovative and independent entrepreneurial endeavors with respect to ethics.
Curriculum Structure of Undergraduate Program in Architecture

<table>
<thead>
<tr>
<th>GENERAL AND BASIC ENGINEERING</th>
<th>BASIC</th>
<th>SKILL</th>
<th>ENRICHMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECHANICS AND THERMAL PHYSICS (3)</td>
<td>MECHANICS AND THERMAL PHYSICS LABORATORY (1)</td>
<td>INTRODUCTION TO URBAN CONTEXT (3)</td>
<td>UNDERGRADUATE THESIS/FINAL PROJECT (6)</td>
</tr>
<tr>
<td>INTEGRATED CHARACTER BUILDING A (6)</td>
<td>RELIGION (2)</td>
<td>BUILDING TECHNOLOGY 3 (3)</td>
<td>AD 5 (9)</td>
</tr>
<tr>
<td>SPORTS/ARTS (1)</td>
<td>LINEAR ALGEBRA (4)</td>
<td>HISTORY AND THEORY OF ARCHITECTURE 1 (3)</td>
<td>AD 1 (7)</td>
</tr>
<tr>
<td>INTEGRATED CHARACTER BUILDING B (6)</td>
<td>ENGLISH (3)</td>
<td>BUILDING TECHNOLOGY 1 (3)</td>
<td>BASIC DESIGN 1 (5)</td>
</tr>
<tr>
<td>CALCULUS (3)</td>
<td></td>
<td>DIGITAL DESIGN MEDIA (3)</td>
<td></td>
</tr>
</tbody>
</table>

- **NOTES:** Student has taken or is taking
- *) Should be taken outside Architecture Study Program
- **TOTAL:** 144 SKS
- **14 SKS**
- **18 SKS**
- **20 SKS**
CURRICULUM STRUCTURE ARCHITECTURE

<table>
<thead>
<tr>
<th>KODE CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600003</td>
<td>Calculus</td>
<td>3</td>
</tr>
<tr>
<td>ENAR601009</td>
<td>Introduction to Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR601001</td>
<td>Basic Design 1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010</td>
<td>- 15 Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>UIGE600020</td>
<td>- 48 Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENAR602002</td>
<td>Basic Design 2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENAR603003</td>
<td>Architectural Design 1</td>
<td>7</td>
</tr>
<tr>
<td>ENAR603010</td>
<td>History & Theory of Architecture 1</td>
<td>3</td>
</tr>
<tr>
<td>ENAR603011</td>
<td>Design Methods</td>
<td>3</td>
</tr>
<tr>
<td>ENAR603012</td>
<td>Building Technology 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR604004</td>
<td>Architectural Design 2</td>
<td>8</td>
</tr>
<tr>
<td>ENAR604013</td>
<td>History & Theory of Architecture 2</td>
<td>3</td>
</tr>
<tr>
<td>ENAR604014</td>
<td>Building Technology 2</td>
<td>3</td>
</tr>
<tr>
<td>ENAR604015</td>
<td>Digital Design Media</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR605005</td>
<td>Architectural Design 3</td>
<td>9</td>
</tr>
<tr>
<td>ENAR605016</td>
<td>Building Technology 3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>6th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR606006</td>
<td>Architectural Design 4</td>
<td>9</td>
</tr>
<tr>
<td>ENAR606017</td>
<td>Introduction to Urban Context</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>7th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR607007</td>
<td>Architectural Design 5</td>
<td>9</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective*</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>14</td>
</tr>
</tbody>
</table>
*) Mahasiswa wajib mengambil minimal 2 mata ajar di luar Program Studi S1 Arsitektur sebagai mata ajar pilihan.
**) Kajian Perancangan wajib diambil sebagai mata ajar pilihan bagi mahasiswa yang memilih Tugas Akhir

Resume

<table>
<thead>
<tr>
<th>University General Subjects</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Engineering Subjects</td>
<td>11</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>87</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>116</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>28</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Elective Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAR600018</td>
<td>Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600019</td>
<td>Coastal Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600020</td>
<td>Ethnic Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600021</td>
<td>Architecture, City and Power</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600022</td>
<td>Heritage Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600023</td>
<td>Urban Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600024</td>
<td>Digital Fabrication</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600025</td>
<td>High-Rise Building Facades</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600026</td>
<td>Photography</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600027</td>
<td>Geometry and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600028</td>
<td>Everyday and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600029</td>
<td>2D Design Digital Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600030</td>
<td>3D Digital Design Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600031</td>
<td>Life Cycle Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600032</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600033</td>
<td>Principles of Urban Housing</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600034</td>
<td>Interior Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600035</td>
<td>Site Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600036</td>
<td>City Planning</td>
<td>3</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE OF UNDERGRADUATE PROGRAM IN ARCHITECTURE INTERNATIONAL CLASS

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAR600037</td>
<td>Architectural Psychology</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600038</td>
<td>Real Estate</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600039</td>
<td>Project Feasibility Study</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600040</td>
<td>Lighting Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600041</td>
<td>Environ Design Theories and Methods</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600042</td>
<td>Urban Housing Theory</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600043</td>
<td>Building Utility</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600044</td>
<td>Tectonic Workshop</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600045</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600046</td>
<td>Design Study **</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600047</td>
<td>Capita Selecta</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600048</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600049</td>
<td>Special Topic on Architectural Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600050</td>
<td>Special Topic on Urban Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600051</td>
<td>Special Topic on Urban Housing&Settlement</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600052</td>
<td>Spec Topic Arch. History, Theory & Critics</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600053</td>
<td>Special Topic on Building Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

1st Semester
Sub Total 18

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE610005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>UIGE610002</td>
<td>Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610003</td>
<td>Calculus</td>
<td>3</td>
</tr>
<tr>
<td>ENAR611009</td>
<td>Introduction to Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub Total 18

2nd Semester
Sub Total 17

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE610004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENAR612002</td>
<td>Basic Design 2</td>
<td>7</td>
</tr>
<tr>
<td>ENAR612015</td>
<td>Digital Design Media</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub Total 17

3rd Semester
Sub Total 19

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAR613003</td>
<td>Architectural Design 1</td>
<td>7</td>
</tr>
<tr>
<td>ENAR613010</td>
<td>History and Theory of Architecture 1</td>
<td>3</td>
</tr>
<tr>
<td>ENAR613011</td>
<td>Design Methods</td>
<td>3</td>
</tr>
<tr>
<td>ENAR613012</td>
<td>Building Technology 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Sub Total 19

4th Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAR614004</td>
<td>Architectural Design 2</td>
<td>8</td>
</tr>
<tr>
<td>ENAR614013</td>
<td>History and Theory of Architecture 2</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>ENAR614014</td>
<td>Building Technology 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR615005</td>
<td>Architectural Design 3</td>
<td>9</td>
</tr>
<tr>
<td>ENAR615016</td>
<td>Building Technology 3</td>
<td>3</td>
</tr>
<tr>
<td>UIGE610004</td>
<td>Integrated Character Building (Social-Humanities)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>6th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR616006</td>
<td>Architectural Design 4</td>
<td>9</td>
</tr>
<tr>
<td>ENAR616017</td>
<td>Introduction to Urban Context</td>
<td>3</td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Character Building (Science, Technology, Health)</td>
<td>6</td>
</tr>
<tr>
<td>UIGE6100xx</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>7th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR617007</td>
<td>Architectural Design 5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective *)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>8th Semester</td>
<td></td>
</tr>
<tr>
<td>ENAR610008</td>
<td>Undergraduate Thesis/Final Project</td>
<td>6</td>
</tr>
<tr>
<td>UIGE610003</td>
<td>Sports/Arts</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective **)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective *)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
</tr>
</tbody>
</table>

Resume

<table>
<thead>
<tr>
<th>Category</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>11</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>87</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>116</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>28</td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>144</td>
</tr>
</tbody>
</table>
ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAR610018</td>
<td>Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610020</td>
<td>Ethnic Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610022</td>
<td>Heritage Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610054</td>
<td>Introducing Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610031</td>
<td>Life Cycle Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610040</td>
<td>Lighting Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610026</td>
<td>Photography</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610038</td>
<td>Real Estate</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610035</td>
<td>Site Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610029</td>
<td>2D Design Digital Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610030</td>
<td>3D Digital Design Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610045</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610046</td>
<td>Design Study **)</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610047</td>
<td>Capita Selecta</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610048</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610049</td>
<td>Special Topic on Architectural Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610050</td>
<td>Special Topic on Urban Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610051</td>
<td>Special Topic on Urban Housing and Settlement</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610052</td>
<td>Special Topic on Architectural History, Theory and Criticism</td>
<td>3</td>
</tr>
<tr>
<td>ENAR610053</td>
<td>Special Topic on Building Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

*) Students are required to take minimum 2 subjects from outside Architecture Study Program as electives

**) Design Study is required as elective for students who choose to take Final Project

COURSE STRUCTURE AT CURTIN UNIVERSITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Year 3-Semester 5 (July)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS1010</td>
<td>Academic and Professional Communications</td>
<td>25</td>
</tr>
<tr>
<td>ARCH2022</td>
<td>Architectural Contexts Studio</td>
<td>25</td>
</tr>
<tr>
<td>ARCH2023</td>
<td>Architectural Contexts Methods</td>
<td>25</td>
</tr>
<tr>
<td>ARCH2004</td>
<td>Architecture and Identity</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Year 3-Semester 6 (February)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH3026</td>
<td>Architectural Discourse and Spatial Intelligence Studio</td>
<td>25</td>
</tr>
<tr>
<td>ARCH3027</td>
<td>Architectural Discourse and Spatial Intelligence Methods</td>
<td>25</td>
</tr>
<tr>
<td>ARCH3008</td>
<td>Urban Contexts</td>
<td>25</td>
</tr>
<tr>
<td>ARCH3006</td>
<td>Environmental and Technological Systems in Architecture 1</td>
<td>25</td>
</tr>
</tbody>
</table>
COURSE STRUCTURE AT QUEENSLAND UNIVERSITY OF TECHNOLOGY (QUT)

<table>
<thead>
<tr>
<th>February Entry</th>
<th>July Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>Semester 5 (February)</td>
<td>Semester 5 (July)</td>
</tr>
<tr>
<td>DAB511</td>
<td>Architectural Design 5</td>
</tr>
<tr>
<td>DAH530</td>
<td>Integrated Technologies 2</td>
</tr>
<tr>
<td>DAH525</td>
<td>Architecture and The City</td>
</tr>
<tr>
<td>DAB325</td>
<td>Architecture in The 20th Century</td>
</tr>
<tr>
<td>Semester 6 (July)</td>
<td>Semester 6 (February)</td>
</tr>
<tr>
<td>DAB611</td>
<td>Architectural Design 6</td>
</tr>
<tr>
<td>DAH635</td>
<td>Architectural Technology 2</td>
</tr>
<tr>
<td>DAB403</td>
<td>Visualisation 3</td>
</tr>
<tr>
<td>Minor Unit/Elective</td>
<td>DAB325</td>
</tr>
<tr>
<td>Semester 7 (February)</td>
<td>Semester 7 (July)</td>
</tr>
<tr>
<td>DAH710</td>
<td>Architectural Design 7</td>
</tr>
<tr>
<td>DEH701</td>
<td>Research Methods</td>
</tr>
<tr>
<td>Minor Unit/Elective</td>
<td></td>
</tr>
<tr>
<td>Semester 8 (July)</td>
<td>Semester 8 (February)</td>
</tr>
<tr>
<td>DAH811</td>
<td>Architectural Design 8 (triple)</td>
</tr>
<tr>
<td>Minor Unit/Elective</td>
<td>DEH701</td>
</tr>
<tr>
<td>Minor Unit/Elective</td>
<td>Minor Unit/Elective</td>
</tr>
</tbody>
</table>

Total Credits (Year 3 & Year 4) taken at QUT = 192
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment

Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)

Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method: Active learning, Contextual language learning, small group discussion.

Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
UIGE600003
Learning Objectives: After attending this subject, students are expected to capable of use English to support the study in university and improve language learning independently.

Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary Listening strategies Extensive reading) Grammar: (Revision of Basic grammar Types of sentences Adjective clauses, Adverb clauses Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking Reading popular science article, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks

Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)

Prerequisites: OBM (New Student Orientation)

Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005
2 sks

General instructional objectives: The cultivation of students who have concern for social, national and countries issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human’s basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam’s motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)
CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.
Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society.

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks
General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.
Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

HINDU STUDY
UIGE600013/UIGE610008
2 sks
Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks
Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture.
(the responsibility of religious society in the realization of critical thinking (academic), work hard and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God's law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be choosen:
Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025), Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029), Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be choosen:
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043), Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.
LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is used as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomena and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability by analysing the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is used as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomena and the result of human engineering in their surrounding environment by using basic physics concept.
PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry. Learning activities will be conducted through various methods, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis. Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations
that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment. Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam

COURSE DESCRIPTION: COMPULSORY COURSES

ENAR601009
ENAR611009
INTRODUCTION TO ARCHITECTURE
3 CREDIT UNITS

Learning Objective:
Student should be able to understand basic principles in architecture, including basic theories, the relationship between architecture and human, architecture and nature, architecture and aesthetic, and architecture and technology; able to understand the position of architecture position among other disciplines.

Syllabus:
What is architecture? (Introduction: Architecture as discourse, career in architecture, arkhe + tekon; tekhne; Laugier primitive hut and the idea of shelter)
Aesthetic (proportion; rhythm; scale; golden rules; aesthetic trinity of classic Greek; Mandala and Maya; Taoism and nature, mathematical pattern in geometry)
Form and Space (Plato and form; type and how Quatrèmere de Quincy mimic nature; form and function; various views on space and the different meaning of raum and spatium)
Materiality and Materialization (re-investigating tekhne; the importance of understanding the characteristic and potential of material, tectonic which does not limit to construction)
Context (understanding of natural environment, artificial environment, and built environment; our existence and place according to Heidegger; material and context)
Human and relationship with others I (the importance of understanding human for designer; understanding of human being; body, senses and space; personal space according to Hall)
Human and relationship with others II (space, the presence and the remoteness of people, the meaning of place for human)
Architects as profession

Prerequisites: -

References:
3. Adrian Forty, Words and Buildings: a Vocabulary of Modern Architecture, Thames and Hudson, 2004
ENAR601001
ENAR611001
BASIC DESIGN 1
5 CREDIT UNITS

Learning Objective:
Student should be able to produce 2D and 3D works as creative responses towards contexts by applying basic knowledge of visual art and design; Student should be able to acquire and apply basic 2D and 3D representational techniques.

Syllabus:
Basic knowledge of visual art and design, basic knowledge of aesthetic; basic knowledge of space; visual elements: shape, color, texture, etc; basic principles of composition; introduction to art history and its role in the making of art; basic drawing techniques: expression drawing; shape drawing (natural and manmade objects); basic modeling and assembling techniques; understanding characteristics of media and materials; perceiving visually and communicating what is perceived; display and layout techniques.

Prerequisites:

References:
2. Claire Holt, Art in Indonesia, Continuity and Changes, Cornell University, Ithaca and London, 1967

ENAR602002
ENAR612002
BASIC DESIGN 2
7 CREDIT UNITS

Learning Objective:
Student should be able to produce spatial works as creative responses towards contexts by applying knowledge of visual art and design and employed various 2D and 3D representation techniques; Student should be able to communicate architectural ideas by using appropriate techniques and media.

Syllabus:
Basic knowledge of relationship among space, human and time; Exploration of visual elements, non-visual elements (audio, kinesthetic) and moving elements (kinetics); creating spatial ideas as response to contexts; principles of architectural communication, basic architectural communication techniques: projection drawing, orthographic drawing, perspective drawing; modeling and assembling techniques; model making; understanding characteristics of media and materials; communicating object and space for various purpose and audiences; communicate human activity space.

Prerequisites: Student has taken Basic Design 1 (or Visual Art in 2012 Curriculum)

References:

ENAR603010
ENAR613010

HISTORY AND THEORY OF ARCHITECTURE 1
3 CREDIT UNITS

Learning Objective:
Student should be able to understand the history of modern architecture from 1750s to present.

Syllabus:
This course is a survey of modern architecture history from 1750s to present, with main focus on the development of modern architecture. This course also discusses the relationship between the development of architecture and its socio-cultural, political, and technological contexts. This course also investigates principles in architecture and design. It emphasizes on several important moments in the development of modern architecture, and provide knowledge on the theories that are relevant to modern architecture.

Prerequisites: -

Reference:

ENAR603011
ENAR613011

DESIGN METHODS
3 CREDIT UNITS

Learning Objective:
Student should be able to understand the basic thinking and methods of designing built environment; student should be able to explain the basic thinking and apply one of the design methods through writings and drawings.

Syllabus:
Theory and method of thinking; phenomenology, semiotic; theory and method of identifying problems; architectural observation, design knowledge, factual, deontic, instrumental, black box, clear box; theory and method of understanding problems, analysis and synthesis; Theory and methods of problem solving.

Prerequisites: Student has taken Introduction to Architecture

Reference:

ENAR604013
ENAR613013
HISTORY AND THEORY OF ARCHITECTURE 2
3 CREDIT UNITS

Learning Objective:
Student should be able to demonstrate knowledge of history of architecture in Indonesia from the end of 19th century to 20th century

Syllabus:
This course is a survey of history of architecture in Indonesia from the end of 19th century to 20th century. Various influences from overseas—India, China, Middle East and Western—take part in the development of architecture in Indonesia. Therefore it is important to understand Indonesian architecture and its relation with Non-Western and Western architecture, and architecture of various ethnic groups in Indonesia. Through discussion and analysis of buildings, drawings, photos and written materials, this course emphasizes on the interdependence among architecture, human, tropical climate, socio-culture background, politics and the development of technology in Indonesia.

Prerequisites:

Reference:
5. Scott Mirelles, *Historical Photographs of Batavia*

ENAR604015
ENAR614015
DIGITAL DESIGN MEDIA
3 CREDIT UNITS

Learning Objective:
Student should be able to express, explore, investigate and communicate architectural ideas by using digital media.

Syllabus:
Introduction to techniques and variety of digital media which can be applied to represent architectural ideas, investigate the basic abilities of various digital tools, choosing the appropriate digital tools and techniques to express, explore or investigate certain architectural ideas, studying the
workflow of digital and analog media as a part of the architectural design process.

Prerequisites: Student has taken Basic Design 2 (or Architectural Communication Technique or Interior Architectural Communication Technique in 2012 Curriculum)

Reference:

ARCHITECTURAL DESIGN

Architectural design courses are the studio courses at the Department of Architecture. The studios denote learning locations as well as learning methods. At the end of studio-based learning process, students should be able to demonstrate their ability to think critically and creatively, which can be assessed from their ability to explain and present his/her design ideas. Architectural Design learning process is implemented through Design Projects, which are direct manifestations of integration of knowledge, consisting of:
- Factual knowledge: understanding and formulating design problems which are abstract, qualitative, and related to socio-cultural aspects of human/space activities
- The context and the environment of living space, ranging from micro/local/personal space, family, community, to urban/rural environment
- Technical aspects such as structure (statics), tectonics (including building materials), building physics, and building systems.
- Design methods
- Communication techniques

In practice, Design Projects accommodate learning materials from several courses: Architectural Design, Building Technology, and Introduction to Urban Context, within the following order:
- Design Project 1 integrates Architectural Design 1 and Building Technology 1
- Design Project 2 integrates Architectural Design 2 and Building Technology 2
- Design Project 3 integrates Architectural Design 3 and Building Technology 3
- Design Project 4 integrates Architectural Design 4 and Introduction to Urban Context

Gradual acquisition of knowledge and ability is structured within each stage of learning in Architectural Design in each semester.

DESIGN PROJECT 1
Design Project 1 focuses on the design of space for human self. Design Project 1 is an integration of knowledge on spatial design, based on the understanding of the relationship between human and space, basic structural logic, and basic principles of environmental comfort within spatial design. Design Project 1 consist of learning activities performed in two courses which complement each other, Architectural Design 1 and Building Technology 1.

ENAR603003
ENAR613003
ARCHITECTURAL DESIGN 1
7 CREDIT UNITS

Learning Objectives:
Student should be able to design a space for a single person, through understanding the relationship between human and space.

Syllabus:
Architectural Design 1 is an early and critical stage to introduce students to architecture through imaginative, creative, and innovative spatial design. Architectural knowledge encompasses basic comprehension about the personal spatial meaning and experience, interaction between human body and spatial quality, understanding of site and surrounding context as experienced by human body. Design activities consists of information gathering, formulation of design problem, analysis,
and making critical decisions to formulate an active strategy toward human space, ability to think three-dimensionally through spatial design exploration, and communicating design ideas.

Design exercises consist of: Designing a simple space for a single person that is materialized through 1:1 scaled model; Designing a space for an episode of human life.

Prerequisites:
Students have taken Basic Design 2 (or Architectural Communication Technique or Interior Architectural Communication Technique in 2012 Curriculum)
Students have taken or are taking Building Technology 1

References:
8. Yi-Fu Tuan, *Space and Place: The Perspective of Experience*, University of Minnesota Press, 1981

ENAR603012
ENAR613012
BUILDING TECHNOLOGY 1
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand basic technical aspects of structure, material, construction, and building comfort; should be able to formulate technical design process and integration of structure and construction technologies into a functionally effective whole; should be able to produce a report of analysis and synthesis of all aspects of building technology.

Syllabus:
Structure in nature; Basic principle sof structure and construction (logic of structure, basic mechanics); Site context (natural elements that influence building); Building material (material use and position in building, material property values that influence comfort); Basic building physics (building orientation, environmental influence to comfort); Introduction to basic structure and construction principles of simple building; Introduction to working drawing.

Prerequisites: -

References:
Design Project 2 is about designing space for core social unit (family, a couple, etc). Design Project 2 integrates knowledge on spatial design based on the idea dwelling, the analysis of family life cycle and daily activities, application of basic structural principles and constructions of low rise building, building systems, and principle of building physics. Design Project 2 integrates the learning activities performed in two courses that complement each other, Architectural Design 2 and Building Technology 2.

ENAR604004
ENAR614004
ARCHITECTURAL DESIGN 2
8 CREDIT UNITS

Learning Objectives:
Students should be able to design a dwelling as a living space for core social unit through tectonic approach and by thorough consideration of the life cycle and daily activities of the core social unit.

Syllabus:
Architectural Design 2 proposes critical issues of human living space in urban community context, through the design of a dwelling. Design knowledge herewith includes the understanding concept of dwelling, observation and analysis of core social unit, formulating spatial program based on understanding of the needs of core social unit, development of spatial idea through tectonic exploration as the art of joining and exploration of spatial composition as an integration of part-whole that appropriately accommodate the programs, which are implemented into an integrated spatial design and communicated by complying with standard principles of architectural communication.

Prerequisites:
- Students have taken Architectural Design 1
- Students have taken or are taking Building Technology 2

References:

ENAR604014
ENAR614014
BUILDING TECHNOLOGY 2
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand technical aspects of structure, material, construction, and
building comfort for low rise building; should be able to formulate technical design process and integration of structure, construction technologies and building systems into a functionally effective whole; should be able to produce a report of analysis and synthesis of all aspects of building technology.

Syllabus:
Identification of all aspects of building technology in a simple low rise building that include: structural logic, buildability, and comfort; Introduction to in-depth knowledge on the materiality of material, construction techniques and details; Dimension and configuration of materials and their relation to structure and construction of simple building; Elements of air conditioning and lighting in a building; Introduction to basic knowledge of building utility; Creating technical documentations (working drawing).

Prerequisites:
Students have taken Building Technology 1
Students have taken or are taking Architectural Design 2

References:
5. Gail Peter Borden, Material The Typology of Modern Tectonics, Wiley, 2010

DESIGN PROJECT 3
Design Project 3 is a studio that focuses on aspects of buildability and building performances. Design Project 3 is an integration of design knowledge through technological approach, implementation of structural principles, construction and material, building supporting system and the use of technology in the design process. Design Project 3 integrates the learning activities performed in two courses that support each other, Architectural Design 3 and Building Technology 3.

ENAR605005
ENAR615005
ARCHITECTURAL DESIGN 3
9 CREDIT UNITS

Learning Objectives:
Students should be able to design a building based on the development of technological ideas.

Syllabus:
Architectural Design 3 proposes the critical issues on the aspects of buildability and building performance. Design knowledge includes the development of advanced tectonic ideas, encompassing exploration of material, detail and construction, and the development of architectural ideas based on building performance and system. Knowledge of site and environment includes the contextual explanation of design through the understanding of the site physical condition and consideration of sustainability. Knowledge on the role of technology in architectural design process in terms of representation, modeling and simulation.

Prerequisites:
Students have taken Architectural Design 2
Students have taken or are taking Building Technology 3
References:

ENAR605016
ENAR615016
BUILDING TECHNOLOGY 3
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand technical aspect of structure, material, construction, and building comfort for advanced building (high rise/wide span building); should be able to formulate technical design process and integration of structure, construction technology and utility system as a functionally effective whole; should be able to formulate utility system, transportation and communication system, building maintenance and safety; should be able to perform technical documentation and to create analysis/synthesis report from all aspect of building technology; should be able to understand energy conservation issues and ecological sustainability.

Syllabus:
Advanced building structure (wide span and/or high rise); Building system, advanced utility system (comfort, transportation, communication, maintenance, and building safety); Sustainable building energy conservation; Basic knowledge of ecological sustainability issues.

Prerequisites:
Students have taken Building Technology 2
Students have taken or are taking Architectural Design 3

References:

DESIGN PROJECT 4

Design Project 4 focuses on the design of public space. It integrates architectural typology-based design method, issue-based design and basic knowledge of urban context. Design Project 4 integrates the learning activities performed in two courses that support each other, Architectural Design 4 and Introduction to Urban Context.
ENAR616006
ARCHITECTURAL DESIGN 4
9 CREDIT UNITS

Learning Objectives:
Students should be able to design public space through architectural typology-based design approach, issue-based design approach and creative exploration of architectural form and spatial quality.

Syllabus:
Architectural Design 4 proposes the critical issues of human living space with socio-cultural complexities as found in urban/suburban context, through two approaches: a) top-down approach through the exploration of design ideas based on typology, and b) bottom-up approach through exploration of issue-based design ideas. Design knowledge herewith consist of the understanding of the concept of public, analysis of functional types, spatial programming, the concept of institution and how it is elaborated into spatial design, the formulation of initial statement based on issues, development of architectural programs and how they are elaborated into spatial design. Knowledge of site and environment includes the contextual explanation of the design through the understanding toward site physical condition, urban socio-cultural context, and consideration of sustainability. Design assignments consist of: Designing space within social environment context with a close kinship; Designing space in more complex urban environmental context.

Prerequisites:
Students have taken Architectural Design 3
Students have taken or are taking Introduction to Urban Context

References:
2. Yi-Fu Tuan, Space and Place: The Perspective of Experience, University of Minnesota Press, 1981
7. Jonathan D. Sime, Creating Places or Designing Spaces, Journal of Environmental Psychology, Vol 6, hal. 49-63, 1986

ENAR606017
ENAR616017
INTRODUCTION TO URBAN CONTEXT
3 CREDIT UNITS

Learning Objectives:
Student should be able to know and understand basic knowledge about physical urban forms, and able to implement and apply building rules and codes in design building in urban context.

Syllabus:
Basic principles and issues on urban physical forms: Cities, growth and development, urban physical form and urban physical development, planned and unplanned urban development, site planning and design.

Prerequisites:
Students have taken or are taking Architectural Design 4

References:
1. Journal of the American Planning Association (sesuai topik bahasan)
5. Lewis Mumford, The Urban Prospect, Harvest Book, 1968

ENAR607007
ENAR617007
ARCHITECTURAL DESIGN 5
9 CREDIT UNITS

Learning Objective:
Students should be able to create architectural design based on particular design method; should be able to produce design ideas that demonstrate buildability and compliance to general building codes; should be able to demonstrate the application of advanced knowledge of structural principles, tectonic principles of construction detail and building utility system.

Syllabus:
Designing with particular approach or method within design units. Design units offered may include but not limited to: typology-based design; evidence-based design; architectural design as part of urban context; architectural design with technology, computation, or parametric approach. Knowledge and implementation of building codes that include safety, security, health, comfort, and accessibility. Design communication that comply with standard drawing convention. Awareness and understanding of role of various disciplines of design, construction, mechanical and electrical in architectural design process.

Prerequisites:
Students have taken Architectural Design 4

References:
5. Other reference relevance for Architectural Design.

ENAR600008
ENAR610008
UNDERGRADUATE THESIS
6 CREDIT UNITS

Learning Objectives:
Student should be able to identify, study and communicate issues within specific area of study related to architecture; able to develop basic skills in scientific reading, researching and writing; able to develop understanding of research as an activity that requires systematic and logical thinking; able to develop critical understanding of various architectural issues.

Syllabus:
The thesis begins with an inquiry into what the student wishes to study in depth. It involves the understanding of issues and explanation of the understanding with limited depth level. At this level, the student is neither required to solve a problem nor create or invent something new that would contribute to the discipline architecture. Simple investigation is performed through literature search and/or case studies. Originality. Modes of writing: descriptive, narrative, explanatory
Prerequisites:
Students have earned 114 credit units and have taken Architectural Design 4

References:
5. T. Y. Hardjoko, *Panduan Meneliti dan Menulis Ilmiah*, Departemen Arsitektur Universitas Indonesia, 2005

ENAR600008
ENAR610008
FINAL PROJECT
6 CREDIT UNITS

Learning Objectives:
Student should be able to identify, study and communicate issues within specific area of study related to architecture; able to develop basic skill in analyzing and synthetizing theory and demonstrate it through design; able to develop understanding of research as an activity that requires systematic and logical thinking; able to develop critical understanding of various architectural issues.

Syllabus:
The thesis begins with an inquiry into what the student wishes to study in depth. It involves the understanding of issues and explanation of the understanding with limited depth level, which is demonstrated through architectural design.

Prerequisites:
Students have earned 114 credit units and have taken Architectural Design 5

References:

COURSE DESCRIPTION: ELECTIVE COURSES

ENAR600018
ENAR610018
ACOUSTICS
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand basic principles of acoustic in space and environment; able to conduct analysis in order to create good acoustic design.

Syllabus:
Basic acoustics, characteristics of sounds, acoustic criteria in space, sound intensification and sound isolation, environmental noise.

Prerequisites:

References:
1. Leslie L. Doelle & Lea Prasetio, *Akustik*
ENAR600019
COASTAL ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand the relationship between spatial temporal, cultural, and eco-athropomorphic systems changes in coastal areas. Such understanding would contribute to awareness to integrate eco-anthroposystem ideas into architectural design in coastal areas; Student should be able to systematically express their own understanding and awareness of design issues in coastal context.

Syllabus:
Water and architecture, basic understanding and knowledge of coastal area, continental area, sea, archipelago, spatial-temporal-cultural aspects, coastal eco-anthroposystem, the effect of island-sea interactions to coastal living-livelihood, spatial planning, facilities and architecture of coastal areas, the dynamics of dwelling and dwelling form in Indonesian coastal areas, climate change and disaster risk in Indonesian coastal area, spatial-temporal-cultural changes and eco-anthroposystem in certain Indonesian coastal area, the role of architects in coastal spatial planning and the future of coastal architecture.

Prerequisites: -

References:
4. Subandono Diposaptono and Budiman, Tsunami, Penerbit Buku Ilmiah Populer, 2006
5. Charles Moore and Jane Lidz, Water + Architecture, Thames and Hudson Ltd, 1994
8. Djoko Pramono, Budaya Bahari, Gramedia Pustaka Utama, 2005

ENAR600020
ENAR610020
ETHNIC ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand various aspects of architecture which arise from ethnic groups’ traditions in order to explain and analyse elements and principles of architecture from particular ethnic group; able to comprehend the phenomena of ethnic architecture in general and to analyze architecture tradition of particular ethnic group.
Syllabus:
Understanding of principles and elements of ethnic architecture, forming factors, symbolic classification, cosmological view and worldview, space, place, time, meaning, anthropomorphic, building process.

Prerequisites: -

References:

ENAR600021
ARCHITECTURE, CITY AND POWER
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand the role of architecture, planning and design within and between urban contexts; should be able to improve their understanding on the relationship between built environmental design and power; should be able to increase awareness of the intertwining relationship between architecture, social aspects, political aspects, economy, and culture; should be able to understand that built environment is conceived out of, and would yield particular power relation amongst the users in a specific context.

Syllabus:
The role of architecture and planning in the broader context. The relationship between design and power. Syllabus is prepared according to the themes related to the aforementioned relationship, which includes the following themes: Architecture and consumption, poverty and inequality; informality, disasters, theme parks/leisure, space of colonial/post-colonial/nation/globalization/neoliberalism; spatial enclaves/zone/segregation based on gender, race and ethnicity, social class, religion, spatial justice; housing and infrastructure.

Prerequisites: -

References:
Learning Objectives:
Student should be able to understand the definition and issues in heritage and conservation of architecture from the past, in particular heritage building and heritage site.

Syllabus:
Introduction to heritage architecture, including tangible and intangible aspects, Outstanding Universal Value from heritage building and heritage site. Discussion on critical issues related to heritage in architecture and city. Introduction to conservation strategies including data collection, documentation, planning, protection, development and reuse of heritage building and heritage site. Discussion on precedents of conservation in Indonesia.

Prerequisites:

References:
2. Pengantar Panduan Konservasi Bangunan Bersejarah Masa Kolonial, Pusat Dokumentasi Arsitektur dan Badan Pelestarian Pusaka Indonesia, 2011
3. Undang-undang Republik Indonesia Nomor 11 Tahun 2010 tentang Cagar Budaya

ENAR600023
URBAN ECOLOGY
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand principles of ecological architecture, architectural works which consider socio-cultural values, environmental sustainability, and holistic mode of thought in designing a building or an area.

Syllabus:
Ecological functions that are able to ‘provides’ for the primary needs of city inhabitants, including clean water, waste disposal management, air pollution, transportation, and green spaces.

Prerequisites: -

References:

ENAR600024
DIGITAL FABRICATION
3 CREDIT UNITS

Learning Objectives:
Student should be able to use digital fabrication equipment as a part of design process using various modeling approaches and tools.

Syllabus:
Introduction to fabrication process in architectural design, modeling technique, parametric approach.

Prerequisites:
Student have taken Design and Digital Media; Have basic skill in using architectural modeling software (Rhinoceros, CAD, SketchUp)

References:
ENAR600025
HIGH RISE BUILDING FAÇADE
3 CREDIT UNITS

Learning Objectives:
Student should be able to master the principles of high rise building façade including aesthetics, technical, and environmental aspects.

Syllabus:
The essence of building façade of high rise building (resistance to earth quakes, lateral force/wind and water resistance); Façade design; Material and technology for façade detailing; Green façade.

Prerequisites: -

References:
1. Wolfgang Schueller, Struktur Bangunan Bertingkat Tinggi, PT Eresco, 1989
4. Details in Architecture
5. The Images Publishing Group, Creative Detailing by Some of The World’s Leading Architects, The Images Publishing Group Pty Ltd, 2004

ENAR600026
PHOTOGRAPHY
3 CREDIT UNITS

Learning Objectives:
Students are able to produce photography works with artistic elements and architectural photography communication through photographic process and photo-essays.

Syllabus:
Understanding visual communication principles through two-dimensional medium, lighting, principles of zone system, principles of visual graphics, exposure management, and photo image perfection.

Prerequisites: -

References:
2. Michael Freeman, Perfect Exposure, Focal Press, 2009

ENAR600027
GEOMETRY AND ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand the role of geometry as a basis of architectural form; should be able to explore various possible uses of geometry as the critical tools of analysis of existing architectural works and in the process of generating architectural design works.

Syllabus:
Development of knowledge on geometry and its implication for the development of architectural ideas and creativity; geometry and classical aesthetics of architecture; Euclidean and non Eu-
Euclidean geometry in architecture; geometry and the concept of ideal city; geometry, music, and architecture; geometry and perception; topology in architecture; geometry in nature; exploration of the mechanism of geometry in shaping a design work and its potential for further development.

Prerequisites:

References:

ENAR600028
EVERYDAY AND ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand the existence of everyday phenomena as an approach to architecture; should be able to define the position of architecture discipline in responding to various phenomena of everyday living space.

Syllabus:
Understanding and historical background of the concept of the ‘everyday’ in architecture; domestic space; aesthetic in architecture and the ‘everyday’, the concept of an ideal city and its relation to the ‘everyday’; cyber space and virtual space; the phenomenon of the ‘everyday’ in urban space: a participatory approach in architecture.

Prerequisites:

References:

ENAR600029
ENAR610029
2D DIGITAL DESIGN COMMUNICATION
3 CREDIT UNITS
Learning Objectives:
Student should be able to use 2D digital drawing media in architectural design process; should be able to choose and use various way and technique in drawing for particular purpose.

Syllabus:
Drawings in CAD and NURBS, pixel base drawing, vector base drawing, architectural representation and diagram.

Prerequisites:
Student have taken Basic Design 2 (or Architectural Communication Techniques or Interior Architectural Communication Techniques in 2012 Curriculum)

References:

ENAR600030
ENAR610030
3D DIGITAL DESIGN COMMUNICATION
3 CREDIT UNITS

Learning Objectives:
Student should be able to use 2D digital modelling tool in architectural design process; should be able to choose and use various way and technique in digital modelling; should be able to create appropriate graphical representation for the model.

Syllabus:
Polygon and NURBS-based digital model, inter-platform exchange, from 2D representation to 3D model, rendering techniques.

Prerequisites:
Student have taken Basic Design 2 (or Architectural Communication Techniques or Interior Architectural Communication Techniques in 2012 Curriculum)

References:

ENAR600031
LIFE CYCLE ENVIRONMENT
3 CREDIT UNITS

Learning Objectives:
Student should be able to evaluate environmental feasibility for the users, based on their life cycles: birth, infancy, early childhood, childhood, adolescence, adulthood, old age, death, in terms of places and rites.

Syllabus:
Introduction, overview and definition to life-cycle environment in urban and rural/traditional environment; psychology of pregnant mother, birth environment, house, hospital, and maternity hospital, rites of birth, infant and his/her parent environment; sensory development of infant, psychological development of a child; playing environment and unwritten rules of playing, home environment, vicinity, and pre-school; parent and child care; adolescence and rites, adolescence space; adult production space and marital rites; working environment; elderly; death space and rites.
Prerequisites: -

References:
2. A. Van Gennep, *The Rites of Passage*, (Terjemahan M. Viadon dan G), University of Chicago Press, 1960

ENAR600032
PROJECT MANAGEMENT
3 CREDIT UNITS

Learning Objectives:
Student should be able to develop knowledge about project management and process in design and built environment, particularly administration of technical aspects and building economy from early stage of the project, design, construction, to the the end of the project; should be able to analyze the content of project management documents, building regulation and standard; should be able to create proposal, TOR, auction document, design administration, construction administration, or Project Manual of construction service in small scale project, including working with real client.

Syllabus:
As a product, project management is record of series of project activities as a holistic process, including as a working guide, coordination tools, and as a control for a project. As a process, project management is series of activities that produce responsibilities toward the quantity of records of the whole stages of project management, in one multidiscipline function. This subject introduces the skills required to manage project along its stages through chronological model.

Prerequisites: -

References:

ENAR600033
URBAN DESIGN PRINCIPLES
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand urban spatial design theory and its application into urban physical design; able to understand urban design method, inquiry, and design research, know various perspectives and approaches in urban design; able to understand basic principles of urban spatial design and able to interpret it into certain case of urban area..

Syllabus:
Principles of ordering system in two and three-dimension (vista, type, scale, precedent). Urban spatial condition and spaces between buildings, theory of urban spatial and urban typology, elements of urban design, conceptual exploration and basic research method through urban design enqiry and design research, environmental and spatial planning study. Component of urban design as control of process in forming the physical environment of urban space (land use, building intensity, setbacks, building coverage, building coefficient, building envelope, open green spaces, circulation, parking, infrastructure, conservation and visual/townscape corridor).
Prerequisites: -

References:

ENAR600034
INTERIOR DESIGN
3 CREDIT UNITS

Learning Objectives:
Student should be able to have knowledge about concept, principles, elements, and systems in interior space that support human comfort, safety, and well-being, with consideration of human factors in the design process.

Syllabus:
Principles and issues in interior design, elements of interior space, atmosphere and spatial perception, material and interior construction, spatial comfort factors, human factors and universal design, interior space typology.

Prerequisites: -

References:

ENAR600035
ENAR610035
SITE PLANNING AND DESIGN
3 CREDIT UNITS

Learning Objectives:
Student should be able to implement basic principles of site and environmental planning in an integrated way.

Syllabus:
Principles and issues in site planning, mass orientation, natural site condition, role of outdoor elements, topographical study of site and environment, trees and vegetation, typology and analysis of site planning, site and environmental design method.

Prerequisites: -

References:

ENAR600036
CITY PLANNING
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand history and theory of urban planning though historical survey and/or through key themes; should be able to understand (1) how urban space works (based on historical context) based on spatial planning research; (2) key paradigms in urban planning thinking. This subject is arranged around principle that history of urban planning is a theory of urban planning that is bounded by planning ethics.

Syllabus:
Syllabus is arranged following a chronological order that is divided by 5 sections: (1) reflection towards design ideas, origin and design practice; industrial city and housing question; spatial order exploration; (2) Modernist City; Colonial and Post-Colonial experiments; (3) Sub-urban dream (legacy of American city planning); from ghetto to city role model (racial and ethnic control); (4) City and citizenship in different historical moments; spatial rules and arrangements (basic rules of design); urban crisis, urban management, and business city; building a world class city in global south; (5) compatible theories in design and justice; see design over neo-liberalism: paradigm occurs in planning.

As an alternative, syllabus could also interrupt this chronological order and arrange as a survey class that arrange these materials in key themes, such as: Empire; Colonial/Post-colonial; Modernity and Alternatives; Pacific Rim Capitalism Transnational Urbanism; Race/Ethnic, Planning and Real Estate;
City and Village; Marginality; Re-building A City; Entrepreneur City; Dystopia Planning and Post-city.

Prerequisites: -

References:
5. Friedrich Engels, *The Housing Question*, Lawrence and Wishart, Ltd, 1942

ENAR600037
ARCHITECTURAL PSYCHOLOGY
3 CREDIT UNITS

Learning Objectives:
Student should be able to use basic conceptual knowledge of psychological process to identify and analysis human need in using built environment and outdoor space.

Syllabus:
Relationship between architecture and human behavior, motivation, needs, and value as basis of human actions, Gestalt perception, Ecological perception (Gibson), Affordances and its implementa-
tion in architecture, definition of cognition and its implementation in architecture, personal space, privacy, territoriality, crowding, post occupancy evaluation (POE).

Prerequisites: -

References:
1. Bell, Fischer and Greene, *Environmental Psychology*, Harcourt Publisher, 1996

ENAR600038
ENAR610038
REAL ESTATE
3 CREDIT UNITS

Learning Objectives:
Student should be able to demonstrate knowledge on real estate, and its relation to architecture and built environment.

Syllabus:
Definition of real estate, planning and development process of real estate (the eight phases of Real Estate Development Process), basic knowledge on property rental and sales project’s cash-flow (short and long term project) and simple feasibility study.

Prerequisites: -

References:

ENAR600039
PROJECT FEASIBILITY STUDY
3 CREDIT UNITS

Learning Objectives:
Student should be able to propose a project plan and explain the feasibility of a project, or program development in a clear, comprehensive and systematic manner.

Syllabus:
Basic knowledge which covers the requirement analysis, technical and environmental feasibility, time feasibility, socio-cultural aspects, legal feasibility, market and economic feasibility, exercise
on issue formulation, SWOT analysis, scope, activities types and products, strategy, operational standard procedure, analyzing organizational plans, human resources and management, calculating market and economic possibility, as well as legal feasibility in relation to institutional consequences.

Prerequisites: -

References: -

ENAR600040
ENAR610040
LIGHTING DESIGN
3 CREDIT UNITS

Learning Objectives:
Student should be able to design lighting fixtures and ambience for interior and exterior uses, using artificial as well as natural lights through a critical, active collaborative learning process based on functional and aesthetical problems.

Syllabus:
Basic lighting, color, natural light, artificial light, light distribution, interior lighting, exterior lighting (façade of a house and high rise), urban lighting.

Prerequisites: -

References:

ENAR600041
ENVIRONMENTAL DESIGN THEORIES AND METHODS

Learning Objectives:
Students should be able to understand basic theories and methods of environmental design, able to explain their own ideas and works, and apply one of various methods of designing built environment through writing and drawing (sketches).

Syllabus:
Theory and method of thinking: axiomatic and reductive; Theory and method of identifying built environment related problems, environmental observation and buildings that shape the environment, theory and methods of understanding problems of built environment; environmental analysis; theory and method of environmental design problem solving.

Prerequisites: -

References:
1. Gunawan Tjahjono, Metode Perancangan: Suatu pengantar untuk arsitek dan perancang, 1998

ENAR600042
URBAN HOUSING THEORY
3 CREDIT UNITS

Learning Objectives:
Student should be able to analyze the impact of housing, planning, and development in urban setting.

Syllabus:
Housing problems in an urban setting, studies on typology and housing area, methods and building typology, studies on economics and management of housing, studies on planning and design of urban housing.

Prerequisites: -

References:

ENAR600043
BUILDING UTILITY
3 CREDIT UNITS

Learning Objectives:
Student should be able to explain utility system in high-rise and wide span building that support the building to function well from the perspective of user safety and comfort.

Syllabus:
Clean, grey, and black water system, artificial ventilation system, artificial lighting system, audio system, CCTV, telephone, lightning rod, vertical transportation system, building cleaning system.

Prerequisites: -

References:
1. John S Reynolds and Benjamin Stein, *Mechanical and Electrical Equipement for Buildings*, John Willey and Sons, 1999

ENAR600044
TECTONIC WORKSHOP
3 CREDIT UNITS

Learning Objectives:
Students should be able to produce construction design based on tectonic knowledge and to realize the design by applying making skills.

Syllabus:
Design through material exploration approach; materiality of materials; construction, construction skills and techniques; detail and finishing.

Prerequisite: -
UNDERGRADUATE PROGRAM

References:

ENAR600045
ENAR610045
INDEPENDENT STUDY
3 CREDIT UNITS

Learning Objectives:
Students should be able to demonstrate advanced architectural knowledge on particular topic and to implement the knowledge into the development of ideas of architectural intervention.

Syllabus:
Advanced studies on architectural knowledge in particular context; development of architectural intervention ideas based on thorough inquiry of contexts and theoretical inquiry on related topic.

Prerequisite: -

References: Relevant references to the topic offered.

ENAR600046
ENAR610046
DESIGN STUDY
3 CREDIT UNITS

Learning Objectives:
Students should able to develop basic skills on reading, inquiry and writing a scientific writing related to design activities.

Syllabus:
Communicating design process through a writing that complies with scientific writing requirements; Communicating systematically literature review, development of design methods and design process through in writing.

Prerequisite: Student has passed Architectural Design 4 and is taking Final Project.

References:
5. T. Y. Hardjoko, *Panduan Meneliti dan Menulis Ilmiah*, Departemen Arsitektur Universitas Indonesia, 2005

ENAR600047
ENAR610047
CAPITA SELECTA
3 CREDIT UNITS

Learning Objective:
Students should be able to expand their knowledge on various topics that support acquisition of architectural knowledge and design skills.
Syllabus:
Selected topics that are relevant to architectural knowledge, design skills and their recent development.

Prerequisite: -

References: Relevant references to the topic offered.

ENAR600048
ENAR610048
INTERNSHIP
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand the processes of planning, implementation and evaluation of engineering activities; to demonstrate knowledge on teamwork of relevant disciplines in professional practice; to demonstrate knowledge on the processes of planning, design and implementation of a built environment; to get involved as assistant designer/planner, assistant field project officer, assistant field supervisor, or community architect.

Syllabus:
Real project management process in a company, architecture consultant or organization. Techniques of writing simple proposal and reporting field work. Techniques of presentation, Method of managing material, data, equipment, human resources and coordination among stakeholders in engineering planning and implementation activities.

Prerequisite: -

References: -

ENAR600049
ENAR610049
SPECIAL TOPIC ON ARCHITECTURAL DESIGN
3 CREDIT UNITS

Learning Objectives:
Students should be able to demonstrate knowledge on current architectural discourse and its implementation in architectural design.

Syllabus:
Studies on the development of contemporary architectural theories; the development of architectural design methods; the development of architectural representation techniques; the development in other relevant disciplines that have impacts of the development of architectural design theories and methods.

Prerequisite: -

References: Relevant references to the topic offered.

ENAR600050
ENAR610050
SPECIAL TOPIC IN URBAN DESIGN
3 SKS

Learning Objectives:
Students should be able to demonstrate knowledge on current urban design discourse and its implementation in urban design.

Syllabus:
4.9. UNDERGRADUATE PROGRAM IN INTERIOR ARCHITECTURE

Program Specification

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Awarding Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Program</td>
<td>Undergraduate Program in Interior Architecture</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Degree Offered</td>
<td>Sarjana Arsitektur (S.Ars)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>Accredited from BAN-PT AUN-QA</td>
</tr>
<tr>
<td>7</td>
<td>Language of Instruction</td>
<td>Bahasa Indonesia and English</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full time/Part time)</td>
<td>Full time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirements</td>
<td>SMA Graduate/equal or D3/Polytechnique graduate</td>
</tr>
<tr>
<td>10</td>
<td>Duration of Study</td>
<td>4-year Program</td>
</tr>
<tr>
<td>Semester</td>
<td>Total semester</td>
<td>Weeks / Semester</td>
</tr>
<tr>
<td>Regular</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Graduates’ Profile:

Sarjana Arsitektur Interior is a graduate who has the ability to design interior architecture with respect to context and local needs and based on the application of basic knowledge of interior architecture. Graduates are expected to demonstrate the ability as:

- An Initiator - able to provide solutions to spatial problems critically and creatively with respect to local contexts and needs
- A Designer - have the skill in assembling interior architectural elements and materials, have an understanding of buildability aspects, and have a sensitivity in creating meaningful interior architectural design.
- A Communicator - able to communicate ideas verbally and through writings, drawings, models and other media.
- A Collaborator - able to work together with various stakeholders in the society to propose creative solutions for real problems

Graduates’ Competencies:

1. Able to create interior architectural design based on interiority by integrating basic interior architectural knowledge, applying design and communication skill, applying ability for imagination, creative thinking, innovation and three-dimensional thinking.
2. Able to synthesize the knowledge of interior architectural history and theories, including knowledge on art, culture and humanities that could influence the quality of interior architectural design.
3. Able to analyze context in which interior architecture is designed and integrate it through design that responds appropriately to the context.
4. Able to analyze the needs and characteristics of the users, knowledge of ergonomics and anthropometric and integrate them as the basis to define contextual and functional requirement on different types of interior space.
5. Able to construct the basic knowledge of interior architectural design methods.
6. Able to construct the basic knowledge of structural systems, construction, and building technology aspects that are relevant to interior architectural design.
7. Able to construct the basic knowledge of materials both technically and in relation to tactility and human experience in interior space.
8. Able to integrate the basic knowledge of natural and environmental systems into a sustainable interior architectural design.
9. Aware of various roles of interior architects in the society and professional aspects of interior architecture.
10. Able to gather information, formulae, analyze and synthesize problems that are related to interior architecture.
11. Able to apply mathematics, science, and basic engineering into the solution of complex technical problems.
12. Have integrity, able to demonstrate critical, creative, and innovative thinking, and have intellectual curiosity in solving the problems both at individual and group levels.
13. Able to offer alternative solutions towards various problems in the society, the community, and the nation.
14. Able to utilize information and communication technology.
15. Able to use verbal and written language in Bahasa Indonesia and English fluently in academic and non-academic activities.
16. Able to identify various innovative and independent entrepreneurial endeavors with respect to ethics.

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Course</th>
<th>Credits</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12,5%</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>11</td>
<td>7,6%</td>
</tr>
<tr>
<td>iii</td>
<td>Architecture Core Subjects</td>
<td>90</td>
<td>62,5%</td>
</tr>
<tr>
<td>iv</td>
<td>Electives</td>
<td>25</td>
<td>17,4%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100%</td>
</tr>
</tbody>
</table>

14 Total Credits for Graduation 144 SKS

Job Opportunity

A graduate is able to work as an interior architect in the design of interior spaces of residential buildings; commercial buildings; hospitals and other public buildings. S/he can also work as a design principal in an interior design consultancy, act as a corporate designer or a designer of movie, TV, theater sets as well as working as an academic and as a critic.
Network of Competencies

Graduates’ Profile:
Sarjana Arsitektur Interior is a graduate who has the ability to design interior architecture with respect to context and local needs and based on the application of basic knowledge of interior architecture.

- Able to synthesize the knowledge of interior architectural history and theories, including knowledge on art, culture and humanities that could influence the quality of interior architectural design.
- Able to analyze context in which interior architecture is designed and integrate it through design that responds appropriately to the context.
- Able to analyze needs and characteristics of the users, knowledge of ergonomics and anthropometric and integrate them as the basis to define contextual and functional requirement on different types of interior space.
- Able to construct the basic knowledge of structural systems, construction, and building technology aspects that are relevant to interior architectural design.
- Able to construct the basic knowledge of materials both technically and in relation to tactility and human experience in interior space.
- Able to integrate the basic knowledge of natural and environmental systems into a sustainable interior architectural design.

- Able to create interior architectural design based on interiority by integrating basic interior architectural knowledge, applying design and communication skill, applying ability for imagination, creative thinking, innovation and three-dimensional thinking.
- Able to construct the basic knowledge of interior architectural design methods.

- Able to apply mathematics, science, and basic engineering into the solution of complex technical problems.
- Aware of various roles of interior architects in the society and professional aspects of interior architecture.
- Able to gather information, formulate, analyze and synthesize problems that are related to interior architecture.

- Have integrity, able to demonstrate critical, creative, and innovative thinking, and have intellectual curiosity in solving the problems both at individual and group levels.
- Able to offer alternative solutions towards various problems in the society, the community, and the nation.
- Able to utilize information and communication technology.
- Able to use verbal and written language in Bahasa Indonesia and English fluently in academic and non-academic activities.
- Able to identify various innovative and independent entrepreneurial endeavors with respect to ethics.
Curriculum Structure of Undergraduate Program in Interior Architecture

<table>
<thead>
<tr>
<th>GENERAL AND BASIC ENGINEERING</th>
<th>BASIC</th>
<th>SKILL</th>
<th>ENRICHMENT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNDERGRADUATE THESIS/FINAL PROJECT (6)</td>
<td>ELECTIVE** (3)</td>
<td>14 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IAD 5 (9)</td>
<td>ELECTIVE (3)</td>
<td>14 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IAD 4 (9)</td>
<td>ELECTIVE (3)</td>
<td>18 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IAD 3 (9)</td>
<td>ELECTIVE (3)</td>
<td>18 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IAD 2 (8)</td>
<td>ELECTIVE (3)</td>
<td>20 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IAD 1 (7)</td>
<td>ELECTIVE (3)</td>
<td>20 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BASIC DESIGN 2 (7)</td>
<td>ELECTIVE (3)</td>
<td>20 SKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BASIC DESIGN 1 (5)</td>
<td>ELECTIVE (3)</td>
<td>20 SKS</td>
</tr>
</tbody>
</table>

Notes:
- Student has taken or is taking
- **Total:** 144 SKS
CURRICULUM STRUCTURE UNDERGRADUATE INTERIOR ARCHITECTURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600003</td>
<td>Calculus</td>
<td>3</td>
</tr>
<tr>
<td>ENAR601009</td>
<td>Introduction to Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAI601001</td>
<td>Basic Design 1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

1st Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>ENGE6000xx</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE6000xx</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENAI602002</td>
<td>Basic Design 2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENAI603003</td>
<td>Interior Architectural Design 1</td>
<td>7</td>
</tr>
<tr>
<td>ENAR603010</td>
<td>History & Theory of Architecture 1</td>
<td>3</td>
</tr>
<tr>
<td>ENAR603011</td>
<td>Design Methods</td>
<td>3</td>
</tr>
<tr>
<td>ENAI603012</td>
<td>Building Technology 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

3rd Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAI604004</td>
<td>Interior Architectural Design 2</td>
<td>8</td>
</tr>
<tr>
<td>ENAR604013</td>
<td>History & Theory of Interior Arch</td>
<td>3</td>
</tr>
<tr>
<td>ENAR604014</td>
<td>Building Technology 2</td>
<td>3</td>
</tr>
<tr>
<td>ENAR604015</td>
<td>Digital Design Media</td>
<td>3</td>
</tr>
<tr>
<td>ENAI604016</td>
<td>Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAI605005</td>
<td>Interior Architectural Design 3</td>
<td>9</td>
</tr>
<tr>
<td>ENAI605017</td>
<td>Building Technology 3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
</tbody>
</table>

5th Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAI606006</td>
<td>Interior Architectural Design 4</td>
<td>9</td>
</tr>
<tr>
<td>ENAI606018</td>
<td>Furniture: Context, Response, Object</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
</tbody>
</table>

6th Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAI607007</td>
<td>Interior Architectural Design 5</td>
<td>9</td>
</tr>
</tbody>
</table>
Elective 3
Elective*) 2

Sub Total 14

| 8th Semester |
|--------------|----------------|
| ENAI600008 Undergraduate Final Project | 6 |
| Elective | 3 |
| Elective**) | 3 |
| Elective*) | 2 |

Sub Total 14
Total 144

ELECTIVES

<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAI600019</td>
<td>Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600020</td>
<td>Anatomy of Space</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600021</td>
<td>Art Appreciation</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600022</td>
<td>Furniture Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600026</td>
<td>Photography</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600023</td>
<td>Life Style & Interior Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600029</td>
<td>2D Design Digital Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600030</td>
<td>3D Digital Design Communication</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600024</td>
<td>Matriality in Interior Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600025</td>
<td>Spatial Object</td>
<td>3</td>
</tr>
<tr>
<td>ENAR600037</td>
<td>Architectural Psychology</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600026</td>
<td>Exhibition Space and Narrative</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600027</td>
<td>Art and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600028</td>
<td>Lighting Design for Interior Arch</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600029</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600030</td>
<td>Design Study**)</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600031</td>
<td>Capita Selecta</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600032</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>ENAI600033</td>
<td>Special Topic on Interior Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>

*) Students are required to take minimum 2 subjects from outside Interior Architecture Study Program as electives
**) Design Study is required as elective for students who choose to take Final Project
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.
Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila
Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment
Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)
Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.
Learning Method: Active learning, Contextual language learning, small group discussion.
Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
Learning Objectives: After attending this subject, students are expected to be capable of using English to support the study in university and improve language learning independently.

Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary) Listening strategies (Extensive reading) Grammar: (Revision of Basic grammar: Types of sentences) Adjective clauses, Adverb clauses, Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking) Reading popular science articles, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article, Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B

UIGE600002/UIGE610004

6 sks

Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)

Prerequisites: OBM (New Student Orientation)

Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY

UIGE600010/UIGE610005

2 sks

General instructional objectives: The cultivation of students who have concern for social, national and country issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human’s basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam’s motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)
CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.
Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society.

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks
General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.
Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

HINDU STUDY
UIGE600013/UIGE610008
2 sks
Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahmam (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks
Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society,
the responsibility of religious society in the realization of human rights and democracy), Culture
(the responsibility of religious society in the realization of critical thinking (academic), work hard
and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise
awareness to obey and follow God’s law, the role of religion in the formulation and enforcement
of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be choosen : Appreciation of Film (UIGE600020), Batik (UIGE600021),
Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025),
Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029),
Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be choosen :
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043),
Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table
Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of cal-
culus and to be able to solve applied calculus problems. Students are also given the opportunity
to understand basic concepts the functions of one variable, derivatives and integral functions of
one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of cal-
culus and to be able to solve applied calculus problems. Students are also given the opportunity
to understand the basic concept the function of two variables, or variables, total derivative and
integral of the function of two or more variables and application. In addition, students can under-
stand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of cal-
culus and to be able to solve applied calculus problems. Students are also given the opportunity
to understand the basic concept the function of two variables, the total derivative of the function
of two or more variables and its application. Students are also expected to understand the basic
concept of sequence and series and the basic concept of vector and analytical geometry.
LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.
PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry.
Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis.
Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations
that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment.

Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

COURSE DESCRIPTION: COMPULSORY COURSES

ENAR601009
ENAR611009
INTRODUCTION TO ARCHITECTURE
3 CREDIT UNITS

Learning Objective:
Student should be able to understand basic principles in architecture, including basic theories, the relationship between architecture and human, architecture and nature, architecture and aesthetic, and architecture and technology; able to understand the position of architecture position among other disciplines.

Syllabus:
What is architecture? (Introduction: Architecture as discourse, career in architecture, arkhe + tekon; tekhne; Laugier primitive hut and the idea of shelter)
Aesthetic (proportion; rhythm; scale; golden rules; aesthetic trinity of classic Greek; Mandala and Maya; Taoism and nature, mathematical pattern in geometry)
Form and Space (Plato and form; type and how Quatrèmere de Quincy mimic nature; form and function; various views on space and the different meaning of raum and spatium)
Materiality and Materialization (re-investigating tekhne; the importance of understanding the characteristic and potential of material, tectonic which does not limit to construction)
Context (understanding of natural environment, artificial environment, and built environment; our existence and place according to Heidegger; material and context)
Human and relationship with others I (the importance of understanding human for designer; understanding of human being; body, senses and space; personal space according to Hall)
Human and relationship with others II (space, the presence and the remoteness of people, the meaning of place for human)
Architects as profession

Prerequisites: -

References:
3. Adrian Forty, Words and Buildings: a Vocabulary of Modern Architecture, Thames and Hudson, 2004

ENAI601001
BASIC DESIGN 1
5 CREDIT UNITS

Learning Objective:
Student should be able to produce 2D and 3D works as creative responses towards contexts by applying basic knowledge of visual art and design; Student should be able to acquire and apply basic 2D and 3D representational techniques.

Syllabus:
Basic knowledge of visual art and design, basic knowledge of aesthetic; basic knowledge of space; visual elements: shape, color, texture, etc; basic principles of composition; introduction to art history and its role in the making of art; basic drawing techniques: expression drawing; shape drawing (natural and manmade objects); basic modeling and assembling techniques; understanding characteristics of media and materials; perceiving visually and communicating what is perceived; display and layout techniques.

Prerequisites: -

References:

ENAI602002
BASIC DESIGN 2
7 CREDIT UNITS

Learning Objective:
Student should be able to produce spatial works as creative responses towards contexts by applying knowledge of visual art and design and employed various 2D and 3D representation techniques; Student should be able to communicate architectural ideas by using appropriate techniques and media.

Syllabus:
Basic knowledge of relationship among space, human and time; Exploration of visual elements, non-visual elements (audio, kinesthetic) and moving elements (kinetics); creating spatial ideas as response to contexts; principles of architectural communication, basic architectural communication techniques: projection drawing, orthographic drawing, perspective drawing; modeling and assembling techniques; model making; understanding characteristics of media and materials; communicating object and space for various purpose and audiences; communicate human activity space.

Prerequisites: Student has taken Basic Design 1 (or Visual Arts in 2012 Curriculum)
References:

ENAR603010
HISTORY AND THEORY OF ARCHITECTURE 1
3 CREDIT UNITS

Learning Objective:
Student should be able to understand the history of modern architecture from 1750s to present.

Syllabus:
This course is a survey of modern architecture history from 1750s to present, with main focus on the development of modern architecture. This course also discusses the relationship between the development of architecture and its socio-cultural, political, and technological contexts. This course also investigates principles in architecture and design. It emphasizes on several important moments in the development of modern architecture, and provide knowledge on the theories that are relevant to modern architecture.

Prerequisites: -

Reference:

ENAR603011
DESIGN METHODS
3 CREDIT UNITS

Learning Objective:
Student should be able to understand the basic thinking and methods of designing built environment; student should be able to explain the basic thinking and apply one of the design methods through writings and drawings.

Syllabus:
Theory and method of thinking; phenomenology, semiotic; theory and method of identifying problems; architectural observation, design knowledge, factual, deontic, instrumental, black box, clear box; theory and method of understanding problems, analysis and synthesis; Theory and methods of problem solving.

Prerequisites: Student has taken Introduction to Architecture

Reference:

ENAI604013

HISTORY AND THEORY OF INTERIOR ARCHITECTURE

3 CREDIT UNITS

Learning Objectives:
Students should be able to have an understanding architecture history and its relation to interior design history and art history, and also theories that are evolved in the development of interior architecture.

Syllabus:
Interior and interiority; relationship between body and space; types in interior architecture; sign and society; design in society; semiotics in design; critical regionalism; locality issue in design, development of interior representation.

Prerequisites: -

References:
ERGONOMICS
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand and apply the basic concept of ergonomics and human factors and anthropometry in interior design as well universal design.

Syllabus:
Basic principles of ergonomics and human factors; basic principles of anthropometry; application of ergonomics and human factors in the design of built environment; basic principles of universal design.

Prerequisites: -

References:

ENAR604015
DIGITAL DESIGN MEDIA
3 CREDIT UNITS

Learning Objective:
Student should be able to express, explore, investigate and communicate architectural ideas by using digital media.

Syllabus:
Introduction to techniques and variety of digital media which can be applied to represent architectural ideas, investigate the basic abilities of various digital tools, choosing the appropriate digital tools and techniques to express, explore or investigate certain architectural ideas, studying the workflow of digital and analog media as a part of the architectural design process.

Prerequisites: Student has taken Basic Design 2 (or Architectural Communication Technique or Interior Architectural Communication Technique in 2012 Curriculum)

References:

INTERIOR ARCHITECTURAL DESIGN

Interior architectural design courses are the studio courses at the Department of Architecture. The studios denote learning locations as well as learning methods. At the end of studio-based learning
process, students should be able to demonstrate their ability to think critically and creatively, which can be assessed from their ability to explain and present his/her design ideas. Interior Architectural Design learning process is implemented through Design Projects, which are direct manifestations of integration of knowledge, consisting of:

- Factual knowledge: understanding and formulating design problems which are abstract, qualitative, and related to socio-cultural aspects of human/space activities
- The context and the environment of interior living space, ranging from micro/local/personal space, family, community, to urban/rural environment
- Technical aspects such as structure, tectonics (including building materials), building physics, building systems, and building utilities that are relevant to the interior design.
- Design methods
- Communication techniques

In practice, Design Projects accommodate learning materials from several courses: Interior Architectural Design, Building Technology, and Furniture: Context, Response and Object, within the following order:

- Design Project 1 integrates Interior Architectural Design 1 and Building Technology 1
- Design Project 2 integrates Interior Architectural Design 2 and Building Technology 2
- Design Project 3 integrates Interior Architectural Design 3 and Building Technology 3
- Design Project 4 integrates Interior Architectural Design 4 and Furniture: Context, Response, Object

Gradual acquisition of knowledge and ability is structured within each stage of learning in Architectural Design in each semester.

DESIGN PROJECT 1

Design Project 1 focuses on the design of space for human self. Design Project 1 is an integration of knowledge on spatial design, based on the understanding of the relationship between human and space, basic structural logic, and basic principles of environmental comfort within spatial design. Design Project 1 consists of learning activities performed in two courses which complement each other, Interior Architectural Design 1 and Building Technology 1.

ENAI603003 INTERIOR ARCHITECTURAL DESIGN 1
7 CREDIT UNITS

Learning Objectives:
Student should be able to design a space for a single person, through understanding the relationship between human and space.

Syllabus:
Interior Architectural Design 1 is an early and critical stage to introduce students to architecture through imaginative, creative, and innovative spatial design. Architectural knowledge encompasses basic comprehension about the personal spatial meaning and experience, interaction between human body and spatial quality, understanding of site and surrounding context as experienced by human body. Design activities consist of information gathering, formulation of design problem, analysis, and making critical decisions to formulate an active strategy toward human space, ability to think three-dimensionally through spatial design exploration, and communicating design ideas. Design exercises consist of: Designing a simple space for a single person that is materialized through 1:1 scaled model; Designing a space for an episode of human life.

Prerequisites:
Students have taken Basic Design 2 (or Architectural Communication Technique or Interior Architectural Communication Technique in 2012 Curriculum)
Students have taken or are taking Building Technology 1

References:
8. Yi-Fu Tuan, *Space and Place: The Perspective of Experience*, University of Minnesota Press, 1981

ENAI603012
BUILDING TECHNOLOGY 1
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand basic technical aspects of structure, material, construction, and building comfort; should be able to formulate technical design process and integration of structure and construction technologies into a functionally effective whole; should be able to produce a report of analysis and synthesis of all aspects of building technology.

Syllabus:
Structure in nature; Basic principle sof structure and construction (logic of structure, basic mechanics); Site context (natural elements that influence building); Building material (material use and position in building, material property values that influence comfort); Basic building physics (building orientation, environmental influence to comfort); Introduction to basic structure and construction principles of simple building; Introduction to working drawing.

Prerequisites: -

References:

DESIGN PROJECT 2

Design Project 2 is about designing space for core social unit (family, a couple, etc). Design Project 2 integrates knowledge on spatial design based on the idea dwelling, the analysis of family life cycle and daily activities, application of basic structural principles and constructions of low rise
building, building systems, and principle of building physics. Design Project 2 integrates the learning activities performed in two courses that complement each other, Interior Architectural Design 2 and Building Technology 2.

ENAI604004
INTERIOR ARCHITECTURAL DESIGN 2
8 CREDIT UNITS

Learning Objectives:
Students should be able to design a dwelling as a living space for core social unit through tectonic approach and by thorough consideration of the life cycle and daily activities of the core social unit.

Syllabus:
Interior Architectural Design 2 proposes critical issues of human living space in urban community context, through the design of a dwelling. Design knowledge herewith includes the understanding concept of dwelling, observation and analysis of core social unit, formulating spatial program based on understanding of the needs of core social unit, development of spatial idea through tectonic exploration as the art of joining and exploration of spatial composition as an integration of part-whole that appropriately accommodate the programs, which are implemented into an integrated spatial design and communicated by complying with standard principles of architectural communication.

Prerequisites:
Students have taken Interior Architectural Design 1
Students have taken or are taking Building Technology 2

References:

ENAI604014
BUILDING TECHNOLOGY 2
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand technical aspects of structure, material, construction, and building comfort for low rise building; should be able to formulate technical design process and integration of structure, construction technologies and building systems into a functionally effec-
tive whole; should be able to produce a report of analysis and synthesis of all aspects of building technology.

Syllabus:
Identification of all aspects of building technology in a simple low rise building that include: structural logic, buildability, and comfort; Introduction to in-depth knowledge on the materiality of material, construction techniques and details; Dimension and configuration of materials and their relation to structure and construction of simple building; Elements of air conditioning and lighting in a building; Introduction to basic knowledge of building utility; Creating technical documentations (working drawing).

Prerequisites: -
Students have taken Building Technology 1
Students have taken or are taking Interior Architectural Design 2

References:

DESIGN PROJECT 3
Design Project 3 focuses on buildability and performances of interior space. Design Project 3 is an integration of design knowledge through the understanding of existing technological context, exploration of technological aspects, application of structural principles, construction and materials and building support system into interior design process. Design Project 3 integrates the learning activities in two courses that support one another, Interior Architectural Design 3 and Building Technology 3.

ENAI605005
INTERIOR ARCHITECTURAL DESIGN 3
9 SKS

Learning Objectives:
Students should be able to design public interior space through exploration on development of technology ideas in interior architecture.

Syllabus:
Interior Architecture Design 3 proposes critical issues on the aspect of buildability and interior space performance. Design knowledge consists of design as a response to technological aspects of existing interior space condition; program development based on analysis of existing technological context; development of advanced tectonic ideas, including material development, detail, and construction; development of interior architecture ideas based on its performance and building system.
Design assignment consists of: interior space design based on exploration of technological aspects, such as materials, assembly techniques, portable/ flexible furniture, etc.; Interior space design as a response to the existing building context in medium to large scale.
Prerequisite:
Students have taken Interior Architectural Design 2
Students is taking Building Technology 3

References:

5. Sylvia Leydecker, *Designing Interior Architecture: Concept, Typology, Material, Construction*,

ENAI605017
TEKNOLOGI BANGUNAN 3
3 SKS

Learning Objectives:
Students should be able to understand advanced technical aspects of structure, material, construction, and building comfort that are relevant to interior architecture design approach in order to respond the architectural existing condition; should be able to formulate technical design process and integration of technological aspects of interior space that consist of structural system, construction technology, materials and utility system into a functionally effective whole; should be able to create technical documentation and create analysis/synthesis report from all aspects of building technology; should be able to understand energy conservation issues and ecological sustainability in interior context.

Syllabus:
Building technology aspects that are relevant to the design approach through fitting out, remodeling, renovating, retrofitting, extension. Understanding and responding to existing structure condition. Understanding the utility of existing condition and modifying it on basis of design necessities. Knowledge of materials in terms of detail and construction, relationship between material and acoustics, lighting and maintenance, as well material innovation and development of advance material. Communication of technological aspects, such as, furniture, fixture and other interior entirety.

Prerequisites:
Students have taken Building Technology 2
Students have taken or are taking Interior Architectural Design 3

References:

DESIGN PROJECT 4

Design Project 4 focuses on the design of public space. It integrates architectural typology-based design method, issue-based design and basic knowledge of urban interior. Design Project 4 integrates the learning activities performed in two courses that support each other, Interior Architectural Design 4 and Furniture: Context, Response, Object.

ENAI606006
INTERIOR ARCHITECTURAL DESIGN 4
9 CREDIT UNITS

Learning objectives:
Students develop their ability in designing interiors of public space through architectural typology-based design approach and issue-based design approach, by considering urban interior knowledge as well creatively exploring ideas on form and space quality.

Syllabus:
Interior Architectural Design 4 proposes the critical issues of human interior living space with socio-cultural complexities as found in urban/suburban interior context, through two approaches: a) top-down approach through the exploration of design ideas based on typology, and b) bottom-up approach through exploration of issue-based design ideas. Urban interior knowledge consists of comprehension on interior concepts of urban scale. Design knowledge includes the understanding of the concept of public, analysis of functional interior types, spatial programming, the concept of institution and how it is elaborated into interior spatial design, the formulation of initial statement based on issues, development of architectural programs and how they are elaborated into interior spatial design. Knowledge of site and environment includes the contextual explanation of the design through the understanding toward site physical condition, socio-cultural context or urban-scaled interior space, and consideration of sustainability. Design assignments consist of: Designing interior space within social environment context with a close kinship; Designing interior space in more complex urban environmental context.

Prerequisite:
Students have taken Interior Architectural Design 3
Students have taken or are taking Building Technology 3 course

References:
2. Yi-Fu Tuan, Space and Place: The Perspective of Experience, University of Minnesota Press, 1981
7. Jonathan D. Sime, Creating Places or Designing Spaces, Journal of Environmental Psychology, Vol 6, hal. 49-63, 1986

ENAI606018
FURNITURE: CONTEXT, RESPONSE, OBJECT
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand the concepts, functions, and construction of furniture; able to understand theories and methods to develop furniture concept and design.

Syllabus:
This course encourages student to learn about furniture and its existence in a space. Furniture is observed as a tool to connect space that is located between human bodies, as in a building or on a broader scope. Furniture is observed as functional objects that occupy the space. Students are expected to learn and criticize a priori knowledge on furniture, so that they can consider a new perspective in designing furniture.

Prerequisites:
Students have taken or are taking Interior Architecture Design 4

References:

ENAI607007
INTERIOR ARCHITECTURAL DESIGN 5
9 CREDIT UNITS

Learning Objective:
Students should be able to design interior architecture based on particular design method; should be able to produce design ideas that demonstrate buildability and compliance to general building and interior codes; should be able to demonstrate the application of knowledge on the principles of building technology that are relevant to interior architectural design.

Syllabus:
Designing with *fitting out*, *remodelling*, *renovating*, *retrofitting*, atau *extension* approach within design units. Design units offered may include but not limited to: typology-based design (commercial, educational, hospitality); designing based on adaptive reuse; evidence-based design; designing with technological, computational, or parametric approach. Knowledge and implementation of building and interior codes that include safety, security, health, comfort, and accessibility. Design communication that comply with standard drawing convention. Awareness and understanding of role of various disciplines of design, construction, mechanical and electrical in interior architec-
tural design process.

Prerequisites: Students have taken Interior Architectural Design 4

References:

ENAI600008 UNDERGRADUATE THESIS 6 CREDIT UNITS

Learning Objectives:
Student should be able to identify, study and communicate issues within specific area of study related to architecture; able to develop basic skills in scientific reading, researching and writing; able to develop understanding of research as an activity that requires systematic and logical thinking; able to develop critical understanding of various architectural issues.

Syllabus:
The thesis begins with an inquiry into what the student wishes to study in depth. It involves the understanding of issues and explanation of the understanding with limited depth level. At this level, the student is neither required to solve a problem nor create or invent something new that would contribute to the discipline architecture. Simple investigation is performed through literature search and/or case studies. Originality. Modes of writing: descriptive, narrative, explanatory or argumentative.

Prerequisites: -
Students have earned 114 credit units and have taken Interior Architectural Design 4

References:

5. T. Y. Hardjoko, *Panduan Meneliti dan Menulis Ilmiah*, Departemen Arsitektur Universitas Indonesia, 2005
ENAI600008
FINAL PROJECT
6 CREDIT UNITS

Learning objectives:
Student should be able to identify, study and communicate issues within specific area of study related to architecture; able to develop basic skill in analyzing and synthetizing theory and demonstrate it through design; able to develop understanding of research as an activity that requires systematic and logical thinking; able to develop critical understanding of various architectural issues.

Syllabus:
The thesis begins with an inquiry into what the student wishes to study in depth. It involves the understanding of issues and explanation of the understanding with limited depth level, which is demonstrated through architectural design.

Prerequisites:
Students have earned 114 credit units and have taken Interior Architectural Design 5

References:

COURSE DESCRIPTION: ELECTIVE COURSES

ENAI600019
ACOUSTICS
3 CREDIT UNITS

Learning Objectives:
Student should be able to understand basic principles of acoustic in space and environment; able to conduct analysis in order to create good acoustic design.

Syllabus:
Basic acoustics, characteristics of sounds, acoustic criteria in space, sound intensification and sound isolation, environmental noise.

Prerequisites: -

References:
1. Leslie L. Doelle & Lea Prasetio, Akustik Lingkungan, Erlangga,1993
2. PH Parkin & HR Humphreys, Acoustics Noise and Buildings, Faber and Faber Ltd, 1984
3. Finarya Legoh & Siti Hajarinto, Buku Ajar Akustik, 2002
Learning Objectives:
Students should be able to master the principles in disassembling the elements and system of a space in terms of user’s needs.

Syllabus:
Dissection method in anatomy as an approach to analyze space, understanding the parts, the characteristics, the relationship among one another and how together they create a working system of space; Anatomy of domestic space: domestic service space, space saving strategy, flow, and flexibility; Anatomy of public space: hierarchy and public space organization, back and front separation, grid; Anatomy of space for special needs: the concept of enabling environment, architecture for users with limited vision, hearing difficulty, limited mobility, architecture for children with special needs (such as ADHD, autism, mental retardation).

Prerequisites: -

References:

Enai600021
Art Appreciation
3 Credit Units

Learning Objectives:
Students should be able to understand art and art appreciation and to apply this practice through delivering experience (sense and aesthetic) and understanding (concept and theory) of art works; on basis of formal-technic criteria; should be able to demonstrate a comprehension on theories through interpretive view of visual and spatial art works that are relevant to interior architecture; understand context of art gallery and curatorial process.

Syllabus:

Prerequisites: -

References:
2. Immanuek Kant, The Critique Of Judgement, Oxford University Press, 2009
4. Thierry de Duve, Kant After Duchamp, MIT Press, 1996
ENAI600022
FURNITURE DESIGN
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand the basic principles of designing furniture as disposable items that serve as forming element of spatial quality, in relation to architectural design, space and interiority.

Syllabus:
Furniture as disposable objects with certain prerequisites based on the intention behind the design. Interiority and spatial quality as inseparable aspects of furniture design. After such comprehension is established, the learning process will include: basic furniture construction and furniture construction that shapes the space quality.

Prerequisites: -

References:

ENAR600026
PHOTOGRAPHY
3 CREDIT UNITS

Learning Objectives:
Students are able to produce photography works with artistic elements and architectural photography communication through photographic process and photo-essays.

Syllabus:
Understanding visual communication principles through two-dimensional medium, lighting, principles of zone system, principles of visual graphics, exposure management, and photo image perfection.

Prerequisites: -

References:

ENAI600023
LIFESTYLE AND INTERIOR ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand the role of lifestyle in interior and its application.
Syllabus:
Lifestyle principles in society and in interior design. The development of style from the beginning of modern period until now and its role in interior design. Appropriate style in society and its effect in interior design.

Prerequisites: -

References:

ENAR600029
2D DIGITAL DESIGN COMMUNICATION
3 CREDIT UNITS

Learning Objectives:
Student should be able to use 2D digital drawing media in architectural design process; should be able to choose and use various way and technique in drawing for particular purpose.

Syllabus:
Drawings in CAD and NURBS, pixel base drawing, vector base drawing, architectural representation and diagram.

Prerequisites:
Student have taken Basic Design 2 (or Architectural Communication Techniques or Interior Architectural Communication Techniques in 2012 Curriculum)

References:

ENAR600029
3D DIGITAL DESIGN COMMUNICATION
3 CREDIT UNITS

Learning Objectives:
Student should be able to use 2D digital modelling tool in architectural design process; should be able to choose and use various way and technique in digital modelling; should be able to create appropriate graphical representation for the model.
Syllabus:
Polygon and NURBS-based digital model, inter-platform exchange, from 2D representation to 3D model, rendering techniques.

Prerequisites:
Student have taken Basic Design 2 (or Architectural Communication Techniques or Interior Architectural Communication Techniques in 2012 Curriculum)

References:
1. Hamad M.M, Autocad 2010 Essentials, Jones and Bartlett, 2010

ENAI600024
MATERIALITY IN INTERIOR ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand material as an essential part of thinking dan design process.

Syllabus:
Conceptual understanding of material through the idea of materiality; Relationship between material and human body, space and senses; Tectonic and detail of material; Material innovation in interior architecture.

Prerequisites: -

References:
11. Klaus-Michael Koch with Karl J. Habermann, Membrane Structures: Innovative Building with Film and Fabric, Prestel, 2004
14. Toshiko Mori, Immaterial Ultramaterial, George Brazillier, 2002
ENAI600025
SPATIAL OBJECTS
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand and identify spatial objects with potential in creating the quality of interior space; develop spatial object design ideas within interior architecture context and realize it into prototype.

Syllabus:
Understanding of spatial object and its role in producing spatial quality; creative methods to develop spatial object design; materials, tools, techniques and technology in the making of spatial objects; developing the design of spatial objects; realization of design into prototype.

Prerequisites: -

References:

ENAR600037
ARCHITECTURAL PSYCHOLOGY
3 CREDIT UNITS

Learning Objectives:
Student should be able to use basic conceptual knowledge of psychological process to identify and analysis human need in using built environment and outdoor space.

Syllabus:
Relationship between architecture and human behavior, motivation, needs, and value as basis of human actions, Gestalt perception, Ecological perception (Gibson), Affordances and its implementation in architecture, definition of cognition and its implementation in architecture, personal space, privacy, territoriality, crowding, post occupancy evaluation (POE).

Prerequisites: -

References:
1. Bell, Fischer, Greene, *Environmental Psychology*, Harcourt Publisher, 1996
4. Wolfgang F.E. Preisser, Harvey Z. Rabinowitz, Edward T. White, *Post-Occupany Evalua-
tion*, Van Nostrad Reinhold, 1988

ENAI600026
EXHIBITION SPACE AND NARRATIVE
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand the basic principles of exhibition space design through
narrative approach and critical thinking towards the interpretive experiences of objects.

Syllabus:
Various types of exhibition space, the process of designing exhibition space to create meaningful
experiences of objects, ideas, and information in physical spaces and virtual spaces. Exhibition
space types, exhibition, museum, pop-up event. Narrative approach in spatial design. Develop-
ment of curatorial concept, designing display strategies, graphic and materials.

Prerequisites: -

References:
4. Reesa Greenberg, Bruce W. Ferguson and Sandy Nairne, *Thinking About Exhibitions*, Rout-
ledge, 1996
Meaning)*, Routledge, 2012
9. Kathleen McLean, *Planning for People in Museum Exhibitions*, Association of Science-
Technology Centers, 1993
12. Stephanie Weaver, *Creating Great Visitor Experiences: A Guide for Museums, Parks, Zoos,
2002
John Wiley and Sons, 1998*

ENAI600027
ART AND ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Students should be able to understand the potential of art in architectural space; create art in
architectural setting.

Syllabus:
Art and architecture, Art Nouveau and Art Deco, Bauhaus, International style, Cubism, Sureaualism,
dll, Art and Architecture installation, installation in the setting: Happy Art; detail in architectural element.

Prerequisites: -

References:
3. Arsen Pohribny, Abstract Painting, Phaidon Oxford
4. “The Ideal Place” in Art and Design Magazine No.42.
5. Chris Drury, Silent Spaces, Thames and Hudson Ltd, 1989
6. Fiedler Jeannine and Peter Feierabend, Bauhaus, Konemann, 1999
7. Booqs, 1000 Details in Architecture, Belgium, 2010

ENAI600028
LIGHTING DESIGN FOR INTERIOR ARCHITECTURE
3 CREDIT UNITS

Learning Objectives:
Student should be able to design lighting fixtures and ambience for interior and exterior uses, using artificial as well as natural lights through a critical, active collaborative learning process based on functional and aesthetical problems.

Syllabus:
Basic lighting, color, natural light, artificial light, light distribution, interior lighting, exterior lighting (façade of a house and high rise), urban lighting.

Prerequisites: -

References:

ENAI600029
INDEPENDENT STUDY
3 CREDIT UNITS

Learning Objectives:
Students should be able to demonstrate advanced architectural knowledge on particular topic and...
to implement the knowledge into the development of ideas of architectural intervention.

Syllabus:
Advanced studies on architectural knowledge in particular context; development of architectural intervention ideas based on thorough inquiry of contexts and theoretical inquiry on related topic.

Prerequisite: -

References: Relevant references to the topic offered.

ENAI600030
DESIGN STUDY
3 CREDIT UNITS

Learning Objectives:
Students should be able to develop basic skills on reading, inquiry and writing a scientific writing related to design activities.

Syllabus:
Communicating design process through a writing that complies with scientific writing requirements; Communicating systematically literature review, development of design methods and design process through in writing.

Prerequisite: Student has passed Interior Architectural Design 4 and is taking Final Project.

References:
5. T. Y. Hardjoko, Panduan Meneliti dan Menulis Ilmiah, Departemen Arsitektur Universitas Indonesia, 2005

ENAI600031
CAPITA SELECTA
3 CREDIT UNITS

Learning Objective:
Students should be able to expand their knowledge on various topics that support acquisition of interior architectural knowledge and design skills.

Syllabus:
Selected topics that are relevant to interior architectural knowledge, design skills and their recent development.

Prerequisite: -

References: Relevant references to the topic offered.

ENAI600032
INTERNSHIP
3 CREDIT UNITS
4.10. UNDERGRADUATE PROGRAM IN CHEMICAL ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia and partner universities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia and partner universities</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td>Undergraduate Program in Chemical Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Type of Class</td>
<td>Regular, Paralel, Internasional</td>
</tr>
<tr>
<td>5</td>
<td>Degree Given</td>
<td>Sarjana Teknik (S.T)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Double degree: Sarjana Teknik (S.T) and Bachelor of Engineering (B.Eng)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation status</td>
<td>BAN-PT: A Accreditation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUN-QA</td>
</tr>
<tr>
<td>7</td>
<td>Medium Language</td>
<td>Indonesian and English</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme(Full time/Part time)</td>
<td>Full time</td>
</tr>
<tr>
<td>9</td>
<td>Entry requirement</td>
<td>High school /equivalent, or D3 / Polytechnique / equivalent, AND pass the entrance exam.</td>
</tr>
<tr>
<td>10</td>
<td>Duration of Study</td>
<td>Designed for 4 years</td>
</tr>
<tr>
<td></td>
<td>Type of Semester</td>
<td>Number of semester</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Short (optional)</td>
<td>3</td>
</tr>
</tbody>
</table>

11 **Graduate Profiles:**
Graduates of the undergraduate program of PSTK-FTUI should be able to contribute to the field of chemical engineering by applying chemical engineering principles with careful consideration of the engineering, economic, social, health and safety, energy, environment, sustainability, and ethics aspects; able to think critically, communicate effectively, and work together in multidisciplinary teams.

12 **Expected Learning Outcomes:**

1. Able to communicate effectively and work in multidisciplinary team.
2. Capable of critical, creative, and innovative thinking, and also have the intellectual ability to solve problems independently and interdependently
3. Good at both spoken and written Bahasa Indonesia and English for academic and non-academic activity
4. Capable of utilizing communication information technology
5. Able to apply knowledge of mathematics and science in solving engineering problems
6. Able to apply concept of mass and energy balances in solving chemical engineering problems
7. Able to apply thermodynamic concepts in solving chemical engineering problems
8. Able to apply concepts of transport phenomena in solving chemical engineering problems
9. Able to apply the concepts of chemical reaction engineering
10. Able to use modern chemical engineering tools
11. Able to conducts experiments and analyze the data obtained
12. Able to design components, systems, processes, and products related to chemical engineering profession with careful consideration of the engineering, economic, social, health and safety, energy, environment, sustainability, and ethics aspects
13. Able to provide solutions to various problems occurred wherever they live and work
14. Able to identify the kind of entrepreneurial approach needed based on innovation, self-reliance and ethics
15. Continuously develop oneself to contribute in solving local and global problems.

14 Course Composition

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Course</th>
<th>Credits</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>General Course of University</td>
<td>18</td>
<td>12.4</td>
</tr>
<tr>
<td>ii</td>
<td>General Course of Engineering Faculty</td>
<td>25</td>
<td>17.2</td>
</tr>
<tr>
<td>iii</td>
<td>Skill Course</td>
<td>82</td>
<td>57</td>
</tr>
<tr>
<td>iv</td>
<td>Optional Course</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>v</td>
<td>Internship, Seminar, Final Project, Project</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Type of Course</td>
<td>144</td>
<td>100 %</td>
</tr>
<tr>
<td>15</td>
<td>Total Credit Hours to Graduate</td>
<td></td>
<td>144 SKS</td>
</tr>
</tbody>
</table>

Employment Prospects

A graduate of the chemical engineering and bioprocess technology study programs can be described as a “Universal Engineer” as they learn the basics of engineering such as thermodynamics, reaction kinetics and reactor design, separation processes, as well as transport phenomena (momentum, energy and mass). Graduates of chemical engineering department at UI have contributed in the following areas: energy (oil and gas industry), engineering contractor companies (engineering, procurement, construction and trial operation), chemical industry (petrochemicals, bulk and specialty chemicals), research and development of process and/or chemical products, and processing and synthesis of food products and pharmaceuticals.
NETWORK COMPETENCE

Graduate Profile for Bachelor Degree of Chemical Engineering Study Program

Graduates of the undergraduate program of PSTK-FTUI should be able to contribute to the field of chemical engineering by applying chemical engineering principles with careful consideration of the engineering, economic, social, health and safety, energy, environment, sustainability, and ethics aspects; able to think critically, communicate effectively, and work together in multidisciplinary teams.

- Develop themselves continuously to contribute in solving local and global problems
- Able to identify the kind of entrepreneurial effort which includes innovative and independent characteristics based on ethics
- Able to provide the solutions of various problems occurred in community and our nation

- Able to design components, systems, processes, and products related to chemical engineering profession by considering the aspects of engineering, economic, social, health, safety, and environmental
- Able to conduct experiments and analyze the data of experimental results

- Able to apply chemical reaction engineering concepts in solving bioprocess problems
- Able to apply energy, momentum & mass balance concepts in solving chemical engineering problems
- Able to apply transport phenomenon concepts in solving chemical engineering problems
- Able to apply thermodynamics concepts in solving chemical engineering problems
- Able to apply the modern chemical engineering tools

- Able to apply the knowledge of mathematics and science in solving engineering problems

- Able to communicate effectively and work in multidisciplinary teams
- Good at both spoken and written in Bahasa Indonesia and English for academic and non-academic activity
- Capable of critical thinking, creative, and innovative, and also have the intellectual ability to solve the problems independently and interoperatively
- Capable of utilizing information communication technology

Legends:
- Main Competencies
- Support Competencies
- Other Competencies
CURRICULUM STRUCTURE UNDERGRADUATE CHEMICAL ENGINEERING

<table>
<thead>
<tr>
<th>KODE SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600002 Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003 English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600003 Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600009 Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENCH601001 Intro to Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH601002 Communication skills</td>
<td>2</td>
</tr>
<tr>
<td>Total Credit Term 1</td>
<td>20</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600001 Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600010-15 Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600004 Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>UIGE600020-48 Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600005 Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006 Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCH602003 Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH602004 Organic and Basic Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>Total Credit Term 2</td>
<td>21</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENGE600007 Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008 Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCH603005 Numerical Computation</td>
<td>3</td>
</tr>
<tr>
<td>ENCH603006 Instrumental Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH603007 Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH603008 Phys. Chem. and Anal. Chem. Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENCH603009 Mass and Energy Balance</td>
<td>3</td>
</tr>
<tr>
<td>ENCH603010 Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Term 3</td>
<td>20</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENCH604011 Chemical Engineering Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENCH604012 Fluid and Particle Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600010 Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENCH604013 Chemical Eng. Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENCH604014 Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ENCH604015 Process Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENCH604016 Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Term 4</td>
<td>20</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENCH605017 Material Science and Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600012 HSE Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600011 Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH605019 Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>ENCH605020 Unit Operation Process Lab I</td>
<td>1</td>
</tr>
<tr>
<td>ENCH605021 Chemical Reaction Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>ENCH605022</td>
<td>Chemical Process Simulation</td>
</tr>
<tr>
<td>ENCH606023</td>
<td>Process Control</td>
</tr>
<tr>
<td>ENCH606024</td>
<td>Unit Operation Process Lab II</td>
</tr>
<tr>
<td>ENCH606025</td>
<td>Chemical Reaction Engineering 2</td>
</tr>
<tr>
<td>ENCH606026</td>
<td>Process Equipment Design</td>
</tr>
<tr>
<td>ENCH606027</td>
<td>Chemical Product Design</td>
</tr>
<tr>
<td>Elective 1</td>
<td></td>
</tr>
<tr>
<td>Elective 2</td>
<td></td>
</tr>
<tr>
<td>Total Credit Term 5</td>
<td></td>
</tr>
</tbody>
</table>

6th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH606028</td>
<td>Natural Gas Processing</td>
<td>3</td>
</tr>
<tr>
<td>ENCH607029</td>
<td>Industrial Project Management</td>
<td>2</td>
</tr>
<tr>
<td>ENCH600030</td>
<td>Plant Design</td>
<td>4</td>
</tr>
<tr>
<td>ENCH600031</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENCH600032</td>
<td>Research Methodology & Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Elective 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elective 4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total Credit Term 6</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH600033</td>
<td>Undergraduate Thesis</td>
<td>4</td>
</tr>
<tr>
<td>ENCH600034</td>
<td>Capita Selecta</td>
<td>2</td>
</tr>
<tr>
<td>Total Credit Term 8</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCE802101</td>
<td>Packaging and Storage Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course for Odd Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH801101</td>
<td>Food Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801102</td>
<td>Herbal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801103</td>
<td>Composite Material</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801104</td>
<td>Hydrocarbon Thermodynamic</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801105</td>
<td>Lubricants Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801106</td>
<td>Combustion Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801107</td>
<td>Heterogenous Catalyst</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803101</td>
<td>Oleochemistry Industry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803102</td>
<td>Protein Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803103</td>
<td>Applied Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803104</td>
<td>Dynamics System</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803105</td>
<td>Cryogenics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803106</td>
<td>Plasma and Ozone Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803107</td>
<td>Special Topics 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803201</td>
<td>Renewable Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course for Even Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCE802101</td>
<td>Packaging and Storage Technology</td>
<td>3</td>
</tr>
<tr>
<td>CODE</td>
<td>SUBJECT</td>
<td>CREDIT</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>ENCE802102</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802103</td>
<td>Drugs and Cosmetics Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802104</td>
<td>Biomaterial</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802105</td>
<td>Petroleum Processing</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802106</td>
<td>Petrochemical Processing</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802107</td>
<td>Photocatalysis Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENCE812108</td>
<td>Polymer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802109</td>
<td>Pollution Prevention</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802110</td>
<td>Exploration and Production of Hydrocarbon</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802111</td>
<td>Utilities and Plant Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802112</td>
<td>Natural Gas Transportation and Utilization</td>
<td>3</td>
</tr>
<tr>
<td>ENCE812113</td>
<td>Drug Controlled Released Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802114</td>
<td>Analysis and Synthesis of Chemical Processes</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802115</td>
<td>Geothermal Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802116</td>
<td>Problem-Solving Skills</td>
<td>3</td>
</tr>
<tr>
<td>ENCE802117</td>
<td>Special Topic 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Resume

<table>
<thead>
<tr>
<th></th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Course of University</td>
<td>18</td>
</tr>
<tr>
<td>General Course of Engineering Faculty</td>
<td>25</td>
</tr>
<tr>
<td>Skill Course</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>133</td>
</tr>
<tr>
<td>Optional Course</td>
<td>12</td>
</tr>
<tr>
<td>Total Courses Load</td>
<td>145</td>
</tr>
</tbody>
</table>

COURSE STRUCTURE INTERNATIONAL UNDERGRADUATE CHEMICAL ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>UIGE61002</td>
<td>Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 610006</td>
<td>Physics (Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGE 610003</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 610009</td>
<td>Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENGE 610010</td>
<td>Statistics and Probability</td>
<td>2</td>
</tr>
<tr>
<td>ENCH611001</td>
<td>Introduction to Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 1 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ENGE 610004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE610007</td>
<td>Physics (Electric, Magnet, Wave & Optic)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610008</td>
<td>Physics (Electric, Magnet, Wave & Optic) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENCH612002</td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH612003</td>
<td>Mass and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>ENCH612004</td>
<td>Basic Chem. and Org. Chem. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>ENCH612005</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 2</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ENCH613006</td>
<td>Material Science and Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>ENCH613007</td>
<td>Numerical Computation</td>
<td>3</td>
</tr>
<tr>
<td>ENCH613008</td>
<td>Instrumental Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH613009</td>
<td>Fluid and Particle Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH613010</td>
<td>Phys. Chem. and Anal. Chem. Lab.</td>
<td>1</td>
</tr>
<tr>
<td>ENCH613011</td>
<td>Chemical Engineering Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENCH613012</td>
<td>Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 3</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>ENCH614013</td>
<td>Chemical Engineering Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENCH614014</td>
<td>Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td>ENCH614015</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ENCH614016</td>
<td>Process Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ENCH614017</td>
<td>Chemical Process Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENCH614018</td>
<td>Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>ENGE 6 1 0012</td>
<td>Health, Safety and Environmental Protection</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 4</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>UIGE610004</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>ENGE610011</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH615019</td>
<td>Chemical Reaction Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCH615020</td>
<td>Process Control</td>
<td>3</td>
</tr>
<tr>
<td>ENCH615021</td>
<td>Unit Operation Laboratory 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 5</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
</tbody>
</table>
UNDERGRADUATE PROGRAM

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIGE610003</td>
<td>Sport/ Art</td>
<td>1</td>
</tr>
<tr>
<td>UIGE610005-9</td>
<td>Religion Studies</td>
<td>2</td>
</tr>
<tr>
<td>ENCH616023</td>
<td>Unit Operation Laboratory 2</td>
<td>1</td>
</tr>
<tr>
<td>ENCH616024</td>
<td>Chemical Reaction Engineering 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCH616025</td>
<td>Process Equipment Design</td>
<td>3</td>
</tr>
<tr>
<td>ENCH616026</td>
<td>Chemical Product Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
</tr>
<tr>
<td>Elective</td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 6</td>
<td>20</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Compulsory</th>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH617027</td>
<td>Plant Design</td>
<td>4</td>
</tr>
<tr>
<td>ENCH610028</td>
<td>On the Job Training</td>
<td>2</td>
</tr>
<tr>
<td>ENCH610029</td>
<td>Research Methodology and Seminar</td>
<td>2</td>
</tr>
<tr>
<td>ENCH610030</td>
<td>Capita Selecta</td>
<td>2</td>
</tr>
<tr>
<td>ENCH615022</td>
<td>Industrial Project Management</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>Elective</td>
<td>Total</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 7</td>
<td>21</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Compulsory</th>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH618031</td>
<td>Natural Gas Processing</td>
<td>3</td>
</tr>
<tr>
<td>ENCH610032</td>
<td>Final Project</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7</td>
</tr>
<tr>
<td>Elective</td>
<td>Total</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credit Term 8</td>
<td>13</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Code</th>
<th>Elective Course for Odd Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH617101</td>
<td>Applied Termodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH617102</td>
<td>Thermodynamic Prop. Hydrocarbons</td>
<td>3</td>
</tr>
<tr>
<td>ENCH610103</td>
<td>Special Topics 1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Elective Course for Even Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH618104</td>
<td>Polymer Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH618105</td>
<td>Controlled Release of Drugs</td>
<td>3</td>
</tr>
<tr>
<td>ENCH618106</td>
<td>Special Topics 2</td>
<td>3</td>
</tr>
</tbody>
</table>
Resume | General Course of University | 18
| General Course of Engineering Faculty | 25
| Skill Course | 88
| Total | 131
| Elective Course | 15
| Total Courses Load | 144

Couse Structure Interantioanl Undergraduate Chemical Engineering at Partner University

<table>
<thead>
<tr>
<th>Year 3</th>
<th>5th Semester (Monash) July</th>
<th>Year 3</th>
<th>6th Semester (Monash) Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>CREDIT</td>
<td>Code</td>
</tr>
<tr>
<td>CHE3162</td>
<td>Process control</td>
<td>6</td>
<td>CHE3162</td>
</tr>
<tr>
<td>CHE3164</td>
<td>Reaction engineering</td>
<td>6</td>
<td>CHE3164</td>
</tr>
<tr>
<td>CHE3166</td>
<td>Process design</td>
<td>6</td>
<td>CHE3166</td>
</tr>
<tr>
<td>Choose one stream</td>
<td>6</td>
<td>Transport phenomena and numerical methods</td>
<td>6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>24</td>
<td>Subtotal</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>7th Semester (Monash) July</th>
<th>Year 4</th>
<th>8th Semester (Monash) Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>CREDIT</td>
<td>Code</td>
</tr>
<tr>
<td>CHE4162</td>
<td>Particle technology</td>
<td>6</td>
<td>CHE4161</td>
</tr>
<tr>
<td>CHE4170</td>
<td>Design project</td>
<td>12</td>
<td>CHE4180</td>
</tr>
<tr>
<td>Choose one stream</td>
<td>6</td>
<td>Choose one stream</td>
<td>6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>24</td>
<td>Subtotal</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CREDIT</th>
<th>Code</th>
<th>Course Title</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE3171</td>
<td>Bioprocess technology</td>
<td>6</td>
<td>BCH2011</td>
<td>Structure and function of cellular biomolecules</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHE4171</td>
<td>Biochemical engineering</td>
<td>6</td>
</tr>
</tbody>
</table>

Nanotechnology and Materials Stream

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CREDIT</th>
<th>Code</th>
<th>Course Title</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE3172</td>
<td>Nanotechnology and materials I</td>
<td>6</td>
<td>CHE4172</td>
<td>Nanotechnology and materials 2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MTE2541</td>
<td>Nanostructure of materials</td>
<td>6</td>
</tr>
</tbody>
</table>

Sustainable Processing Stream
<table>
<thead>
<tr>
<th>Year 3</th>
<th>5th Semester</th>
<th>Year 3</th>
<th>6th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>COURSE TITLE</td>
<td>CREDIT</td>
<td>KODE</td>
</tr>
<tr>
<td>CHE 223</td>
<td>Thermodynamics</td>
<td>25</td>
<td>ChE 322</td>
</tr>
<tr>
<td>CHE 324</td>
<td>Fluid & Particle Processes</td>
<td>25</td>
<td>ChE 312</td>
</tr>
<tr>
<td>CHE 325</td>
<td>Reaction Engineering</td>
<td>25</td>
<td>ChE 479</td>
</tr>
<tr>
<td>CHE 328</td>
<td>Process Instrumentation & Control</td>
<td>25</td>
<td>CHE</td>
</tr>
<tr>
<td>Subtotal</td>
<td>100</td>
<td>Subtotal</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>7th Semester</th>
<th>Year 4</th>
<th>8th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>COURSE TITLE</td>
<td>CREDIT</td>
<td>KODE</td>
</tr>
<tr>
<td>CHE 423</td>
<td>Process Economics & Management</td>
<td>25</td>
<td>ChE 481</td>
</tr>
<tr>
<td>CHE 422</td>
<td>Advanced Separation Processes</td>
<td>25</td>
<td>ChE 414</td>
</tr>
<tr>
<td>Che 499</td>
<td>Design Project (Lectures/Feasibility Studies)</td>
<td>50</td>
<td>Che 411</td>
</tr>
<tr>
<td>Subtotal</td>
<td>100</td>
<td>Subtotal</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE374</td>
<td>Mineral processing</td>
<td>12.5</td>
</tr>
<tr>
<td>CHE475</td>
<td>Petroleum processing</td>
<td>12.5</td>
</tr>
<tr>
<td>CHE39</td>
<td>Special topics (biochemical engineering)</td>
<td>12.5</td>
</tr>
<tr>
<td>CHE493</td>
<td>Research project</td>
<td>12.5</td>
</tr>
<tr>
<td>CHE477</td>
<td>Computational fluid dynamics</td>
<td>12.5</td>
</tr>
<tr>
<td>CHE313</td>
<td>Fundamentals of air pollution control</td>
<td>12.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>5th Semester</th>
<th>Year 3</th>
<th>6th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>COURSE TITLE</td>
<td>CREDIT</td>
<td>KODE</td>
</tr>
<tr>
<td>CHEE3004</td>
<td>Unit operations</td>
<td>2</td>
<td>CHEE4002</td>
</tr>
<tr>
<td>CHEE3005</td>
<td>Reaction engineering</td>
<td>2</td>
<td>CHEE4009</td>
</tr>
<tr>
<td>CHEE3006</td>
<td>Process and control system synthesis</td>
<td>2</td>
<td>CHEE1001</td>
</tr>
<tr>
<td>CHEE3007</td>
<td>Process modelling and dynamics</td>
<td>2</td>
<td>Part B2 Advanced Elective</td>
</tr>
<tr>
<td>Subtotal</td>
<td>8</td>
<td>Subtotal</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>7th Semester</th>
<th>Year 4</th>
<th>8th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE</td>
<td>COURSE TITLE</td>
<td>CREDIT</td>
<td>KODE</td>
</tr>
<tr>
<td>CHEE4001</td>
<td>Process engineering design project</td>
<td>4</td>
<td>Part B2 Advanced Elective</td>
</tr>
</tbody>
</table>
Tabel. Elective Courses at University of Queensland.

<table>
<thead>
<tr>
<th>CODE</th>
<th>COURSE TITLE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part B2 Advanced Electives</td>
<td></td>
</tr>
<tr>
<td>CHEE4003</td>
<td>Special Topics A</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4005</td>
<td>Polymer rheology & processing</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4006</td>
<td>Individual inquiry A</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4007</td>
<td>Individual inquiry B</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4012</td>
<td>Industrial wastewater & solid waste manage</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4015</td>
<td>Special Topics VII</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4020</td>
<td>Biomolecular engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4021</td>
<td>Particle design & processing</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4022</td>
<td>Principles of adsorption</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4024</td>
<td>Energy systems in sustainable development</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4028</td>
<td>Metabolic engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4301</td>
<td>Cell & tissue engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4302</td>
<td>Nanomaterials and their characterization</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4101</td>
<td>Electrochemistry and corrosion</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4102</td>
<td>Systems engineering & design management</td>
<td>2</td>
</tr>
<tr>
<td>CHEE4103</td>
<td>Advanced product design method</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Part B3 Process Engineering Electives</td>
<td></td>
</tr>
<tr>
<td>CHEE2005</td>
<td>Chemical product design</td>
<td>2</td>
</tr>
<tr>
<td>CHEE3008</td>
<td>Special Topics C</td>
<td>12.5</td>
</tr>
<tr>
<td>CHEE3301</td>
<td>Polymer engineering</td>
<td>12.5</td>
</tr>
<tr>
<td>CHEE3305</td>
<td>Biomaterials: Materials in Medicine</td>
<td>12.5</td>
</tr>
<tr>
<td>CHEM2002</td>
<td>Biophysical chemistry</td>
<td></td>
</tr>
<tr>
<td>CIVL3150</td>
<td>Modelling of environmental systems</td>
<td></td>
</tr>
<tr>
<td>MINE2201</td>
<td>Physical & chemical processing of minerals</td>
<td></td>
</tr>
</tbody>
</table>
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.

Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment

Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)

Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method: Active learning, Contextual language learning, small group discussion.

Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
UIGE600003
Learning Objectives: After attending this subject, students are expected to capable of use English to support the study in university and improve language learning independently.

Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building; word formation and using the dictionary Listening strategies Extensive reading) Grammar: (Revision of Basic grammar Types of sentences Adjective clauses, Adverb clauses Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking Reading popular science article, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks

Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)

Prerequisites: OBM (New Student Orientation)

Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005
2 sks

General instructional objectives: The cultivation of students who have concern for social, national and countrys issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human’s basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam’s motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)
CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks
General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.

Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks
General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

HINDU STUDY
UIGE600013/UIGE610008
2 sks
Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschayya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks
Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture
(the responsibility of religious society in the realization of critical thinking (academic), work hard and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be choosen:
Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025), Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029), Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be choosen:
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043), Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.
LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability in using basic physics concept. This subject will give students the opportunity to develop their ability to develop their presentation ability analyse the nature phenomenon and the result of human engineering in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their environment by using basic physics concept. This subject will give students the opportunity to develop their ability to analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their environment by using basic physics concept.
PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry.
Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis.
Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations
that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment. Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam

SYLLABUS OF CHEMICAL ENGINEERING

TERM 1
UIGE600002
INTEGRATED CHARACTERISTIC BUILDING SUBJECT B
6 CREDITS

Learning Objectives
Syllabus
Prerequisites
Textbook

UIGE600003
ENGLISH
3 CREDITS

Learning Objectives
Students able to use English for supporting study in Universitas Indonesia as well as continuing language learning independently.
Syllabus

1. Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary Listening strategies Extensive reading).
2. Grammar: (Revision of Basic grammar Types of sentences Adjective clauses, Adverb clauses Noun clauses, Reduced clauses).
3. Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking Reading popular science article, Reading an academic text)
4. Listening: (Listening to short conversations, Listening to a lecture and note-taking, Listening to a news broadcast, Listening to a short story)
5. Speaking: (Participating in discussions and meetings, Giving a presentation)
6. Writing: (Writing a summary of a short article Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs)

Prerequisites : -
Learning Objectives
After attending this subject, students are expected to capable of:
1. Understanding calculus basic concepts and competent to solve applied calculus problems.
2. Understanding the basic concepts of two or more variables function with its application.
3. Understanding the basic concepts of sequences and series as well as basic concepts of vectors and analytic geometry.

Syllabus:

Prerequisites:
Textbook:

Learning Objectives
1. Students able to resolve the problems of qualitative chemistry and indicate the reasons clearly as well as integrate various ideas in problem solving.
2. Students able to explain and model chemical and physical processes in the molecule level to explain the macroscopic properties.
3. Students able to classify materials based on conditions and bond properties by using periodic table as reference.
4. Students able to apply important theories such as kinetics of molecules or thermochemistry in chemical problem solving.

Syllabus:
1. Materials and Measurements
2. Atoms, molecules, ions, and the Periodic Table
3. Stoichiometry: Calculations by using formulas of chemical equations
4. Chemical Reactions in Solution and stoichiometric solution
5. Thermochemistry; Chemical equilibrium
6. Acid and base
7. Electrochemistry
8. Chemical Kinetics

9. Application of Chemicals

Prerequisites:

Textbook:

ENCE601001
INTRODUCTION TO CHEMICAL ENGINEERING
3 CREDITS

Learning Objectives: Students are able to:
1. Distinguish chemical engineering from the other techniques
2. Explain the development of chemical engineering
4. Understand the fundamentals of chemical engineering of existing processes and systems as well
5. Do simple calculation from mass and energy balance, and know the criteria for process equipment.

Syllabus: Introduction to Chemical engineering (definition and history), Overview of the chemical engineering profession, employment, and the contribution of chemical engineering, chemical engineering code of ethics, processes and equipment of chemical industry, Chemical Engineering flow in particular industry.

Prerequisites:

Textbook:

ENBE601002
Communication Skill
2 Credits

Learning Objectives:
Students are able to show their ability in identify of important component oral communication and effective writing as well as students are able to search references, read and criticize a writing. Students also able to write short accurate resume from reference. Students are able to apply skills in creating scientific research as well as presents it with clear and effective oral presentation that related to audience situation.

Syllabus: Introduction effective communication and audience analysis , Oral presentation, visual aids for oral presentation and assessment criteria, effective reading, making summary, preparing teaching notes, and assessment criteria, how to make memo writing and assessment criteria, writing processes - PKM GT guidelines including assessment criteria, Writing processes - referencing, Writing Process - how to make scientific poster and assessment criteria

Prerequisites:

Textbook:
Donald R. Woods, Communicating effectively, McMaster University Bookstore, 1996.
UIGE600001
Integrated Characteristic Building Subject A
6 Credits

UIGE600010-15
RELIGIOUS STUDIES
2 CREDITS

General instructional objectives: Students have a concern for social issues, national and state based on religious moral values applied in the development of knowledge through intellectual skills.
Learning Objectives: After attending this subject, when students given a problem, students can:
1. Analyzed based on values their religion.
2. Analyzed by applying the steps to active learn.
3. Discuss and express their opinions by using Bahasa Indonesia in right and good manner, both in discussion and paper.
Syllabus: Adapted to the respective religion.
Prerequisite: -
Textbook: Adapted to the problem subject.

ENGE 6 0 0004
LINEAR ALGEBRA
4 CREDITS

Learning Objectives: Students are able to explain/understand/apply linear algebra and associate this subject with other subjects.
Prerequisite: -
Textbook:

UIGE600020 - 48
Sports/Arts
1 Credit
Learning Objectives
Syllabus
Prerequisites
Textbook

ENGE 6 0 0005
PHYSICS MECHANICS AND HEAT
3 CREDITS

Learning Objectives
Students are able to understand the concepts and basic laws of mechanics physics and applied in a systematic and scientific problem solving which influenced by the force for both moving and not moving objects.

Syllabus
1. Scale, kinematics of point objects, mechanics of point objects, law of conservation of linear momentum and energy, harmonic motion, gravity, dynamics and kinematics of rigid
2. Introduction and basic concept (pressure, thermodynamic system, state of the system, temperature), expansion, equilibrium energy (thermal state equation), heat transfer, ideal gas.
3. First law of thermodynamics, enthalpy and entropy, The first law of thermodynamics application for open and closed system, Second law of thermodynamics, kinetic theory of ideal gas.

Prerequisites: -
Textbook:

ENCE 6 0 0006
PHYSICS MECHANICS AND HEAT LAB
1 CREDIT

Syllabus
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

ENCE 602003
ORGANIC CHEMISTRY
3 CREDITS

Learning Objectives: Students are able to:
Explain the link structure and stereochemistry, IUPAC name, physical properties, chemical reactivity, and reaction mechanisms
Determine the mechanisms of some organic chemical reactions and be able to estimate how to synthesize a simple organic chemical compounds.

Syllabus: Naming of organic compounds, the role of structure and stereochemistry of the physical / chemical an organic compound, the cracking reactions or free radicals alkane, polymerization of alkenes, aromatic electrophilic substitution on benzene, substitution and elimination reactions of alkyl halides, acylation and esterification reactions, dehydration-polymerization on carboxylic compound

Prerequisites: -
Textbook:
6. Organic Chemistry lecture notes

ENCE 602004
BASIC CHEMISTRY AND ORGANIC CHEMISTRY LAB.
2 CREDIT

Learning Objectives: Students are able to prepare a preliminary report on the theory behind the lab module, conducting experiments in the laboratory, process and analyze data from
experiments, and create a final report containing the explanation of phenomena that occur during experiments.

Syllabus: General techniques and chemical lab safety aspect, physical and chemical properties, separation and purification of substances, the reaction of metals with acids, water crystals, suspension formed reaction, identification of hydrocarbons, alcohols and phenols identification, identification of carbonyl compounds, carbohydrates, lipid analysis, extraction and identification of fatty acids from corn oil.

Prerequisites: -

Textbook:
3. Vogel, Practical Organic Chemistry
4. TGP majors, Organic Chemistry Lab Instructions diktat (Basic Chemistry and Organic Chemistry Guide, Department of Chemical Engineering, FTUI)
5. Fieser, Organic Chemistry

TERM 3

ENGE 6 0 0007
PHYSICS ELECTRICITY, MAGNETS, WAVE, AND OPTICS
3 CREDITS

Learning Objectives: Students are able to understand:
1. The concept and basic law of physics - electricity and magnetism and apply it systematically and scientifically in solving everyday magnetism and electricity physics problem.
2. The concept and basic law of wave and optical physics and apply systematic and scientific problem solving in a natural wave phenomenon or wave that arises from technical, physical properties of light and geometric optics.

Syllabus: Electric charge and Coulomb law, Electric field, Static and Gauss law, Electric potential, Capacitor, Direct electric current and basic circuit analysis, Magnetic field, Induction and electromagnetic, Faraday law and inductance, Material magnetism properties, A series of transient, Alternating current, Waves, Sounds, Polarization, Interference, Diffraction, Optical geometry, Lighting and photometry.

Prerequisite: -

Textbook:

ENGE 6 0 0008
PHYSICS ELECTRICITY, MAGNETS, WAVE, AND OPTICS LAB
1 CREDIT

Syllabus:

ENBE603005
NUMERICAL COMPUTATION
3 CREDITS

Learning Objectives
Students are able to solve chemical process through computational methods

Syllabus:
Chemical process modeling, simple differential equation: initial problem value, simple differential equation: limitation problem value; differential partial equations.

Prerequisites: -
Textbook: -

ENBE603006
INSTRUMENTAL ANALYTICAL CHEMISTRY
3 CREDITS

Learning Objectives: Students are able to explain and compare the various basic principles methods of analytical chemistry and apply it for qualitative and quantitative analysis of pure and mixture compounds

Syllabus: Skill workshop, Electrochemistry process, Potentiometry, Atomic Spectroscopy (AAS), Molecular spectroscopy (IR), Chromatography gas.

Prerequisite: -
Textbook:
4. Donald R. Woods, Problem based learning: How to gain the most from PBL, 2994, Mc-Master University, Hamilton, ON L8S 4L8.

ENBE603007
PHYSICAL CHEMISTRY
3 CREDITS

Learning Objectives: Students are able to understand the basic concepts of physical chemistry including the topics of thermodynamics, equilibrium reactions, and molecular spectroscopy, and apply these concepts to solve simple problems of chemical physics

Syllabus: Introduction, gas and liquids, Chemical Equilibrium, surface phenomena

Prerequisites: -
Textbook:

ENBE603008
PHYSICAL CHEMISTRY AND ANALYTICAL CHEMISTRY LAB
1 CREDIT

Learning Objectives:
Students are able to conduct preliminary report which is supported laboratory module theories, practicing experiments in laboratory, and arrange final report that contains the results of processing and analysis data experiments as well as explain the phenomena

Syllabus: Isothermal adsorption, effect of concentration and temperature on reaction rate, colligative properties of solution, chemical equilibrium determination, determination of mo-
olecular properties based on gas density, potentiometric methods, spectrophotometry visible light, conductometric methods, Chromatography Gas
Prerequisite: Basic Chemistry, Physical Chemistry and Analytical Chemistry Instrumental Textbook:
2. Guidance of Physical Chemistry and Analytical Chemistry Lab, Chemical Engineering, Universitas Indonesia.

ENBE603009
MASS AND ENERGY BALANCE
3 CREDITS

Learning Objectives: Students are able to solve the problem of mass balances, energy balances, and the combination of it.
Syllabus: Introduction, mass balance, solves mass balance for single unit without reactions, chemical reaction equation and stoichiometry, mass balance with reaction, mass balance involving units/equipments, recycle, bypass, purge, Energy : terminology, consepts and units, Introduction to energy balances in process without reaction, entalphy changes, application of energy balances without chemical reactions, energy balances : how to calculate chemical reactions, energy balances involving effects of chemical reaction, psychometric chart and the utilization
Prerequisites: Basic Chemistry, Introduction to Chemical Engineering
Textbook:

ENCE603010
TRANSPORT PHENOMENA
3 CREDITS

Learning Objectives: Students can identify and describe as well as analyze momentum, mass, and heat transfer phenomenon, through the application of macroscopic and microscopic balance.
Syllabus: Introduction, Viscosity and momentum transfer phenomenon, Velocity distribution of laminar flow, Thermal conductivity and energy transfer mechanism, Temperature and concentration distribution in solids and laminar flow, Diffusivity and mass transfer mechanism, Converter equation for isothermal system, Momentum transfer in turbulent flow, Mass and energy transfer in turbulent flow, Transfer between two phases, Macroscopic balance of iso-thermal and non-isothermal system, Macroscopic balance of multi-component system.
Prerequisites: Fluids mechanics particle, heat transfer, mass transfer
Textbook:
4. Harry C. Hershey, Robert S. Brodkey, Transport Phenomena: A Unified Approach Vol. 1,
TERM 4

ENCE604011
CHEMICAL ENGINEERING MODELING
3 CREDITS

Learning Objectives: Students are able to create a physicochemical model of a process system and solve it using numerical methods with the assistance of a programming language. Syllabus: Modeling chemical process systems, equation systems of linear algebra and non-linear algebra; ordinary differential equations: initial value problem and boundary value problem; partial differential equations. Prerequisites: Numerical computation

Textbook:
2. Davis, M. E., Numerical Methods and Modeling for Chemical Engineers, John Willey & Sons, New York, 1984

ENBE604012
FLUIDS AND MECHANICS PARTICLE
3 CREDITS

Learning Objectives: Students are able to apply the phenomenon of fluid flow and particle (continuity equation, Bernoulli, etc) to solve problem in process unit through calculation of energy and force, etc, especially in the fluid flow system of piping, rate measurer and fluid transportation tool, and in the system of fluid-solid flow (fluidization, filtration, sedimentation, particle motion in gas. Syllabus: transfer process, Shell momentum balances, momentum balances with Navier-stokes equations, shell energy balances, sehell mass balances, momentum and energy movement in turbulent, transfer between phase, macroscopics balances of isothermal system, macroscopics balances of non isothermal, macroscopics balances in multicomponent system

Prerequisite: Calculus

Textbook:
ENCE604013
CHEMICAL ENGINEERING THERMODYNAMICS
4 CREDITS

Learning Objectives: Students are able to explain the basic principles relating to the PVT and thermodynamic properties of pure and mixtures compounds, mass and energy balance, thermodynamic cycles, phase equilibrium and reaction, and be able to apply problem-solving strategies to resolve the thermodynamic problems in a group.

Syllabus: PVT properties of pure compounds, process track, steam table; steady and non-steady energy balances; cyclic processes: rankine cycle for energy power and refrigerant cycle; ideal system phase equilibrium and approachment to activity coefficient; phase equilibrium in high pressure: approachment in fugacity coefficient by cubic equational state; equilibrium reactions.

Prerequisites: mass and energy balances

Textbook:
3. Kamarza Mulia dan Praswasti PDK Wulan, Diktat Termodinamika Teknik Kimia
4. Donald R. Woods, Problem-Based Learning: How to gain the most from PBL, McMaster Bookstore, Hamilton, Ontario, Canada, 1994

ENBE604014
HEAT TRANSFER
3 CREDITS

Learning Objectives: Students are able to develop knowledge in heat transfer as well as long-term learning skills to follow advance knowledge and technology that related to heat transfer

Syllabus: Introduction, skills workshop process, steady-state conduction, unsteady-state conduction, natural and forced convection, radiation and Evaporation

Prerequisite: Transport Phenomena

Textbook:

ENCE604015
PROCESS ENGINEERING DRAWING
2 CREDITS

Learning Objectives: Students are able to draw it manually process flow diagrams, P & IDs and plant layout, familiar with the use of software for drawing, understand and able to read the meaning of the picture

Syllabus: The importance of engineering drawings, standard rules of the drawing, block dia-
grams, and symbols of industrial equipment, process flow diagrams, piping and instrumentation symbols, piping and Instrumentation diagram, plot plan, plant layout, isometric piping and equipment.

Prerequisites: -

Textbook:
2. Colin Simmons and Dennis Maguire, Manual of Engineering Drawing, Edward Arnold
3. ISO 1101, Mechanical Engineering Drawings, International Organization for Standardization

ENCE604016
MOLECULAR BIOLOGY
3 CREDITS

Learning Objectives: Students are able to explain structure and chemical compounds in living things including the function, the synthesis and metabolism of chemical compounds that occur in cells. Chemical compounds include nucleic acids, proteins, carbohydrates, and lipids and metabolism involves basic reactions of metabolism, glycolysis, as well as lipid and steroid metabolism.

Syllabus: Molecular biology, nucleic acids, structure and replication of DNA and RNA, transcription and translation, amino acids, synthesis and structure of proteins, enzymes, and metabolism.

Prerequisite: -

Textbook:

TERM 5

ENCE605017
MATERIAL SCIENCE AND CORROSION
3 CREDITS

Learning Objectives
1. Students able to understand the role of materials selection in designing equipment
2. Students able to understand the characteristics of materials
3. Students able to understand corrosion: Process, prevention, testing and protection, as well as calculating and designing simple corrosion protection

Syllabus
1. History of Material Science in human civilization, material science applications in Chemical Engineering
2. Atomic, Molecular, Chemical Bonding and its correlation with the properties of materials
3. Crystal structure
4. Phase Diagram and its relation to the manufacture of metal
5. Mechanical properties of materials and ters equipments
6. Metal and the alloy
7. Corrosion and Chemical Industry
8. The basic concept of corrosion, electrochemical, polarization, passivity
9. The types of corrosion mechanism and its prevention
10. Cathodic protection and inhibitors
11. Corrosion monitoring
Prerequisites:
Textbook:
1. Ilmu Bahan dan Teknologi Bahan (Lawrence H. Van Vlack diterjemahkan oleh Ir. Sriati Djaprie, M.E., M.Met). Bagian Pendahuluan

ENG 60012
HEALTH, SAFETY AND ENVIRONMENT
2 CREDIT

Learning Objectives: Students are able to:
1. Identify various types of hazards, characterization, proposes a method which is suitable for risk reduction and mitigation and safety management system design.
2. Increase awareness of health and safety industry, and understand the regulatory framework and standard of safety and environmental programs.

Syllabus: Introduction to Regulation and Standards; Risk Perception, Assessment and Management; Machinery Hazards; Noise Hazards; Process Safety Hazard; Fire and Explosion Hazard; Electrical Hazard; Toxicology in The Workplace; Environmental Protection; Environmental Protection Control Processes; Hazard Communication to Employees; Personal Protective Equipment (PPE): Types of PPE and Selection of PPE; Safety Audits, Incident and Emergency Planning.

Prerequisite:
Textbook:

ENG 605018
ENGINEERING ECONOMICS
3 CREDITS

Learning Objectives
Students are able to explain fundamentals of decision-making and feasibility study by using economic approach

Syllabus:
1. The principles of engineering economics
2. Equivalence
3. Compound Interest Factor
4. Alternative Evaluation by equivalence value method
5. Alternative Evaluation by IRR Method
6. Comparing Alternatives
7. Benefit-cost ratio Method to cost (B/C ratio)
8. Depreciation
9. Income tax

10. Evaluation after Tax

Prerequisites: Statistics and Probability

Textbook:
5. Baku Kompentensi INTAKINDO-2007

ENCE605019
MASS TRANSFER
4 CREDITS

Learning Objectives: Students are able to analyze the phenomenon of mass transfer and apply it to solve the problem of unit mass transfer process.

Syllabus: Batch and continuous distillation; a mixture of binary or multiple components, humidification and drying, gas absorption, solvent extraction.

Prerequisites: Chemical engineering thermodynamics, transport phenomena

Textbook:

ENCE605020
UNIT OPERATION LABORATORY
11 CREDITS

Learning Objectives: Students be able to:
1. Verify the technique of chemical engineering concept in fluid mechanic (CHS 220804), heat transfer (CHS 220807) that applied on tools or process unit.
2. Operate the equipment and measuring the flow rate (orifice meter, venturimeter, rotameter), temperature (thermocouple), process and analyze the data, discussed and took the conclusion, convey the result in the writing report in standard format.

Syllabus: The modules operating unit including: fluid circuit, centrifugal pump, incompressible flow, filtration, fluidization, conduction, convection, double pipe heat exchange, mixing and compounding.

Prerequisites: Fluid Mechanics and Heat Transfer

Textbook: Practical Manual Processes and Operations Teknik1, UI Department of Chemical Engineering

ENCE605021
CHEMICAL REACTION ENGINEERING 1
3 CREDITS

Learning Objectives: Students are able to comprehend the concept of chemical kinetics and catalysis, design the experiment of kinetics data interpretation, formulate the kinetics models as well as analyze the performance of reaction

Syllabus: Basic concepts of chemical reaction kinetics, chemical reaction thermodynamics, experiments and kinetics data, formulation of kinetic models, the estimation method of constant values of the kinetic model, the sensitivity analysis of the kinetics model, catalyst and the influence of external and internal diffusion of the chemical reaction rate, the effectiveness
factor, the effect of heat displacement at the catalytic reaction.

Prerequisites: Physical Chemistry

Textbook:

ENCE605022

SIMULATION OF CHEMICAL PROCESS
3 CREDITS

Learning Objectives: Students are able to use the latest chemical engineering software to make the steady state and dynamic simulations, and able to manipulate the process variable and the topology of the unit processes in the chemical industry.

Syllabus: steady state and dynamic models, stream, heat exchanger equipment, piping and rotating equipment, separation equipment, columns and towers, reactors, refrigeration system, the selection of PID controllers for temperature, pressure, level and flow, cascade control, model testing and tuning PID controllers.

Prerequisites: -

Textbook:
2. Fogler, HS, Elements of Chemical Reaction Engineering, Prentice-Hall
5. HYSYS Steady State Model and Tutorial

TERM 6

ENCE606023

PROCESS CONTROL
3 CREDITS

Learning Objectives: Students are able to design a single loop control system and connected the dynamic process with the performance

Syllabus: Introduction to process control, objectives and benefits of control, the principle of mathematical modeling, process modeling and control analysis, the system dynamic behavior of a typical process, the identification of empirical models, loop-back baited, PID controllers, PID controller tuning, stability analysis,

Prerequisites: Numerical computation

Textbook:
2. Ogata, Katsuhiko, Teknik Kontrol Automatik (Sistem Pengaturan), Jilid 1, Penerbit Erlangga, 1985, Bandung
5. Stephanopoulos, George, Chemical Process Control: An Introduction to Theory and Practice,
ENCE606024
UNIT OPERATION LAB 2
1 CREDIT

Learning Objectives: Students be able to:
1. Verify the technique of chemical engineering concept in transport phenomena theory (CHS 210802), Heat Transfer (CHS 220807), Process Control (CHS 310806) that applied on tools or process unit.
2. Operate the equipment and measuring the flow rate (orifice meter, venturimeter, rotameter), air humidity (humidity meter), temperature (thermocouple), process and analyze the data, discussed and took the conclusion, convey the result in the writing report in standard format.

Syllabus: The modules operating unit of mass transfer and the process controlling including: measuring the diffusivity coefficient of liquid gas, drainage, wetted wall column, gas absorption, climb film evaporation, flow rate control, pipe reactor.

Prerequisites: Mass Transfer and Process Control

Textbook:
1. Practical Manual Processes and Technique Operations 2, UI Department of TGP
2. Literature for the course prerequisites

ENCE606025
CHEMICAL REACTION ENGINEERING 2
3 CREDITS

Learning Objectives: Students are able to design and analyze various types of chemical reactors

Syllabus: The basic concept of chemical reactor design, isothermal ideal reactor designs: batch, CSTR, and PFR / PBR, ideal-isothermal reactor designs: spherical reactor, membrane reactor, micro-reactor, reactor design for multiple reactions, non-isothermal reactor designs: CSTR, multiple steady state, non-isothermal reactor design: PFR / PBR, multi-bed reactor (interstage cooler / heater), multi-phase reactor design (multiple phase), non-ideal reactor design

Prerequisites: Chemical Reaction Engineering 1

Textbook:

ENCE606026
PROCESS EQUIPMENT DESIGN
3 CREDITS

Learning Objectives: Students are able to design chemical process equipment in accordance with the applicable standards.

Syllabus: Pumps, compressors, piping, pressure vessels and tanks, distillation columns, heat exchangers.

Textbook:
ENCE606027
CHEMICAL PRODUCT DESIGN
4 CREDITS

Learning Objectives: Students are able to design chemical products systematically and structured, and analyze the technical and economic feasibility.
Syllabus: An understanding of consumer needs, product specifications, creating and selecting the product concept, product formulation, manufacturing, supply chain, economic.
Prerequisites: Mass and Energy balances, fluids and mechanics particle, mass transfer, heat transfer, Chemical Reaction Engineering, Engineering Economics
Textbook:

TERM 7
ENCE607028
NATURAL GAS PROCESSING
3 CREDITS

Learning Objectives: Students are able to design the most appropriate process for the removal of natural gas impurities with the process simulator and able to evaluate the energy consumption of refrigeration system and natural gas liquefaction system
Syllabus: Front-end natural gas processing and products, the physical properties of hydrocarbon systems, systems of units of gas, natural gas dehydration (absorption, adsorption), gas sweetening, sulfur recovery, mercury removal, LPG processing, processing CNG, LNG processing.
Prerequisite: Chemical Process Simulation
Textbook:
1. Gas Conditioning and Processing Vol. 1
2. Gas Conditioning and Processing Vol. 2

ENBE607029
INDUSTRIAL PROJECT MANAGEMENT
2 CREDITS

Learning Objective:
Students are able to apply project management in their field of works exactly as well as apply it in other areas exclude main field
Syllabus:
Project-production concept, Life Cycle Project, Selection Project, Planning Project, Implementation Project, and Completion & Evaluation Project
Pre-requisites: -
Textbook: Suharto, Imam, Manajemen Proyek, 1990

ENBE600030
PLANT DESIGN
4 CREDITS

Learning Objectives: Student able to design process and plant of natural product and analysis their economic value.
Syllabus: the concepts in designing process/plant, flow diagram processes, synthesis and analysis process using heuristic, process simulation, rule of thumb to construct process and material of equipment design, integration heat/process, plant flow sheet, and economic analysis
Prerequisite: process control, equipment process design, chemical process simulation, engineering economics
Textbook:

ENBE600031
INTERNSHIP
2 CREDITS

Learning Objectives:
Students are able to gain field experience, able to analyze process/system/operation product that available in Chemical industries and able to apply various communication process: problem solving, interpersonal communication, study in a group, and conduct a research.
Syllabus: -
Prerequisite: Students had to take a minimum of 110 SKS (minimum value of D) with a 2.0 GPA.
Textbook: -
RESEARCH METHODOLOGY AND SEMINARS
2 CREDITS

Learning Objectives: Able to determine the appropriate method for research activities and produce the ideas, processes, and scientific research in writing and oral.
Syllabus: Introduction, technics of identifying problem and make a hypothesis, thinking logically, technics of scientific writing, technics of writing research proposal, technics of designing research, presentation technics, technics of collecting, analyzing, and presenting data.
Prerequisite: Students had to take a minimum of 90 SKS (minimum value of D) with a 2.0 GPA.
Textbook:
1. Handout
2. Research proposal format

TERM 8
ENBE600033
UNDERGRADUATE THESIS/ FINAL PROJECT
4 CREDITS

Learning Objectives: Able to design, conduct and analyze research in Chemical Engineering; Present scientific research in writing and oral.
Syllabus: Material of thesis according to conducted research
Prerequisite: Research method and seminar
Textbook:

ENBE600034
CAPITA SELECTA
2 CREDITS

Learning Objectives: Able to explain the development of industry and engineering, business opportunities and the problems it faces in general.
Syllabus: Held with invited guest lecturers who are competent in fields that fit the requirement of each program study (can be different in each semester).
Prerequisite: Students had to take a minimum of 90 SKS
Textbook: -
ELECTIVE COURSES

ELECTIVE COURSE FOR ODD SEMESTER

ENCE803101
OLEOCHEMICAL INDUSTRY
3 CREDITS

Learning Objectives: Students are able to know the various processes that are commonly used in the oleochemical industry, and able to make a plan to develop the manufacture of oleochemicals from vegetable oils.
Syllabus: Fatty acids, biodiesel, paints and polymers, detergents, soaps, fatty alcohol, glycerin, oils and fats, oil and grease, the development of oleochemicals, vegetable oil processing, vegetable oil technology in the process.
Prerequisites: Organic Chemistry

ENCE801101
FOOD TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to understand the processes of making food in the food industry which includes the selection, handling and processing of raw materials, the operating unit of food production, packaging, storage and control the process from beginning stage to the end.
Syllabus: Introduction, physical properties of raw materials, the basic concepts of energy and mass transfer, reaction kinetics, process control. mixing, filtration, centrifugation, extraction and membrane processes, adsorption and ion exchange column, with the temperature settings, drying, preservation, packaging, food storage, and hygiene.
Prerequisites: -
Textbook:
4. Introduction to Food Process Engineering by P. G. Smith. Springer
5. Fundamentals of Food Process Engineering by Romeo T. Toledo. Springer

ENCE803102
PROTEIN ENGINEERING
3 CREDITS

Learning Objectives: Students are able to determine protein engineering strategies for the benefit of separation, biocatalysts and medic.
Syllabus: Introduction, Protein docking methods, Protein tagging strategies, Gen synthesis design, Enzyme stabilization, Molecular exploration, Protein engineering, Case study.
Prerequisite: Organic Chemistry
Textbook:
1. Protein Engineering in Industrial Biotechnology, Lilia Alberghina, Harwood academic publishers, 2005
2. Proteins: Biotechnology and Biochemistry by Dr. Gary Walsh. Wiley
3. Protein engineering and design by Sheldon J. Park, Jennifer R. Cochran. CRC Press
4. Protein Engineering and Design by Paul R. Carey. Academic Press
5. Protein Engineering: Principles and Practice. Wiley-Liss
ENCE801102
HERBAL TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to explain the development of herbal technology, herbal separation technology, herbal formulation basis, herbal regulation, and distinguish with other pharmaceutical products

Syllabus: Definition and basic concepts of herbs, herbal materials, herbal separation technology, herbal formulations, herbal regulation.

Prerequisites: Organic Chemistry

ENCE801103
COMPOSITE MATERIAL
3 CREDITS

Learning Objectives: Students are able to:
1. Explain the characteristics of composite materials and compare it with conventional materials.
2. Explain the manufacturing process, and research development of composite materials.

Syllabus: The position of composite materials in materials science in general, common characteristics of composite materials, the type of composite based on the composition, the types of polymer matrix and reinforcement, the role of surface treatment in the strength of composite materials, manufacturing processes, durability, the process of splicing and repair of composite materials, code and standards for application of composite materials, the development of composite materials research.

Prerequisites: Organic Chemistry

Textbook:

ENCE813103
APPLIED THERMODYNAMICS
3 CREDITS

Learning Objectives: Students are able to analyze problems of thermodynamics based on a thorough review including fundamental aspects of thermodynamics, experimental, and green chemistry, based on current information from scientific journals

Syllabus: The case study of industrial thermodynamic, example cycle processes, phase equilibrium, and chemical reaction equilibrium to process and product engineer; friendly solvents such as supercritical CO₂ and ionic liquid

Prerequisites: Chemical Engineering Thermodynamics

Textbook:
1. References relevant to a given problem.
2. Mulia, K and Wulan, PPDK, Textbook of Chemical Thermodynamics

ENCE803104
DINAMIC SYSTEM
3 CREDITS

Learning Objectives: Students are able to build dynamic models of process systems, biological, industrial, social and economic.

Syllabus: Introduction to dynamical systems, causal loops, model and validation, analysis,
case study.
Prerequisites: Numerical Computation
Textbook:

ENCE811104
THERMODYNAMIC SYSTEM OF HYDROCARBON
3 CREDITS

Learning Objectives: Students are able to predict the magnitude of thermodynamic properties of hydrocarbons and the phase condition, either manually or using software calculations.
Syllabus: Introduction to hydrocarbon thermodynamics properties, basic thermodynamic concepts, P-V-T data correlations, physical properties of hydrocarbon fluids, computing aided thermodynamics properties, the vapor-liquid behavior of two-phase systems, water-hydrocarbon system behavior, product specifications in the disposal lease of hydrocarbon
Prerequisites: Chemical Engineering Thermodynamics
Textbook:

ENCE801105
LUBRICANT ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the working principles of lubrication, lubricant function and several parameter of the quality and lubricant classification, lubricant chemical, and its production technology either mineral lubricant, synthesis, and vegetable.
Syllabus: Principles of lubrication on friction and wear phenomena on the two surfaces of solid objects are moving together; mode lubrication: hydrodynamic and elastohydrodynamic; lubricants: mineral, synthetic, and vegetable; additives, formulations, degradation, contamination, and maintenance of lubricants; latest development of lubricant technology.
Prerequisites: Organic Chemistry
Textbook:
4. Handout

ENCE803105
CRYOGENIC ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the various processes to liquefy gas in cryogenic technology
Syllabus: History and development of cryogenic, cryogenic scope of work. Refrigeration and liquefaction of natural gas, air, oxygen, nitrogen, helium, neon and argon.
Prerequisites: Chemical engineering thermodynamics
Textbook:

ENCE801106
COMBUSTION ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the phenomenon of combustion and resolve the problems that rendered correctly.
Syllabus: chemical kinetics and combustion, the flame, premix flame, diffusion flame, the combustion process applications.
Prerequisite: Transport Phenomena, Chemical Reaction Engineering 1, Chemical Engineering Thermodynamics
Textbook:

ENCE803106
PLASMA AND OZONE ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the physics and chemistry phenomena of plasma formation and release of electromagnetic energy and the use of plasma and ozone technology.
Syllabus: basic phenomena and physical-chemical processes of gases that are given an electrical charge (corona discharge), the generation process or formation of ozone, role and use of plasma technology and ozone in chemical engineering processes, the potential of ozone technology in control technology environmental pollution, the ozone generator module manufacturing equipment.
Prerequisite: Physics Electricity Magnetism
Textbook:
ENCE801107
HETEROGENEOUS CATALYST
3 CREDITS

Learning Objectives: Students are able to explain the phenomenon of basic concepts heterogeneous catalysts and its application

Syllabus: The general property of catalyst, thermodynamic of the reaction with catalyst, the distribution of the catalyst based on the type of reaction, the core function is active, the method of selecting catalysts for certain reactions, characterization of the corresponding want to know the nature of the target, the catalyst test methods, methods of development of the catalyst, and reaction products.

Prerequisites: Chemical Reaction Engineering 1

Textbook:

ENCE801108
SUSTAINABLE ENERGY
3 CREDITS

Learning Objectives: Students are able to explain the relationship of energy with social aspect, economic and environmental and sustainability concepts, and able to analyze the performance of techno-economy and the continuity especially fossil energy system, new, and renewable.

Syllabus: Concept of sustainability and sustainable energy, energy hierarchy, energy linkages with economic, environmental and social, fossil energy / fuels and Impacts, global climate change and its mitigation, conversion, transportation / distribution and storage, analysis method of energy sustainability: LCA, sustainability index, hydrogen and fuel cells and nuclear energy, solar energy (PV and thermal), wind and ocean, hydropower, bioenergy, geothermal energy, energy efficiency and conservation, carbon capture and storage

Prerequisites: Chemical Engineering Thermodynamics or Biochemical Engineering

Textbook:
5. D. Elliot, enerfy, Society, and Environment, Technology for a sustainable future, Rouledge, 1997

ENCE803107
RISK MANAGEMENT
3 CREDITS

Learning Objectives: Students can explain and apply risk management in a risk assessment.
Syllabus: Introduction to the risk, the basic principles and guidelines concerning risk, risk management standards, risk assessment, risk analysis, risk analysis and simulation, simulation of the risk with Montecarlo method, the risk of using software simulation crystal ball.

Prerequisites:

ENCE803108
SPECIAL TOPIC 1
3 CREDITS

ELECTIVE COURSE FOR EVEN SEMESTER

ENCE802101
PACKAGING AND STORAGE TECHNOLOGY
3 CREDITS

Learning Objective: Students are able to describe characteristics, packaging and storage food technology, the relation between storage and packaging with quality of food, describe factors affecting deviation of food qualities as well as able to choose storage methods and packaging types which is appropriate to food materials.

Syllabus: hidratasi, material storage technology and food products, deviation of food material qualities, microbial contaminant, purpose and function of food packaging, interaction between food packaging and packaging material types

Prerequisite: -

ENCE802102
BIOINFORMATICS
3 CREDITS

Learning Objective: Students are able to explore database and programs to be applied in genetic engineering sectors, proteomic etc

Syllabus: Database, genomics, genetic molecular, philogeny, protein structure, metabolism and tissues

Textbook:

ENCE802103
DRUGS AND COSMETICS TECHNOLOGY
3 CREDITS

Syllabus:
Definition of drugs and cosmetics, types of skins and characteristics, cosmetic types, ethics and regulation of drugs and cosmetics, new drug development technology, process technology in drug and cosmetics industries, packaging technology of drugs and cosmetics technology.

Prerequisite: Organic Chemistry
Textbook:
1. Handbook of Cosmetic Science and Technology by Andre O. Barel, Marc Paye, Howard I. Maibach. INFRMA-HC 2009
ENCE802104
BIOMATERIAL
3 CREDITS

Learning Objective: Students are able to describe the principle and concept of material technologies through biological as well as life cycle assessment (LCA), organic and inorganic materials for biomaterial, apply and develop knowledge about biomaterial for life

Syllabus: Introduction, solids structure, characteristics of materials, metal material for implant, bioceramic materials, structural properties of biomaterial, the response of tissues to biomaterial, the replacement of soft tissues, the replacement of hard tissues, transplantation, and biological tissues engineering

Prerequisite: -

Textbook:
1. Joon Park, R.S. Lakes. Biomaterials an Introduction, springer

ENCE802105
PETROLEUM PROCESSING
3 CREDITS

Learning Objectives: Students are able to explain petroleum characteristic and its refine product and the stages of the process from various petroleum processing technologies.

Syllabus: Introduction terminology, oil composition, thermal properties of petroleum, chemical processing of petroleum processing, distillation, hydrogenation and dehydrogenation, cracking processes, the processes of reforming, gas processing and petroleum light products, product improvement.

Prerequisites: Fluid and Particle Mechanics, Thermodynamics, Mass Transfer.

Textbook:
3. D. S. J. Jones, Elements of Petroleum Processing, John & Sons Woley

ENCE802106
PETROCHEMICAL PROCESSING
3 CREDITS

Learning Objectives: Students are able to explain the development of petrochemical products and raw material potential, upstream / downstream petrochemical production lines (olefin center, aromatic center, and the pathways of methane) and the major production processes of several petrochemical industry through methane, olefins and aromatics; able to analyze impact of industrial processes and petrochemical products to the environment.

Syllabus: History of the general petrochemical products development and raw material potential, the scope of the petrochemical industry, petrochemical classification process, the type and processing raw materials into petrochemical products, the details of various petrochemical industry: olefins center, aromatics and the center line of methane, industrial and environmental impact of products petrochemicals.

Prerequisites: Organic Chemistry

Textbook:
2. Lewis T. Hatch, Sami Matar, “From Hydrocarbon to Petrochemical”.
ENCE802107
PHOTOCATALYSIS TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to understand the basic concepts and photocatalysis and apply it in the various the simple daily problem, especially related with environment, health, and energy.

Syllabus: The basic concept photocatalysis processes, thermodynamics and kinetics of photocatalytic process, semiconductor photocatalyst materials, the basic parameters of photocatalytic process, Photocatalyst Nanomaterial Engineering, photocatalytic applications for degradation of organic pollutants and heavy metals, photocatalysis applications for self-cleaning and anti-fogging, photocatalysis applications for anti-bacterial and cancer therapy, photocatalysis applications for engineering ‘daily life tools’, photocatalysis applications in renewable energy sector, solar detoxification engineering with photocatalysis, intensification of photocatalysis process.

Prerequisites: Chemical Reaction Engineering 1

Textbook:
3. J.B. Galvez, et.al., Solar Detoxification, Natural Sciences, Basic and Engineering Sciences, UNESCO.

ENCE812108
POLYMER ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the basic principles and characteristics of polymer manufacturing until being able to keep abreast of the latest technology.

Syllabus: The concept of polymer and polymer characteristics, synthesis / polymerization, kinetics of polymerization, the polymer solution, characterization, process of making plastics.

Prerequisites: Organic Chemistry

Textbook:
5. Donald R. Woods, Problem Based Learning: How to gain the most PBL, 1994, Mc-Master University, Hamilton, ON L8S 4L8.

ENCE802109
POLLUTION PREVENTION
3 CREDITS

Learning Objectives: Students are able to explain the concepts of pollution prevention and able to design the waste treatment system.

Syllabus: Introduction to the concept of pollution prevention, waste water treatment outline and preparation, waste water treatment in physical, biological, and chemical as well as the
operating unit, bioremediation, bioseparation and biodegradation, advanced oxidation processes, the handling of waste gas, waste handling B3, solid waste handling, effluent treatment, gas, is unconventional.

Prerequisites: Chemical Reaction Engineering 1.

Textbook:
6. Journals, the Internet.

ENCE802110
EXPLORATION AND PRODUCTION OF HYDROCARBON
3 CREDITS

Learning Objectives: Students are able to explain the economic concept of natural gas and analyze the 4e economy.

Syllabus: Introduction of hydrocarbon, life cycle of field development, hydrocarbon form and hydrocarbon property and reservoir, hydrocarbon exploration: geology, geophysics, and drilling, field appraisal, reservoir development, drilling development, hydrocarbon production, HSE, hydrocarbon economy and lease, coal and hydrocarbon unconventional (CBM, Shale gas, and HYDRAT GAS)

Prerequisites:-

Textbook:
2. Babusiauz et al, 2004, Oil and Gas Exploration and Production. Reserves, Cost and Contracts, IFP-Technip,

ENCE802111
UTILITIES AND PLANT MAINTENANCE
3 CREDITS

Learning Objectives: Students are able to explain the strategy of plant and utility maintenance.

Syllabus: Plant maintenance strategy: maintenance program, maintainability, reliability, planning and scheduling

Prerequisite: Chemical Engineering Thermodynamics

Handbook:

ENCE802112
NATURAL GAS TRANSPORTATION AND UTILIZATION
3 CREDITS
ENCE812113
DRUG CONTROLLED RELEASED TECHNOLOGY
3 CREDITS

Learning objective: Students are able to describe the principle of control drug released or bioactive compound for medical purposes and utilize the principle to apply control drug released technology

Syllabus: polymeric biomaterial that is easily degradable, various methods to drug encapsulation and bioactive compounds in nano/microsfer, diffusion and permeasi, strategy of control released, case study

Prerequisite: Organic Chemistry

Textbook:

ENCE802114
ANALYSIS AND SYNTHESIS OF CHEMICAL PROCESSES
3 CREDITS

Learning Objectives: Students are able to analyze and synthesize the chemical processes in an integrated system of technical and economic aspects

Syllabus: The strategy of synthesis and analysis process, design concepts development and the determination of the best flow sheet, a preliminary optimization process, the retrofit process, the use of computer aided design system for simulation and analysis process.

Prerequisites: Simulation of Chemical Processes

Textbook:
2. Hartman, Klaus, and Kaplick, Klaus, Analysis and Synthesis of Chemical Process Systems

ENCE802115
GEOTHERMAL TECHNOLOGY
3 CREDITS

ENCE802116
PROBLEM-SOLVING SKILLS
3 CREDITS

ENCE802117
SPECIAL TOPIC 2
3 CREDITS
4.11. UNDERGRADUATE PROGRAM IN BIOPROCESS ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td>Undergraduate Program in Bioprocess Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Type of Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Degree Given</td>
<td>Sarjana Teknik (S.T)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation status</td>
<td>BAN-PT: A Accredited</td>
</tr>
<tr>
<td>7</td>
<td>Medium Language</td>
<td>Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full time/Part time)</td>
<td>Full time</td>
</tr>
<tr>
<td>9</td>
<td>Entry requirement</td>
<td>High School</td>
</tr>
<tr>
<td>10</td>
<td>Duration of Study</td>
<td>Scheduled for 4 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Semester</th>
<th>Number of semester</th>
<th>Number of weeks /semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

11 Graduate Profiles:
Bioprocess Engineering Graduates who are able to design components, systems, processes, and products related to bioprocess engineering profession by considering the aspects of

12 Expected Learning Outcomes:

1. Able to communicate effectively and work in multidisciplinary team.
2. Capable of critical thinking, creative, and innovative, and also have the intellectual ability to solve the problems at individual and group level.
3. Good at both spoken and written in Bahasa Indonesia and English for academic and non-academic activity.
4. Able to identify the kind of entrepreneurial effort which includes innovative and independent characteristic based on ethics
5. Capable of utilizing information communication technology.
6. Able to apply the knowledge of the mathematics and sciences in solving engineering problems.
7. Able to apply energy, momentum and mass balance concepts in solving bioprocess problems.
8. Able to apply bioenergetics concept in solving bioprocess problems.
10. Able to apply bioprocess reaction engineering concepts in solving bioprocess problems.
11. Able to use the modern bioprocess engineering tools.
12. Able to conducts experiments and analyse the data of experiment results.
13. Able to design components, systems, processes, and products related to bioprocess engineering profession by considering the aspects of the engineering, economic, social,
14. Able to provide the solutions of various problems occurred in community, nation, and country.
15. Develop themselves continuously to contribute in solving local and global problems.
Course Composition

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Course</th>
<th>Credits</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>25</td>
<td>17.4 %</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>85</td>
<td>59.0 %</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>9</td>
<td>6.3 %</td>
</tr>
<tr>
<td>v</td>
<td>Internship, Seminar, Undergraduate Thesis, Project</td>
<td>7</td>
<td>4.9 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Total Credit Hours to Graduate: 144 SKS

Employment Prospects

The graduates be able to carrier in food industry; pharmaceutical, cosmetics and biotechnology industries; oleochemicals; consulting and engineering company; environmental and renewable energy industry; government; education and so on.
NETWORK COMPETENCE

Graduate Profile for Bachelor Degree of Bioprocess Engineering Study Program
Graduates of the undergraduate program of Bioprocess Engineering should be able to design components, systems, processes & products related to bioprocess technology with careful consideration of the engineering, economic, social, health & safety, energy, environment, sustainability, and ethics aspects. Able to think critically, communicate effectively, & work together in multidisciplinary teams.

- Develop themselves continuously to contribute in solving local and global problems
- Able to provide the solutions of various problems occurred in community and our nation
- Able to design components, systems, processes, and products related to chemical engineering profession by considering the aspects of engineering, economic, social, health, safety, and environmental
- Able to conduct experiments and analyze the data of experimental results

- Able to apply biochemical reaction engineering concepts in solving bioprocess problems
- Able to apply energy, momentum & mass balance concepts in solving bioprocess engineering problems
- Able to apply transport phenomenon concepts in solving bioprocess engineering problems
- Able to apply thermodynamics concepts in solving bioprocess engineering problems
- Able to use the modern bioprocess engineering tools

- Able to apply the knowledge of mathematics and science in solving engineering problems
- Able to communicate effectively and work in multidisciplinary team
- Good at both spoken and written in Bahasa Indonesia and English for academic and non academic activity
- Capable of critical thinking, creative, and innovative, and also have the intellectual ability to solve the problems independently and interdependently
- Capable of utilizing information communication technology
- Able to identify the kind of entrepreneurial effort which includes innovative and independent characteristics based on ethics

Legends:
- Main Competencies
- Support Competencies
- Other Competencies

Kompetensi utama
Kompetensi pendukung
Kompetensi lainnya
BIOPROCESS
ENGINEERING

FLOW DIAGRAM OF SUBJECTS

1st Semester:
- Basic Mathematics and Natural Science
- English
- Religion
- Art/Math
- Calculus
- Basic Chemistry
- Introduction to Bioprocess Engineering

2nd Semester:
- Basic Social, Civilization, State Ideology, & Indonesian Language
- Linear Algebra
- Basic Physics 1 & Lab.
- Cell Biology
- Communication Skill

3rd Semester - GENERAL BASIC (58 SKS):
- Basic Physics 2 & Lab.
- Numerical Computation
- Organic Chemistry
- Physical Chemistry
- Analytical Chemistry Instrumentation
- Mass & Energy Balance
- Molecular Biology
- Physical & Analytical Chemistry Lab.

3rd Semester - BIOCHEMISTRY BASIC (25 SKS):
- Biochemistry 1 & Lab.
- Biochemistry Lab.
- Bioenergy
- Mass & Energy Balance
- Fluid & Particle Mechanics
- Cell Culture
- Heat Transfer

4th Semester - ENGINEERING BASIC (25 SKS):
- Basic Physics 3 & Lab.
- Numerical Computation
- Organic Chemistry
- Physical Chemistry
- Analytical Chemistry Instrumentation
- Mass & Energy Balance
- Molecular Biology
- Physical & Analytical Chemistry Lab.

5th Semester - BIOPROCESS SIMULATION SYSTEM:
- Biochemical Engineering
- Process Equipment Design
- Process Control
- BIO Process Lab. 1

6th Semester - BIOPROCESS SIMULATION SYSTEM:
- Bioreactor
- Separation
- Genetic Engineering
- Biochemical Engineering
- Process Equipment Design
- Process Control
- BIO Process Lab. 2

7th Semester - ELECTIVES (9 SKS):
- Storage & Packaging Technology
- Bioinformatics
- Sustainable Energy
- Utility & Plant Maintenance
- Mineral
- Drugs & Cosmetics Technology
- Special Topics

8th Semester - ELECTIVES (9 SKS):
- Storage & Packaging Technology
- Bioinformatics
- Sustainable Energy
- Utility & Plant Maintenance
- Mineral
- Drugs & Cosmetics Technology
- Special Topics

Jumlah SKS Per Semester:
- 1st Semester: 20 (0)
- 2nd Semester: 20 (0)
- 3rd Semester: 20 (0)
- 4th Semester: 19 (0)
- 5th Semester: 20 (0)
- 6th Semester: 17 (3)
- 7th Semester: 13 (3)
- 8th Semester: 6 (2)
- Total: 135 (9)

SKS:
- Basic Basic
- Engineering Basic
- Bioprocess Engineering Basic
- Capstone
CURRICULUM STRUCTURE
UNDERGRADUATE BIOPROCESS ENGINEERING

<table>
<thead>
<tr>
<th>KODE SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600002 Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003 English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600003 Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600009 Basic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>ENBE601002 Intro to Bioprocess Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENBE601003 Communication skills</td>
<td>2</td>
</tr>
<tr>
<td>Total Credit Term 1</td>
<td>20</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600001 Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>ENGE600005 Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600004 Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENBE602003 Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>UIGE60010-15 Religion</td>
<td>2</td>
</tr>
<tr>
<td>UIGE60020 - 48 Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENGE600006 Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>Total Credit Term 2</td>
<td>20</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENGE600007 Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENBE603004 Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENBE603005 Instrumental Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENBE603006 Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENBE603007 Physic Chemistry & Analytics Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENBE603008 Mass and Energy Balance</td>
<td>3</td>
</tr>
<tr>
<td>ENBE603009 Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008 Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>Total Credit Term 3</td>
<td>20</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE604010 Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>ENBE604011 Fluid and Particle Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ENBE604012 Numerical Computation</td>
<td>3</td>
</tr>
<tr>
<td>ENBE604013 Cell Culture</td>
<td>3</td>
</tr>
<tr>
<td>ENBE604014 Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ENBE604015 Biochemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600010 Statistic and Probability</td>
<td>2</td>
</tr>
<tr>
<td>Total Credit Term 4</td>
<td>19</td>
</tr>
<tr>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE605016 Biocatalysis</td>
<td>3</td>
</tr>
<tr>
<td>ENBE605017 Separation</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600011 Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENBE605018 Genetic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENBE605019 Bioprocess Unit Operation Lab I</td>
<td>1</td>
</tr>
<tr>
<td>ENBE605020 Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600012 HSE Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENBE605021 Bioenergetics</td>
<td>2</td>
</tr>
<tr>
<td>Total Credit Term 5</td>
<td>20</td>
</tr>
</tbody>
</table>
6th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE606012</td>
<td>Bioprocess System Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENBE606013</td>
<td>Bioprocess Unit Operation Lab II</td>
<td>1</td>
</tr>
<tr>
<td>ENBE606014</td>
<td>Bioreactor Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENBE606015</td>
<td>Bioprocess Equipment Design</td>
<td>3</td>
</tr>
<tr>
<td>ENBE606016</td>
<td>Bio Product Design</td>
<td>4</td>
</tr>
<tr>
<td>ENBE606017</td>
<td>Process Control</td>
<td>3</td>
</tr>
<tr>
<td>Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Term</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE607018</td>
<td>Bioprocess Waste Treatment</td>
<td>3</td>
</tr>
<tr>
<td>ENBE607019</td>
<td>Industrial Project Management</td>
<td>2</td>
</tr>
<tr>
<td>ENBE607020</td>
<td>Plant Design</td>
<td>4</td>
</tr>
<tr>
<td>ENBE600021</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>ENBE600022</td>
<td>Research Methodology & Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Elective 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Term</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE600023</td>
<td>Scription</td>
<td>4</td>
</tr>
<tr>
<td>ENBE608024</td>
<td>Capita Selecta</td>
<td>2</td>
</tr>
<tr>
<td>Elective 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Term</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

ELECTIVES

Kode Elective Course for Odd Semester

<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH801101</td>
<td>Food Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801102</td>
<td>Herbal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801103</td>
<td>Composite Material</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801104</td>
<td>Hydrocarbon Thermodynamic</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801105</td>
<td>Lubricants Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801106</td>
<td>Combustion Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801107</td>
<td>Heterogenous Catalyst</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803101</td>
<td>Oleochemistry Industry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803102</td>
<td>Protein Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803103</td>
<td>Applied Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803104</td>
<td>Dynamics System</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803105</td>
<td>Cryogenics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803106</td>
<td>Plasma & Ozone Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803107</td>
<td>Special Topics 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803201</td>
<td>Renewable Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

Kode Elective Course for Even Semester

<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH802105</td>
<td>Storage & Packaging Techno</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802106</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802107</td>
<td>Cosmetics and Drugs</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802108</td>
<td>Biomaterial</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ENCH802109</td>
<td>Crude Oil Processing</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802110</td>
<td>Petrochemical Process</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802111</td>
<td>Photocatalysis Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802112</td>
<td>Polimer</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802113</td>
<td>Pollution Prevention</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802114</td>
<td>Explor & Product of Hydrocarbon</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802115</td>
<td>Plant Utility and Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802116</td>
<td>Drug Controlled Release Techno</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802117</td>
<td>Analysis & Synthesis of Process</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802118</td>
<td>Geothermal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802119</td>
<td>Problem Solving Skills</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802120</td>
<td>Special Topics 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802201</td>
<td>Trans & Utilization of Natural Gas</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802203</td>
<td>Risk Management</td>
<td>3</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resume</td>
<td>Wajib Universitas</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Wajib Fakultas</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Wajib Program Studi</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Pilihan</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Beban Studi</td>
<td>144</td>
</tr>
</tbody>
</table>
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus : Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.
Core Competencies :
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila
Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment
Prerequisites : OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are :
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)
Main Competencies :
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.
Learning Method: Active learning, Contextual language learning, small group discussion.
Prerequisite :
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
UIGE600003
Learning Objectives: After attending this subject, students are expected to be capable of use English to support the study in university and improve language learning independently.

Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary, Listening strategies: Extensive reading) Grammar: (Revision of Basic grammar: Types of sentences: Adjective clauses, Adverb clauses, Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking: Reading popular science articles, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article, Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004

Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL), and Group Discussion (GD)

Prerequisites: OBM (New Student Orientation)

Textbook: Digital Form can be downloaded from Scele

ISLAMIC STUDY
UIGE600010/UIGE610005

2 sks

General instructional objectives: The cultivation of students who have concern for social, national and country issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human’s basic rights and obligations, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam’s motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)
CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks

General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.

Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society.

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks

General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

HINDU STUDY
UIGE600013/UIGE610008
2 sks

Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaya), The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and community’s prosperity /independence (Benefits of unity in the religious plurality, independent community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the Hindu religion teachings in the political life of nation and country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks

Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture.
(the responsibility of religious society in the realization of critical thinking (academic), work hard and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be choosen :
Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy (UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025), Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029), Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be choosen :
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043), Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand basic concepts the functions of one variable, derivatives and integral functions of one variable, and its application.

CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.
LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.
PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry.
Learning activities will be conducted through various method, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis.
Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations
that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment.

Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

SYLLABUS OF BIOPROCESS ENGINEERING

TERM 1
UIGE600002 INTEGRATED CHARACTERISTIC BUILDING SUBJECT B
6 CREDITS

Learning Objectives
Syllabus
Prerequisites
Textbook

UIGE600003 ENGLISH
3 CREDITS

Learning Objectives
Students able to use English for supporting study in Universitas Indonesia as well as continuing language learning independently.

Syllabus

1. Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary Listening strategies Extensive reading).
2. Grammar: (Revision of Basic grammar Types of sentences Adjective clauses, Adverb clauses Noun clauses, Reduced clauses).
3. Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking Reading popular science article, Reading an academic text)
4. Listening: (Listening to short conversations, Listening to a lecture and note-taking, Listening to a news broadcast, Listening to a short story)
5. Speaking: (Participating in discussions and meetings, Giving a presentation)
6. Writing: (Writing a summary of a short article Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs)

Prerequisites :
Textbook : Poerwoto, C. et.al. - Reading Comprehension for Engineering Students

ENGE 600003 CALCULUS
4 CREDITS

Learning Objectives
After attending this subject, students are expected to capable of:
1. Understanding calculus basic concepts and competent to solve applied calculus problems.
2. Understanding the basic concepts of two or more variables function with its application.
3. Understanding the basic concepts of sequences and series as well as basic concepts of vectors and analytic geometry.

Syllabus:

Prerequisites :

Textbook :

ENGE 6 0 0009
BASIC CHEMISTRY
2 CREDITS

Learning Objectives
1. Students able to resolve the problems of qualitative chemistry and indicate the reasons clearly as well as integrate various ideas in problem solving.
2. Students able to explain and model chemical and physical processes in the molecule level to explain the macroscopic properties.
3. Students able to classify materials based on conditions and bond properties by using periodic table as reference.
4. Students able to apply important theories such as kinetics of molecules or thermochemistry in chemical problem solving.

Syllabus :
1. Materials and Measurements
2. Atoms, molecules, ions, and the Periodic Table
3. Stoichiometry: Calculations by using formulas of chemical equations
4. Chemical Reactions in Solution and stoichiometric solution
5. Thermochemistry; Chemical equilibrium
6. Acid and base
7. Electrochemistry
8. Chemical Kinetics
9. Application of Chemicals

Prerequisites :

Textbook :

ENBE601002
INTRODUCTION TO BIOPROCESS ENGINEERING
3 CREDITS

Learning Objectives
Students able to explain the scope of bioprocess engineering and the related industries

Syllabus

Prerequisites :

Textbook :
1. Hand Out/diktat perkuliahan dari dosen

ENBE601002
Communication Skill
2 Credits

Learning Objectives
Students are able to propose communication products through the analysis of audience then arrange into a series of coherent messages, as well as present it effectively by using appropriate media technology

Syllabus :
Effective communications, analysis of audiences, writing process, creating memo, resuming abstract, structural engineering papers, oral presentation
Prerequisites:

Textbook:
Donald R. Woods, Communicating effectively, McMaster University Bookstore, 1996.

TERM 2

UIGE600001 INTEGRATED CHARACTERISTIC BUILDING SUBJECT A
6 CREDITS

ENGE 6 0 0005 PHYSICS MECHANICS AND HEAT
3 CREDITS

Learning Objectives:
Students are able to understand the concepts and basic laws of mechanics physics and applied in a systematic and scientific problem solving which influenced by the force for both moving and not moving objects.

Syllabus:
1. Scale, kinematics of point objects, mechanics of point objects, law of conservation of linear momentum and energy, harmonic motion, gravity, dynamics and kinematics of rigid objects.
2. Introduction and basic concept (pressure, thermodynamic system, state of the system, temperature), expansion, equilibrium energy (thermal state equation), heat transfer, ideal gas.
3. First law of thermodynamics, enthalpy and entropy, The first law of thermodynamics application for open and closed system, Second law of thermodynamics, kinetic theory of ideal gas.

Prerequisites:

Textbook:

ENGE 6 0 0006 PHYSICS MECHANICS AND HEAT LAB
1 CREDIT

Syllabus:

ENGE 6 0 0004 LINIEAR ALGEBRA
4 CREDITS

Learning Objectives: Students are able to explain/understand/apply linear algebra and associate this subject with other subjects.

Prerequisite:

Textbook:

ENBE601002

CELL BIOLOGY
3 CREDITS

Learning Objectives: Student able to explain the difference between prokaryotic cells, arkahea and euakaryotic cells, cell genetic and organization, the technics to see and manipulate the cells, and the interaction between cells life cycle.

Syllabus: Cells and tissues, microscopy technics and analysis of cells, membranes and organel, role of DNA and protein, energy in cells, potential work, intercellular communication, mechanical molecule, cell life cycle, apoptosis.

Prerequisite:

Handbook:
1. Bolsover et al., Cell Biology, John Willey and Son 2004

UIGE600010-15
RELIGIOUS STUDIES
2 CREDITS

General instructional objectives: Students have a concern for social issues, national and state based on religious moral values applied in the development of knowledge through intellectual skills.

Learning Objectives: After attending this subject, when students given a problem, students can:
1. Analyzed based on values their religion.
2. Analyzed by applying the steps to active learn.
3. Discuss and express their opinions by using Bahasa Indonesia in right and good manner, both in discussion and paper.

Syllabus: Adapted to the respective religion.
Prerequisite: -
Textbook: Adapted to the problem subject.

UIGE600020 - 48
Sports/Arts
1 Credit
Learning Objectives
Syllabus
Prerequisites
Textbook

TERM 3

ENGE 6 0 0007
PHYSICS ELECTRICITY, MAGNETS, WAVE, AND OPTICS
3 CREDITS

Learning Objectives: Students are able to understand:
1. The concept and basic law of physics - electricity and magnetism and apply it systematically and scientifically in solving everyday magnetism and electricity physics problem.
2. The concept and basic law of wave and optical physics and apply systematic and scientific problem solving in a natural wave phenomenon or wave that arises from technical, physical properties of light and geometric optics.

Syllabus: Electric charge and Coulomb law, Electric field, Static and Gauss law, Electric potential, Capacitor, Direct electric current and basic circuit analysis, Magnetic field, Induction and electromagnetic, Faraday law and inductance, Material magnetism properties, A series of transient, Alternating current, Waves, Sounds, Polarization, Interference, Diffraction, Optical geometry, Lighting and photometry.
Prerequisite: -
Textbook:

ENGE 6 0 0008
PHYSICS ELECTRICITY, MAGNETS, WAVE, AND OPTICS LAB
1 CREDIT
Syllabus:
Prerequisite: Physics electricity, magnets and optics

ENBE603004
ORGANIC CHEMISTRY
3 CREDITS

Learning Objectives:
Students are able to:
Explain the link structure and stereochemistry, IUPAC name, physical properties, chemical reactivity, and reaction mechanisms
Determine the mechanisms of some organic chemical reactions and be able to estimate how to synthesize a simple organic chemical compounds.

Syllabus:
Naming of organic compounds,
the role of structure and stereochemistry of the physical / chemical an organic compound, the cracking reactions or free radicals alkane, polymerization of alkenes, aromatic electrophilic sub-
substitution on benzene, substitution and elimination reactions acylation and esterification reactions, dehydration-polymerization reactions
Prerequisites: -
Textbook:
1. Fessenden, alih bahasa : A. Hadiyana Pujatmaka, Kimia Organik, edisi Kedua Erlangga 1986
3. Organic Chemistry lecture notes

ENBE603005
INSTRUMENTAL ANALYTICAL CHEMISTRY
3 CREDITS
Learning Objectives: Students are able to explain and compare the various basic principles methods of analytical chemistry and apply it for qualitative and quantitative analysis of pure and mixture compounds
Syllabus: Skill workshop, Electrochemistry process, Potentiometry, Atomic Spectroscopy (AAS), Molecular spectroscopy (IR), Chromatography gas.
Prerequisite: -
Textbook:
4. Donald R. Woods, Problem based learning: How to gain the most from PBL, 2994, Mc-Master University, Hamilton, ON L8S 4L8.

ENBE603006
PHYSICAL CHEMISTRY
3 CREDITS
Learning Objectives: Students are able to understand the basic concepts of physical chemistry including the topics of thermodynamics, equilibrium reactions, and molecular spectroscopy, and apply these concepts to solve simple problems of chemical physics
Syllabus: pvT properties: gas properties: ideal gas laws, kinetic theory of gases, the viscosity of gas; the properties of liquids and solutions: fluid viscosity, colligative properties of solution, electrolyte solution, Arrhenius and Debye-huckel theory; chemical bond and spectroscopy: atomic orbital, molecular orbital, hybrid orbital, visible light / infrared / ultraviolet spectroscopy; phase and chemical equilibrium: liquid-vapor phase equilibrium and Raoult’s law, the application of Le Chatelier’s principle to equilibrium reactions.
Prerequisites: -
Textbook:

ENBE603007
PHYSICAL CHEMISTRY AND ANALYTICAL CHEMISTRY LAB
1 CREDIT
Learning Objectives: Students are able to conduct pre-eliminary report which is supported laboratory module theories, practicing experiments in laboratory, and arrange final report that contains the results of processing and analysis data experiments as well as explain the phenomena
Syllabus: Isothermal adsorption, effect of concentration and temperature on reaction rate, colligative properties of solution, chemical equilibrium determination, determination of molecular properties based on gas density, potentiometric methods, spectrophotometry visible light, conductometric methods, Chromatography Gas
Prerequisite: Basic Chemistry, Physical Chemistry and Analytical Chemistry Instrumental
Textbook:
2. Guidance of Physical Chemistry and Analytical Chemistry Lab, Chemical Engineering, Universitas Indonesia.

ENBE603008
MASS AND ENERGY BALANCE
3 CREDITS
Learning Objectives: Students are able to solve the problem of mass balances, energy balances, and the combination of it.
Syllabus: Basic concept of mass and energy balance in the chemical process, chemical equations and
stoichiometry, the principles of mass balance, mass balance with and without chemical reactions, recycle, bypass and purge, the mass balance in the system with lots of tools, general equation of energy balance, enthalpy changes, energy balance application for the system without and with chemical reactions, the solution of system combined heat balance and energy balance.

Prerequisites: -

Textbook:

ENBE603009
MOLECULAR BIOLOGY
3 CREDIT

Learning Objectives: Students are able to explain the relation of nucleic acids, protein, carbohydrate, as well as lipid with its functions, synthesis, and the metabolisme of chemical compounds in cell. Syllabus: Molecular biology, nucleic acids, structure and replication of DNA and RNA, transcription and translation, amino acids, synthesis and structure of proteins, enzymes, and metabolism.

Prerequisite: -

Textbook:

TERM 4

ENBE604010
TRANSPORT PHENOMENA
3 CREDITS

Learning Objectives: Students can identify and describe as well as analyze momentum, mass, and heat transfer phenomenon, through the application of macroscopic and microscopic balance. Syllabus: Viscosity and momentum transfer phenomenon, Velocity distribution of laminar flow, Thermal conductivity and energy transfer mechanism, Temperature and concentration distribution in solids and laminar flow, Diffusivity and mass transfer mechanism, Converter equation for isothermal system, Momentum transfer in turbulent flow, Mass and energy transfer in turbulent flow, Transfer between two phases, Macroscopic balance of isothermal and non-isothermal system, Macroscopic balance of multi-component system.

Prerequisites: -

Textbook:
3. Sekar V, Transport Phenomena of Food and Biological Material, CRC, 2000

ENBE604011
FLUIDS AND MECHANICS PARTICLE
3 CREDITS

Learning Objectives: Students are able to apply the phenomenon of fluid flow and particle (continuity equation, Bernoulli, etc) to solve problem in process unit through calculation of energy and force, etc, especially in the fluid flow system of piping, rate measurer and fluid transportation tool, and in the system of fluid-solid flow (fluidization, filtration, sedimentation, particle motion in gas. Syllabus: Fluid properties; static fluid and its application; basic equation of fluid flow (mass balance and continuity equation, energy balance and Bernoulli Equation); the application of Bernoulli equation to measuring flow rate; friction loss in fluid flow through piping. The equipment of fluid transport: pump, compressor, turbine; high velocity gas flow; particle motion in fluid; fluidization; filtration; sedimentation.

Prerequisite: Transport Phenomena

Textbook:
1. A. W. Nienow, Bioreactor and Bioprocess Fluid Dynamics - Wiley, 1 edition (April 15, 1993)

ENBE604012
NUMERICAL COMPUTATION
3 CREDITS

Learning Objectives
Students are able to solve chemical and biological process through computational methods
Syllabus
1. Binary computing system
2. Computer memory
3. Algorithms and efficiency of the system
4. Dynamic and Monte Carlo
5. Stochastic and random
6. Error and mistakes reduction

Prerequisites: -
Textbook: -
10. Carbohydrate

11. Lipid Analysis

12. Extraction and identification of lipid acid from corn oil

13. Bacteria culture

Prerequisite: natural organic chemistry, molecular biology and cell culture

Textbook:
1. Fessenden, alih 1. bahasa: A. Hadiyana Pujatmaka, Kimia Organik, Erlangga 1986
3. Vogel, Practical Organic Chemistry
4. Penuntun Praktek Kimia Dasar dan Kimia Organik, Departemen Teknik Kimia, FTUI
5. Moran, L. dan Masciangioli, T. Keselamatan dan Keamanan Laboratorium Kimia, the National Academies Press, 2010
10. Mathews, Kensal E. van Holde and Kevin
11. G. Ahern (Dec 10, 1999)

ENGE 6000010
STATISTICS AND PROBABILITY
2 CREDITS

Learning Objectives:
Syllabus:
Prerequisites:
Textbook:

TERM 5

ENBE605016
BIOCATALYSIS
3 CREDITS

Learning Objectives: Student able to explain biocatalyst in chemical and biological reactions and the factors influenced it and its application in industry.

Syllabus: catalysis and biocatalysis, enzymes classification and activity, immobilization of enzyme methods, the factors influence biocatalyst performance, inactivations of biocatalyst, biocatalyst reaction kinetics, enzyme productions, methods, product recovery, applications of biocatalyst in industry.

Prerequisite: Molecular biology and Biochemical Engineering

Textbook:
1. Enzyme biocatalysis: principles and applications by Andres Illanes. Springer 2008
2. Biocatalysts and Enzyme Technology by Klaus Buchholz, Volker Kasche, Uwe Theo Bornscheuer. Wiley-VCH, 2005
5. Heri Hermansyah, Kinetika Reaksi Biokatalisis, UI Press, 2010

ENBE605017
SEPARATION
3 CREDITS

Learning Objectives: Understanding basic separation technic, able to design separation process which is effective and efficient, able to design quality control process from the isolated product.

Syllabus: separation concept, mass transport concept, Distillation, Absorption and Stripping, Extraction, Leaching, Membrane process, Ion exchange, cristalization, Bubble and Foam Separation, chromatography, Ultrafiltration dan Reverse osmosis, Membrane dialysis process, selection strategy of separation process.

Prerequisite: Transport phenomena

Handbook:
2. Coulson and Richardson’s Chemical Engineering: Chemical Engineering Design v. 6 (Coulson & Richardson’s chemical engineering) by R.K. Sinnott. Butterworth-Heinemann Ltd
ENGE 600011
ENGINEERING ECONOMICS
3 CREDITS

Learning Objectives:
Students are able to explain fundamentals of decision-making and feasibilty study by using economic approach.

Syllabus:
1. The principles of engineering economics
2. Equivalence
3. Compound Interest Factor
4. Alternative Evaluation by equivalence value method
5. Alternative Evaluation by IRR Method
6. Comparing Alternatives
7. Benefit-cost ratio Method to cost (B/C ratio)
8. Depreciation
9. Income tax
10. Evaluation after Tax

Prerequisites: Statistics and Probability

Textbook:
5. Bakuan Kompetensi INTAKINDO-2007

ENBE605018
GENETICS ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain basic concept, techniques used as well as application from genetics engineering process.

Syllabus: Introduction, basic principles of genetics, Cutting and joining DNA, Plasmid, Cloning strategy and genetics engineering technology

Prerequisites: Cell Byology and Molecular Byology

Textbook:

ENBE605019
BIOPROCESS UNIT OPERATION LAB I
1 CREDIT

Learning Objectives: Student have experience to operate process equipment and conduct the experiment, able to analysis and explain the phenomena occurred in each experiment activity.

Syllabus: Fluid circuit mechanic, conduction heat transfer in multiple pipe systems, filtrationprocess, fluidization process and its effect on heat transfer system, fermentation process in biofermentor reactor system.

Prerequisite: Bioseparation, fluids mechanics and particle, Biochemical Engineering

Handbook:
1. Buku Petunjuk Praktikum Proses dan Operasi Bioproses 1, DTK FTUI
2. Literatur untuk mata kuliah prasyarat
ENBE605020
BIOCHEMICAL ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the concepts of biochemistry engineering in cell growth, metabolism and product of biochemistry process.
Syllabus: metabolic reactions, energetic, catabolism, carbon, respiration, photosynthesis, biosynthesis, transport in cell membrane, the last product of metabolism, microbes and cell growth, substrate utilization, product synthesis
Prerequisite: Physical Chemistry
Handbook:

ENGE 60 0012
HEALTH, SAFETY AND ENVIRONMENT
2 CREDIT

Learning Objectives: Students are able to:
1. Identify various types of hazards, characterization, proposes a method which is suitable for risk reduction and mitigation and safety management system design.
2. Increase awareness of health and safety industry, and understand the regulatory framework and standard of safety and environmental programs.
Syllabus: Introduction to Regulation and Standards; Risk Perception, Assessment and Management; Machinery Hazards; Noise Hazards; Process Safety Hazard; Fire and Explosion Hazard; Electrical Hazard; Toxicology in The Workplace; Environmental Protection; Environmental Protection Control Processes; Hazard Communication to Employees; Personal Protective Equipment (PPE): Types of PPE and Selection of PPE; Safety Audits, Incident and Emergency Planning.
Prerequisite: -
Textbook:

ENBE605021
BIOENERGETICS
2 CREDIT

Learning Objectives: Students are able to apply basic concept of bioenergetics in simple problems that related to energy changes accompanying biochemical reactions.
Syllabus: Energy demands, thermodynamics Law, ATP and Chemical energy transfer, ATP synthesis setting: kinetical aspects, Biological oxidation, respiration energy. Photosynthesis in plant and bacteria
Prerequisites: Physics Mechanics and Heat
Textbook:

TERM 6

ENBE606012
BIOPROCESS SYSTEM SIMULATION
3 CREDITS

Learning Objectives: Students are capable of synthesizing and modeling the biological chemistry process, and have experience with commercial simulation software.
Syllabus: benefits and position of bioprocess simulation, software requirement (installation, unit structure, task, economic, etc), simple system: fermentation and filtration, pure components registration which are available/not available on software, mixture components registration, unit selection, case study: galactosidase.
Prerequisite: Numerical Computation
Textbook:

ENBE606013
BIOPROCESS UNIT OPERATION LAB II
1 CREDIT

Learning Objectives: Student have experience to operate process equipment and conduct the
experiment, able to analysis and explain the phenomena occurred in each experiment acticity.
Syllabus: Absorption process, Flow control, Wet Wetted Column, Pressure Control, Biofilter/Biofixation CO2.
Prerequisite: Bioseparation and process controll
Handbook:
1. Buku Petunjuk Praktikum Proses dan Operasi Bioproses 1, DTK FTUI
2. Literatur untuk mata kuliah prasyarat

ENBE606014
BIOREACTOR ENGINEERING
3 CREDITS
Learning Objectives: Students are able to design bioreactor.
Syllabus: Introduction to reactor and bioreactor, fermentation technology, reactor engineering for animal and plant cell, ideal reactor, modeling of stirred-tank bioreactor, modeling bubble column bioreactor, reactor dynamic, non-ideal bioreactor, sterilization of bioreactor, bioreactor multiphase, philosophy and rule of thumb in designing bioreactor, design agitation system, analysis and design bioreactor.
Prerequisite: Biochemistry engineering
Handbook:
4. K Schugerl, KH Belgardt, Bioreaction Engineering Modelling and Control

ENBE606015
PROCESS EQUIPMENT ENGINEERING
3 CREDITS
Learning Objective: Students are able to design chemical and biological process based on applicable standard
Syllabus: pump, compressor, pipeline, pressure vessel and Tank, distillation column and heat exchanger.
Prerequisite: fluids and mechanics particle and bioseparation
Textbook:

ENBE606016
BIOLOGICAL PRODUCT DESIGN
4 CREDITS
Learning Objectives: students are able to design product based on natural resource and analysis their economic value.
Syllabus: Understanding consumer needs, product specification, product formulation, product manufacturing, supply chain and economics
Prerequisite: process equipment design (passed or parallel), economic engineering.
Handbook:

ENBE606017
PROCESS CONTROLLING
3 CREDITS
Learning Objective: Students are able to design single loop control system as well as combine process dynamics with work.
Syllabus: Introduction to process control, objective and controlling benefits, the principle of mathematics modelling, modelling and analysis of process controlling, specific dynamics process system properties, identification of empirical methods, feedback loop, controller PID, setting PID controller, stability analysis
Prerequisite: Numerical computation
Textbook:

TERM 7

ENBE607018
WASTE MANAGEMENT OF BIOLOGICAL PROCESS
3 CREDITS
Learning Objectives: Understanding the concepts of pollution prevention and waste management in clean production, and also design waste management system.

Syllabus: Introduction to pollution prevention concepts, waste water treatment and its preparation, physical, biological, and chemical waste water, unit operation, bioremediation, bioseparation and biodegradation, advanced oxidation process, waste gas treatment, B3 treatment, solid waste treatment, unconventional liquid and gas waste treatment.

Prerequisite: Cell Biology

Handbook:

ENBE607019
INDUSTRIAL PROJECT MANAGEMENT
2 CREDITS

Learning Objective:
Students are able to apply project management in their field of works exactly as well as apply it in other areas exclude main field

Syllabus:
Project-production concept, Life Cycle Project, Selection Project, Planning Project, Implementation Project, and Completion & Evaluation Project

Pre-requisites: Engineering Economics

Textbook: Suharto, Imam, Manajemen Proyek, 1990

ENBE607020
PLANT DESIGN
4 CREDITS

Learning Objectives: Student able to design process and plant of natural product and analysis their economic value.

Syllabus: the concepts in designing process/plant, flow diagram processes, synthesis and analysis process using heuristic, process simulation, rule of thumb to construct process and material of equipment design, integration heat/process, plant flow sheet, and economic analysis

Prerequisite: Process controlling, engineering economic, Bioprocess system simulation, process equipment design.

Textbook:

ENBE600021
INTERNSHIP
2 CREDITS

Learning Objectives:
Students are able to gain field experience, able to analyze process/system/operation product that available in Chemical industries and able to apply various communication process: problem solving, interpersonal communication, study in a group, and conduct a research.

Prerequisite: Students had to take a minimum of 110 SKS (minimum value of D) with a 2.0 GPA.

Textbook: -

ENBE600022
RESEARCH METHODOLOGY AND SEMINARS
2 CREDITS
Learning Objectives: Able to determine the appropriate method for research activities and produce the ideas, processes, and scientific research in writing and oral.
Syllabus: Introduction, technics of identifying problem and make a hypothesis, thinking logically, technics of scientific writing, technics of writing research proposal, technics of designing research, presentation technics, technics of collecting, analyzing, and presenting data.
Prerequisite: Students had to take a minimum of 90 SKS (minimum value of D) with a 2.0 GPA.
Textbook:
1. Handout
2. Research proposal format

TERM 8
ENBE600023
UNDERGRADUATE THESIS/ FINAL PROJECT
4 CREDITS

Learning Objectives: Able to design, conduct and analyze research in bioprocess technology; Present scientific research in writing and oral.
Syllabus: Material of thesis according to conducted research
Prerequisite: Research method and seminar
Textbook:
ENBE608024
CAPITA SELECTA
2 CREDITS

Learning Objectives: Able to explain the development of industry and engineering, business opportunities and the problems it faces in general.
Syllabus: Held with invited guest lecturers who are competent in fields that fit the requirement of each program study (can be different in each semester).
Prerequisite: Students had to take a minimum of 90 SKS
Textbook: -
ELECTIVE COURSES
ELECTIVE COURSE FOR ODD SEMESTER

ENCE803101
OLEOCHEMICAL INDUSTRY
3 CREDITS

Learning Objectives: Students are able to know the various processes that are commonly used in the oleochemical industry, and able to make a plan to develop the manufacture of oleochemicals from vegetable oils.
Syllabus: Fatty acids, biodiesel, paints and polymers, detergents, soaps, fatty alcohol, glycerin, oils and fats, oil and grease, the development of oleochemicals, vegetable oil processing, vegetable oil technology in the process.
Prerequisites: Organic Chemistry

ENCE801101
FOOD TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to understand the processes of making food in the food industry which includes the selection, handling and processing of raw materials, the operating unit of food production, packaging, storage and control the process from beginning stage to the end.
Syllabus: Introduction, physical properties of raw materials, the basic concepts of energy and mass transfer, reaction kinetics, process control, mixing, filtration, centrifugation, extraction and membrane processes, adsorption and ion exchange column, with the temperature settings, drying, preservation, packaging, food storage, and hygiene.
Prerequisites: -
Textbook:
4. Introduction to Food Process Engineering by P. G. Smith. Springer
5. Fundamentals of Food Process Engineering by Romeo T. Toledo. Springer

ENCE803102
PROTEIN ENGINEERING
3 CREDITS

Learning Objectives: Students are able to determine protein engineering strategies for the benefit of separation, biocatalysts and medic.
Syllabus: Introduction, Protein docking methods, Protein tagging strategies, Gen synthesis design, Enzyme stabilization, Molecular exploration, Protein engineering, Case study.
Prerequisite: Organic Chemistry
Textbook:
1. Protein Engineering in Industrial Biotechnology, Lilia Alberghina, Harwood academic publishers, 2005
2. Proteins: Biotechnology and Biochemistry by Dr. Gary Walsh. Wiley
3. Protein engineering and design by Sheldon J. Park, Jennifer R. Cochran. CRC Press
4. Protein Engineering and Design by Paul R. Carey. Academic Press
5. Protein Engineering: Principles and Practice. Wiley-Liss

ENCE801102
HERBAL TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to explain the development of herbal technology, herbal separation technology, herbal formulation basis, herbal regulation, and distinguish with other pharmaceutical products
Syllabus: Definition and basic concepts of herbs, herbal materials, herbal separation technology, herbal formulations, herbal regulation.
Prerequisites: Organic Chemistry

ENCE801103
COMPOSITE MATERIAL
3 CREDITS

Learning Objectives: Students are able to:
1. Explain the characteristics of composite materials and compare it with conventional materials.
2. Explain the manufacturing process, and research development of composite materials.
Syllabus: The position of composite materials in materials science in general, common characteristics of composite materials, the type of composite based on the composition, the types of polymer matrix and reinforcement, the role of surface treatment in the strength of composite materials, manufacturing processes, durability, the process of splicing and repair of composite materials, code and standards for application of composite materials, the development of composite materials research.

Prerequisites: Organic Chemistry

Textbook:
ENCE803105
CRYOGENIC ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the various processes to liquefy gas in cryogenic technology.

Syllabus: History and development of cryogenic, cryogenic scope of work. Refrigeration and liquefaction of natural gas, air, oxygen, nitrogen, helium, neon and argon.

Prerequisites: Chemical engineering thermodynamics

Textbook:

ENCE801106
COMBUSTION ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the phenomenon of combustion and resolve the problems that rendered correctly.

Syllabus: chemical kinetics and combustion, the flame, premix flame, diffusion flame, the combustion process applications.

Prerequisite: Transport Phenomena, Chemical Reaction Engineering 1, Chemical Engineering Thermodynamics

Textbook:

ENCE803106
PLASMA AND OZONE ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the physics and chemistry phenomena of plasma formation and release of electromagnetic energy and the use of plasma and ozone technology.

Syllabus: basic phenomena and physical-chemical processes of gases that are given an electrical charge (corona discharge), the generation process or formation of ozone, role and use of plasma technology and ozone in chemical engineering processes, the potential of ozone technology in control technology environmental pollution, the ozone generator module manufacturing equipment.

Prerequisite: Physics Electricity Magnetism

Textbook:

ENCE801107
HETEROGENEOUS CATALYST
3 CREDITS

Learning Objectives: Students are able to explain the phenomenon of basic concepts heterogeneous catalysts and its application

Syllabus: The general property of catalyst, thermodynamic of the reaction with catalyst, the distribution of the catalyst based on the type of reaction, the core function is active, the method
of selecting catalysts for certain reactions, characterization of the corresponding want to know the nature of the target, the catalyst test methods, methods of development of the catalyst, and reaction products.

Prerequisites: Chemical Reaction Engineering 1

Textbook:

ENCE801108
SUSTAINABLE ENERGY
3 CREDITS

Learning Objectives: Students are able to explain the relationship of energy with social aspect, economic and environmental sustainability concepts, and able to analyze the performance of techno-economy and the continuity especially fossil energy system, new, and renewable.

Syllabus: Concept of sustainability and sustainable energy, energy hierarchy, energy linkages with economic, environmental and social, fossil energy / fuels and Impacts, global climate change and its mitigation, conversion, transportation / distribution and storage, analysis method of energy sustainability: LCA , sustainability index, hydrogen and fuel cells and nuclear energy, solar energy (PV and thermal), wind and ocean, hydropower, bioenergy, geothermal energy, energy efficiency and conservation, carbon capture and storage

Prerequisites: Chemical Engineering Thermodynamics or Biochemical Engineering

Textbook:
Syllabus: Database, genomics, genetic molecular, philogeny, protein structure, metabolism and tissues

Textbook:

ENCE802103
DRUGS AND COSMETICS TECHNOLOGY
3 CREDITS

Syllabus:
Definition of drugs and cosmetics, types of skins and characteristics, cosmetic types, ethics and regulation of drugs and cosmetics, new drug development technology, process technology in drug and cosmetics industries, packaging technology of drugs and cosmetics technology.

Prerequisite: Organic Chemistry

Textbook:
1. Handbook of Cosmetic Science and Technology by Andre O. Barel, Marc Paye, Howard I. Maibach. INFMA-HC 2009

ENCE802104
BIOMATERIAL
3 CREDITS

Learning Objective: Students are able to describe the principle and concept of material technologies through biological as well as life cycle assessment (LCA), organic and inorganic materials for biomaterial, apply and develop knowledge about biomaterial for life

Syllabus: Introduction, solids structure, characteristics of materials, metal material for implant, bioceramic materials, structural properties of biomaterial, the respons of tissues to biomaterial implant, the replacement of soft tissues, the replacement of hard tissues, transplantation, and biological tissues engineering

Prerequisite: Organic Chemistry

Textbook:
1. Joon Park, R.S. Lakes. Biomaterials an Introduction, springer

ENCE802105
PETROLEUM PROCESSING
3 CREDITS

Learning Objectives: Students are able to explain petroleum characteristic and its refine product and the stages of the process from various petroleum processing technologies.

Syllabus: Introduction terminology, oil composition, thermal properties of petroleum, chemical processing of petroleum processing, distillation, hydrogenation and dehydrogenation, cracking processes, the processes of reforming, gas processing and petroleum light products, product improvement.

Prerequisites: Fluid and Particle Mechanics, Thermodynamics, Mass Transfer.

Textbook:
3. D. S. J. Jones, Elements of Petroleum Processing, John & Sons Woley

ENCE802106
PETROCHEMICAL PROCESSING
3 CREDITS

Learning Objectives: Students are able to explain the development of petrochemical products and raw material potential, upstream / downstream petrochemical production lines (olefin center, aromatic center, and the pathways of methane) and the major production processes of several petrochemical industry through methane, olefins and aromatics; able to analyze impact of industrial processes and petrochemical products to the environment.

Syllabus: History of the general petrochemical products development and raw material potential, the scope of the petrochemical industry, petrochemical classification process, the type and processing raw materials into petrochemical products, the details of various petrochemical industry: olefins center, aromatics and the center line of methane, industrial and environmental impact of products petrochemicals.

Prerequisites: Organic Chemistry

Textbook:
2. Lewis T. Hatch, Sami Matar, “From Hydrocarbon to Petrochemical”.
ENCE802107
PHOTOCATALYSIS TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to understand the basic concepts and photocatalysis and apply it in the various simple daily problems, especially related to environment, health, and energy.

Syllabus: The basic concept of photocatalysis processes, thermodynamics, and kinetics of photocatalytic process, semiconductor photocatalyst materials, the basic parameters of photocatalytic process, photocatalyst Nanomaterial Engineering, photocatalytic applications for degradation of organic pollutants and heavy metals, photocatalysis applications for self-cleaning and anti-fogging, photocatalysis applications for anti-bacterial and cancer therapy, photocatalysis applications for engineering 'daily life tools', photocatalysis applications in renewable energy sector, solar detoxification engineering with photocatalysis, intensification of photocatalysis process.

Prerequisites: Chemical Reaction Engineering 1

Textbook:

ENCE812108
POLYMER ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the basic principles and characteristics of polymer manufacturing until being able to keep abreast of the latest technology.

Syllabus: The concept of polymer and polymer characteristics, synthesis / polymerization, kinetics of polymerization, polymer solution, characterization, process of making plastics.

Prerequisites: Organic Chemistry

Textbook:
5. Donald R. Woods, Problem Based Learning: How to gain the most PBL, 1994, Mc-Master University, Hamilton, ON L8S 4L8.

ENCE802109
POLLUTION PREVENTION
3 CREDITS

Learning Objectives: Students are able to explain the concepts of pollution prevention and able to design the waste treatment system.

Syllabus: Introduction to the concept of pollution prevention, waste water treatment outline and preparation, waste water treatment in physical, biological, and chemical as well as the operating unit, bioremediation, bioseparation and biodegradation, advanced oxidation processes, the handling of waste gas, waste handling B3, solid waste handling, effluent treatment, gas, is unconventional.

Prerequisites: Chemical Reaction Engineering 1

Textbook:
6. Journals, the Internet.

ENCE802110
EXPLORATION AND PRODUCTION OF HYDROCARBON
3 CREDITS

Learning Objectives: Students are able to explain the economic concept of natural gas and analyze the 4e economy.

Syllabus: Introduction of hydrocarbon, life cycle of field development, hydrocarbon form and hydrocarbon property and reservoir, hydrocarbon exploration: geology, geophysics, and drilling, field
appraisal, reservoir development, drilling development, hydrocarbon production, HSE, hydrocarbon economy and lease, coal and hydrocarbon unconventional (CBM, Shale gas, and HYDRAT GAS)

Prerequisites:

Textbook:

ENCE802111
UTILITIES AND PLANT MAINTENANCE
3 CREDITS

Learning Objectives: Students are able to explain the strategy of plant and utility maintenance.

Syllabus: Plant maintenance strategy: maintenance program, maintainability, reliability, planning and scheduling

Prerequisite: Chemical Engineering Thermodynamics

Handbook:

ENCE802112
NATURAL GAS TRANSPORTATION AND UTILIZATION
3 CREDITS

ENCE812113
DRUG CONTROLLED RELEASED TECHNOLOGY
3 CREDITS

Learning objective: Students are able to describe the principle of control drug releasedor bioactive compound for medical purposes and utilize the principle to apply control drug released technology

Syllabus: polymeric biomaterial that is easily degradable, various methods to drug encapsulation and bioactive compounds in nano/microsfer, diffusion and permeasi, strategy of control released, case study

Prerequisite: Organic Chemistry

Textbook:

ENCE802114
ANALYSIS AND SYNTHESIS OF CHEMICAL PROCESSES
3 CREDITS

Learning Objectives: Students are able to analyze and synthesize the chemical processes in an integrated system of technical and economic aspects

Syllabus: The strategy of synthesis and analysis process, design concepts development and the determination of the best flow sheet, a preliminary optimization process, the retrofit process, the use of computer aided design system for simulation and analysis process.

Prerequisites: Simulation of Chemical Processes

Textbook:
2. Hartman, Klaus, and Kaplick, Klaus, Analysis and Synthesis of Chemical Process Systems

ENCE802115
GEOTHERMAL TECHNOLOGY
3 CREDITS

ENCE802116
PROBLEM-SOLVING SKILLS
3 CREDITS

ENCE802117
SPECIAL TOPIC 2
3 CREDITS
4.12. UNDERGRADUATE PROGRAM IN INDUSTRIAL ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th>1</th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td>Undergraduate Program in Industrial Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular, Parallel, International</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Sarjana Teknik (S.T)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>BAN-PT: A - accredited AUN - QA</td>
</tr>
<tr>
<td>7</td>
<td>Language(s) of Instruction</td>
<td>Bahasa Indonesia and English</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirements</td>
<td>High school / equivalent, or D3 / Polytechnique / equivalent, AND pass the entrance exam.</td>
</tr>
<tr>
<td>10</td>
<td>Study Duration</td>
<td>Designed for 4 years</td>
</tr>
<tr>
<td></td>
<td>Type of Semester</td>
<td>Number of semester</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Short (optional)</td>
<td>3</td>
</tr>
</tbody>
</table>

11 Graduate Profiles:
An Industrial engineer who has the capabilities of designing, improving, operating and maintaining integrated and multi-level manufacturing and service systems by means of analytical, computational and experimental methods with regard to professionalism values in order to increase the productivity and quality.

12 Expected Learning Outcomes:
1. Ability to implement the knowledge of mathematics, science and engineering principles.
2. Ability to design and perform research projects, and analyze and interpret data.
3. Ability to design a system, component or process to fulfill the needs within realistic limitations such as economics, environment, social, politics, ethics, health and safety, feasibility and sustainability.
4. Ability to identify, analyze and solve engineering problems.
5. Ability to use techniques, tools and methods in engineering practices.
6. Ability to take part of a multidisciplinary team.
7. Ability to work professionally with ethical responsibility.
8. Has a broad knowledge to understand the impact of engineering problem solving in a global, economic, environmental and social context.
9. Ability to learn independently and continuously (lifelong learning).
10. Ability to use verbal and non-verbal communications in Indonesian language and English for academic and non-academic purposes. (UI competency)
11. Ability to use information and communication technology. (UI competency)
12. Ability to identify the opportunity of establishing entrepreneurship based on innovation, ethics and independence (UI competency).
13. Ability to be a critical thinker, creative and innovative and has the intellectual curiosity to solve problems in an individual and group level (UI competency).
14. Ability to give alternative solutions of problems occurred in the society and country level in Indonesia (UI competency).
Classification of Subjects

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>University General Subjects</td>
<td>18</td>
<td>12.5 %</td>
</tr>
<tr>
<td>ii</td>
<td>Basic Engineering Subjects</td>
<td>25</td>
<td>17.4 %</td>
</tr>
<tr>
<td>iii</td>
<td>Core Subjects</td>
<td>71</td>
<td>49.3 %</td>
</tr>
<tr>
<td>iv</td>
<td>Elective Subjects</td>
<td>21</td>
<td>14.6 %</td>
</tr>
<tr>
<td>v</td>
<td>Internship, Seminar, Undergraduate Thesis, Project</td>
<td>9</td>
<td>6.2 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>144</td>
<td>100 %</td>
</tr>
</tbody>
</table>

14 Total Credit Hours to Graduate
144 SKS

Career Prospects
Public or private manufacturing and service industries, such as production management, HR, maintenance system, logistics and supply chain management, data scientist, operations researchers, system dynamics expert, finance and banking, management and IT consulting services.
Flow Diagram of Expected Learning Outcomes (ELOs)

An Industrial engineer who has the capabilities of designing, improving, operating and maintaining an integrated and multi-level manufacturing and service systems by means of analytical, computational and experimental methods with regard to professionalism values in order to increase the productivity and quality.

1. Ability to implement the knowledge of mathematics, science and engineering principles.
2. Ability to design and perform research projects, and analyze and interpret data.
3. Ability to design a system, component or process to fulfill the needs within realistic limitations such as economics, environment, social, politics, ethics, health and safety, feasibility and sustainability.
4. Ability to identify, analyze and solve engineering problems.
5. Ability to use techniques, tools and methods in engineering practices.
6. Ability to work professionally with ethical responsibility.
7. Ability to work independently and continuously (lifelong learning).
8. Ability to use verbal and non-verbal communications in Bahasa and English for academic and non-academic purposes.
9. Ability to be a critical thinker, creative and innovative and has the intellectual curiosity to solve problems in an individual and group level.
10. Ability to use information and communication technology.
11. Ability to identify the opportunity of establishing entrepreneurship based on innovation, ethics and independence.
12. Ability to give alternative solutions of problems occurred in the society and country level in Indonesia.
Flow Diagram of Subjects

Bachelor
1. Material Science (2)
2. Introduction to Economics (1)
3. Basic Statistics (3)
4. Engineering Economics (3)
5. Production Process + Lab (3)
6. Introduction to Industrial Engineering (2)
7. Linear Programming (3)
8. Technology Management (2)

1. Introduction to Plant Mechanics and Electronics (2)
2. Cost Accounting (2)
3. Production Planning and Inventory + Lab (3)
4. Human Factors in Engineering and Design + Lab (3)
5. Operation Research (3)
6. Maintenance Systems (2)

2. Industrial Statistics + Lab (3)
3. Organization and Industrial Psychology (3)
4. Industrial Feasibility Analysis (2)
5. Computational Lab (1)
6. Electives (3)

3. Plant Layout Design (3)
4. Quality Systems (3)
5. Industrial Feasibility Analysis (2)
6. Engineering (1)
7. Engineering (2)

4. Supply Chain Management (3)
5. System Modeling + Lab (3)
6. Industrial Simulation + Lab (3)
7. Electives (1)
8. Electives (3)

5. Final Project in Industrial Engineering (5)
6. Internship (2)
7. Electives (12)
8. Electives (1)
Flow Diagram for Fast Track Students (Leading to Master’s)

Bachelor
- 7
 - Special Topics in Industrial Engineering (2)
 - Internship (2)
 - Electives (12)
- 8
 - Final Project in Industrial Engineering (5)
 - Technology Management (2)
 - Electives (3)

Master’s
- 1
 - System Thinking (3)
 - Research Methodology (3)
 - Operation System Management (3)
 - Industrial System Engineering (3)
- 2
 - Advance Operation Research (3)
 - Advance Statistics (3)
- 3
 - Specialization Compulsory (3)
 - Specialization Compulsory (3)
 - Specialization Electives (2)
- 4
 - Thesis (8)
 - Publication (2)
<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENIE601001</td>
<td>Intro to Industrial Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENIE601002</td>
<td>Introduction to Economics</td>
<td>2</td>
</tr>
<tr>
<td>ENIE601003</td>
<td>Material Sciences</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600010-15</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE600004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE600005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600006</td>
<td>Physics (Mechanics and Thermal) Lab</td>
<td>1</td>
</tr>
<tr>
<td>UIGE600001</td>
<td>Integrated Character Building A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE600020-48</td>
<td>Sport / Art</td>
<td>1</td>
</tr>
<tr>
<td>ENIE602001</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENGE600007</td>
<td>Physics (Electricity, MWO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600008</td>
<td>Physics (Electricity, MWO) Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENIE603003</td>
<td>Work Design, Methods & Standards</td>
<td>3</td>
</tr>
<tr>
<td>ENIE603004</td>
<td>Cost Accounting</td>
<td>2</td>
</tr>
<tr>
<td>ENIE603005</td>
<td>Production Process + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENGE600011</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE603006</td>
<td>Basic Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE603007</td>
<td>Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENIE604008</td>
<td>Intro to Mechanics & Electronics Factory</td>
<td>2</td>
</tr>
<tr>
<td>ENIE604009</td>
<td>Human Factor in Eng. & Design + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE604010</td>
<td>Maintenance Systems</td>
<td>2</td>
</tr>
<tr>
<td>ENIE604011</td>
<td>Industrial Statistics + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE604012</td>
<td>Production Plan & Inventory Control + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE604013</td>
<td>Organization & Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>ENIE604014</td>
<td>Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ENIE604015</td>
<td>Computation Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>
UNDERGRADUATE PROGRAM

5th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE605016</td>
<td>Plant Layout Design</td>
<td>3</td>
</tr>
<tr>
<td>ENIE605017</td>
<td>Product Design + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE605018</td>
<td>Industrial Feasibility Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENIE605019</td>
<td>Quality Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENIE605020</td>
<td>System Modeling + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE605021</td>
<td>Production Systems + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE605022</td>
<td>Industrial Project Management</td>
<td>2</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

6th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE600012</td>
<td>HSE Protection</td>
<td>2</td>
</tr>
<tr>
<td>ENIE606024</td>
<td>Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE606025</td>
<td>Industrial Simulation + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE606026</td>
<td>Industrial Engineering Design + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE606027</td>
<td>Information System</td>
<td>3</td>
</tr>
<tr>
<td>ENIE606028</td>
<td>Elective 1</td>
<td>3</td>
</tr>
<tr>
<td>ENIE606029</td>
<td>Elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE607028</td>
<td>Special Topics in Industrial Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENIE600029</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE600030</td>
<td>Undergraduate Thesis in Industrial Engineer</td>
<td>5</td>
</tr>
<tr>
<td>ENIE608031</td>
<td>Technology Management</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

| **TOTAL** | | **144** |

Resume

<table>
<thead>
<tr>
<th>Category</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>University General Subjects</td>
<td>18</td>
</tr>
<tr>
<td>Basic Engineering Subjects</td>
<td>20</td>
</tr>
<tr>
<td>Core Subjects</td>
<td>85</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>123</td>
</tr>
<tr>
<td>Electives Subjects</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>144</td>
</tr>
<tr>
<td>Code</td>
<td>SUBJECT</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>ENIE605032</td>
<td>Multivariate Analysis</td>
</tr>
<tr>
<td>ENIE605033</td>
<td>Interpersonal Skills</td>
</tr>
<tr>
<td>ENIE605034</td>
<td>Product Life Cycle Management</td>
</tr>
<tr>
<td>ENIE605035</td>
<td>Macro Ergonomics</td>
</tr>
<tr>
<td>ENIE605036</td>
<td>Finance and Investments</td>
</tr>
<tr>
<td>ENIE605037</td>
<td>Innovation Management</td>
</tr>
<tr>
<td>ENIE605038</td>
<td>Customer Relationship Management (CRM)</td>
</tr>
<tr>
<td>ENIE605039</td>
<td>Lean Operations</td>
</tr>
<tr>
<td>ENIE605040</td>
<td>Reconfigurable Manufacturing System</td>
</tr>
<tr>
<td>ENIE605041</td>
<td>Linear and Stochastic Programming</td>
</tr>
<tr>
<td>ENIE605042</td>
<td>Queueing Theory</td>
</tr>
<tr>
<td>ENIE606043</td>
<td>Data Mining</td>
</tr>
<tr>
<td>ENIE606044</td>
<td>Systems Engineering</td>
</tr>
<tr>
<td>ENIE606045</td>
<td>Enterprise Competitiveness Analysis</td>
</tr>
<tr>
<td>ENIE606046</td>
<td>Advanced Optimization</td>
</tr>
<tr>
<td>ENIE606047</td>
<td>Sustainable Manufacturing and Innovation</td>
</tr>
<tr>
<td>ENIE606048</td>
<td>Human Digital Modeling and Simulation</td>
</tr>
<tr>
<td>ENIE606049</td>
<td>Decision, Uncertainties and Risk</td>
</tr>
<tr>
<td>ENIE606050</td>
<td>Maritime Logistics</td>
</tr>
<tr>
<td>ENIE606051</td>
<td>Energy Management</td>
</tr>
<tr>
<td>ENIE606052</td>
<td>Design Thinking</td>
</tr>
<tr>
<td>ENIE606053</td>
<td>Numerical Methods and Application</td>
</tr>
<tr>
<td>ENIE606054</td>
<td>Business Process Reengineering</td>
</tr>
<tr>
<td>ENIE606055</td>
<td>Algorithm and Programming</td>
</tr>
<tr>
<td>ENIE606056</td>
<td>Heuristic Methods in Optimization</td>
</tr>
<tr>
<td>ENIE606057</td>
<td>Constraint Programming</td>
</tr>
<tr>
<td>ENIE606058</td>
<td>Introduction to Data Science</td>
</tr>
<tr>
<td>ENIE606059</td>
<td>Intro. to Technology Entrepreneurship</td>
</tr>
<tr>
<td>ENIE606060</td>
<td>Serious Simulation Games Design</td>
</tr>
<tr>
<td>ENIE606061</td>
<td>Statistical Learning</td>
</tr>
<tr>
<td>ENIE606062</td>
<td>Intelligent Product Service Systems</td>
</tr>
<tr>
<td>ENIE606063</td>
<td>Circular Economic for Business & Supply Chain</td>
</tr>
<tr>
<td>ENIE606064</td>
<td>Service Systems Engineering</td>
</tr>
<tr>
<td>ENIE606065</td>
<td>Lean Logistics</td>
</tr>
<tr>
<td>ENIE606066</td>
<td>Forecasting</td>
</tr>
<tr>
<td>ENIE607067</td>
<td>System Dynamics based Technology Adoption</td>
</tr>
<tr>
<td>CODE</td>
<td>SUBJECT</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ENIE606068</td>
<td>Agent Based Modeling</td>
</tr>
<tr>
<td>ENIE606069</td>
<td>Model Based Decision Making</td>
</tr>
<tr>
<td>ENIE607070</td>
<td>Service Management</td>
</tr>
<tr>
<td>ENIE606071</td>
<td>Human Factors in Intelligent Transportation Systems</td>
</tr>
<tr>
<td>ENIE606072</td>
<td>Change Management</td>
</tr>
</tbody>
</table>

COURSE STRUCTURE INTERNATIONAL UNDERGRADUATE INDUSTRIAL ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE600002</td>
<td>Integrated Character Building B</td>
<td>6</td>
</tr>
<tr>
<td>UIGE610002</td>
<td>Academic Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610001</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>ENIE611001</td>
<td>Introduction to Industrial Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENIE611002</td>
<td>Introduction to Economics</td>
<td>2</td>
</tr>
<tr>
<td>ENIE611003</td>
<td>Material Sciences</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>UIGE610005</td>
<td>Religion</td>
<td>2</td>
</tr>
<tr>
<td>ENGE610004</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>ENGE610005</td>
<td>Physics (Mechanics and Thermal)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610006</td>
<td>Physics(Mechanics and Thermal) Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>UIGE610001</td>
<td>Integrated Character Building Course A</td>
<td>6</td>
</tr>
<tr>
<td>UIGE610003</td>
<td>Sport/ Art</td>
<td>1</td>
</tr>
<tr>
<td>ENIE612001</td>
<td>Engineering Drawing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENGE610007</td>
<td>Physics (Electric, Magnet, Wave & Optic)</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610008</td>
<td>Physics (Electric, Magnet, Wave & Optic)Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENIE613003</td>
<td>Work Design, Methods, and Standards</td>
<td>3</td>
</tr>
<tr>
<td>ENIE613004</td>
<td>Cost Accounting</td>
<td>2</td>
</tr>
<tr>
<td>ENIE613005</td>
<td>Production Process + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENGE610011</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE613006</td>
<td>Basic Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE613007</td>
<td>Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENIE614008</td>
<td>Introduction to Mechanics and Electronics Factory</td>
<td>2</td>
</tr>
</tbody>
</table>
Resume

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE614009</td>
<td>Human Factor in Engineering & Design + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE614010</td>
<td>Maintenance Systems</td>
<td>2</td>
</tr>
<tr>
<td>ENIE614011</td>
<td>Industrial Statistics + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE614012</td>
<td>Production Planning and Inventory Control + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE614013</td>
<td>Organization & Industrial Psychology</td>
<td>3</td>
</tr>
<tr>
<td>ENIE614014</td>
<td>Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ENIE614015</td>
<td>Computation Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

5th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE615016</td>
<td>Plant Layout Design</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615017</td>
<td>Product Design + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615018</td>
<td>Industrial Feasibility Analysis</td>
<td>2</td>
</tr>
<tr>
<td>ENIE615019</td>
<td>Quality Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615020</td>
<td>System Modeling + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615021</td>
<td>Production Systems + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615022</td>
<td>Industrial Project Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

6th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE616023</td>
<td>Occupational, Health, Safety & Environment</td>
<td>2</td>
</tr>
<tr>
<td>ENIE616024</td>
<td>Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616025</td>
<td>Industrial Simulation + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616026</td>
<td>Industrial Engineering Design + Lab</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616027</td>
<td>Information System</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>20</td>
</tr>
</tbody>
</table>

7th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE617028</td>
<td>Special Topics in Industrial Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENIE610029</td>
<td>Internship</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>16</td>
</tr>
</tbody>
</table>

8th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE618030</td>
<td>Final Project in Industrial Engineering</td>
<td>5</td>
</tr>
<tr>
<td>ENIE618031</td>
<td>Technology Management</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>10</td>
</tr>
</tbody>
</table>

TOTAL 144

| University General Subjects | 18 |

INDUSTRIAL ENGINEERING

FACULTY OF ENGINEERING

512
Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Electives</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE615032</td>
<td>Multivariate Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615033</td>
<td>Interpersonal Skills</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615034</td>
<td>Product Life Cycle Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615035</td>
<td>Macro Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615036</td>
<td>Finance and Investments</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615037</td>
<td>Innovation Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615038</td>
<td>Customer Relationship Management (CRM)</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615039</td>
<td>Lean Operations</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615040</td>
<td>Reconfigurable Manufacturing System</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615041</td>
<td>Linear and Stochastic Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENIE615042</td>
<td>Queueing Theory</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616043</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616044</td>
<td>Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616058</td>
<td>Introduction to Data Science</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616059</td>
<td>Intro. to Technology Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616060</td>
<td>Serious Simulation Games Design</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616061</td>
<td>Statistical Learning</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616062</td>
<td>Intelligent Product Service Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616063</td>
<td>Circular Economic for Business & Supply Chain</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616064</td>
<td>Service Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616065</td>
<td>Lean Logistics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616045</td>
<td>Enterprise Competitiveness Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616046</td>
<td>Advanced Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616047</td>
<td>Sustainable Manufacturing and Innovation</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616048</td>
<td>Human Digital Modeling and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616049</td>
<td>Decision, Uncertainties and Risk</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616050</td>
<td>Maritime Logistics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616051</td>
<td>Energy Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616052</td>
<td>Design Thinking</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616053</td>
<td>Numerical Methods and Application</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616054</td>
<td>Business Process Reengineering</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616055</td>
<td>Algorithm and Programming</td>
<td>3</td>
</tr>
</tbody>
</table>
SYLLABUS OF UNIVERSITY SUBJECTS

INTEGRATED CHARACTER BUILDING A
UIGE600001/UIGE610001
6 sks
Syllabus: Integrated Character Building A facilitates students to understand the basics of character formation and master the basics of cognitive power that is logic. Furthermore, to apply cognitive powers in generating good behaviors which are useful to themselves and society. The establishment of ethical behaviors based on ethics is also facilitated. Students are able to develop the basic strength of character and to know themselves as a human being, both as individuals and as part of a group so that they can develop themselves well enough. In a group, the students need to have skills that are needed to maintain an effective relationship in order to improve the quality of human life. Particularly as a citizen of Indonesia, students need to understand the nature of citizenship and basic philosophy of Pancasila in order to act and behave in accordance with the character of the Indonesian nation.
Core Competencies:
1. Students are able to analyze problems in depth individually, comprehensively, logically and critically, and generate solutions using the logical and ethical principles and rules of logic and ethics
2. Students are capable of analyzing the problem individually, thoroughly and deeply about the human being as an individual or as part of group
3. Students are individually able to understand, make critical reasoning and to build an open and critical mind to the problem of nationhood, statehood and citizenship in this dynamic world situation
4. Students are able to create and display a work that depicts the character in accordance with the principles of Pancasila

Learning Method: interactive lecture, Experiential Learning, Collaborative Learning, Problem Based Learning, Project-Based Assignment
Prerequisites: OBM (New Student Orientation)

ACADEMIC WRITING
UIGE610002
3 sks
The objectives of the English component of the MPK program are:
1. To activate students, English so that they will be able to communicate effectively in English;
2. To enable students to develop the learning strategies and study skills needed to finish their study successfully and continue learning on their own after taking the MPK program (to develop independent learners)
Main Competencies:
By the end of the course, students should be able to:
* listen to, understand and take notes of key information in academic lectures of between 5-10 minutes length;

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE616056</td>
<td>Heuristic Methods in Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616057</td>
<td>Constraint Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616066</td>
<td>Forecasting</td>
<td>3</td>
</tr>
<tr>
<td>ENIE617067</td>
<td>System Dynamics based Technology Adoption</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616068</td>
<td>Agent Based Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616069</td>
<td>Model Based Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>ENIE617070</td>
<td>Service Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616071</td>
<td>Human Factors in Intelligent Transportation Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENIE616072</td>
<td>Change Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives can also be taken at the Partner University starting from 6th Semester. Detail List of Courses will be provided by the Partner Universities as soon as possible.
* improve their listening skills through various listening materials and procedures;
* speak confidently, ask questions in and contribute to small group discussions;
* use different reading strategies needed to the effective readers;
* improve their reading skills through extensive reading material;
* develop skills in connecting ideas using appropriate transitions and conjunctions;
* work as part of a group to prepare and deliver a 25-minute presentation on an academic topic using appropriate organization, language and visual aids;
* write a summary of a short academic article;
* write an expository paragraph;
* write a short essay.

Learning Method:
Active learning, Contextual language learning, small group discussion.

Prerequisite:
* Students Learning Orientation/Orientasi Belajar Mahasiswa (OBM)
* UI English Proficiency Test

ENGLISH
UIGE600003
3 sks

Learning Objectives: After attending this subject, students are expected to capable of use English to support the study in university and improve language learning independently.

Syllabus:
- Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary
- Listening strategies
- Extensive reading
- Grammar: (Revision of Basic grammar Types of sentences Adjective clauses, Adverb clauses Noun clauses, Reduced clauses)
- Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking Reading popular science article, Reading an academic text)
- Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story)
- Speaking: (Participating in discussions and meetings, Giving a presentation)
- Writing: (Writing a summary of a short article Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))

INTEGRATED CHARACTER BUILDING B
UIGE600002/UIGE610004
6 sks

Syllabus: Integrated Character Building B facilitates students to practice identifying, analyzing, and resolving problems of nature and the environment by making use of integrative and quantitative information. This lecture aims to prepare the future generation who care about nature issues through the balanced development of hard skills and soft skills and have the skills of ICT (Information and Communication Technology).

Core Competencies:
1. Students have an ethic, moral, personality and good character in completing the task at hand;
2. Students role as citizens who take pride and love of the homeland and support the continuity of life;
3. Students are able to work together and have a high sensitivity and awareness to the community and the environment;
4. Students are able to think logically, critically and creatively;
5. Students are able to use mathematics to solve problems quantitatively;
6. Students are able to use information and communication technology (ICT) for development;
7. Students are able to analyze the system of nature integratively and comprehensively;
8. Students are able to act as wise managers of nature to build and maintain the preservation of nature for a better and sustainable life.

Learning Method: Blended e-Learning, Collaborative Learning (CL), Problem Based Learning (PBL) and Group Discussion (GD)

Prerequisites: OBM (New Student Orientation)

Textbook: Digital Form can be downloaded from Scele
2 sks

General instructional objectives: The cultivation of students who have concern for social, national and country's issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human's basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam's motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)

CATHOLIC STUDY
UIGE600011/UIGE610006
2 sks

General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.

Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society

CHRISTIAN STUDY
UIGE600012/UIGE610007
2 sks

General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

Syllabus: History (Historical terms): Status of the Bible, the existence of God and Morality, Christ the Savior, the Holy Spirit as existence reformer and outlook on the world: Faith and Knowledge of Science, Church and service, Ecclesiology, Spiritual and enforcement of Christian Human Rights and the world of ethics: Christian Ethics, Christian and worship, Christianity and politics, Christian love and social reality: Christian Organizations, Students and Service, Christian and expectations.

HINDU STUDY
UIGE600013/UIGE610008
2 sks

Syllabus: Hindu religion, Hindu history), Source and scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the teachings in Hindu religion), The concept of the God (Brahman) according to the Veda, the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose of human life, Human’s duties, obligations, and responsibilities both individually or collectively), Ethics and morality (Principles teaching, self-control), in-depth understanding of the
scripture (deep understanding of the Bhagawadgita, deep understanding of the Sarasamuschaya),
The Role of Hinduism in science, technology, and art (Hinduism benefits in science and technology
in accordance with each department, benefit / the role of Hinduism in the arts), Cohesion and
community’s prosperity /independence (Benefits of unity in the religious plurality, independent
community (kerthajagathita) as a common goal, Tri Pitakarana), Culture as an expression of Hindu
religious practice, Contribution to the Hindu religion teachings in the political life of nation and
country, laws and the enforcement of justice, Awareness of and obeying the Rita / Dharma.

BUDDHIST STUDY
UIGE600014/UIGE610009
2 sks
Syllabus : Almighty God and the God Study (Faith and piety, Divine Philosophy/Theology), Human
(Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety
in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation
to study and practice what you are taught, Responsibility for nature and environment), harmony
between religion (religion is a blessing for all mankind, the essence of the religious plurality and
togetherness), community (the role of religious society in creating a prosperous independent society,
the responsibility of religious society in the realization of human rights and democracy), Culture
(the responsibility of religious society in the realization of critical thinking (academic), work hard
and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise
awareness to obey and follow God’s law, the role of religion in the formulation and enforcement
of law, the function of religion in the legal profession)

KONG HU CU STUDY
UIGE600015
2 sks

ART
UIGE600020-30
1 sks
The option of subjects that can be choosen :
Appreciation of Film (UIGE600020), Batik (UIGE600021), Photography (UIGE600022), Calligraphy
(UIGE600023), Javanese Karawitan (UIGE600024), Balinese Dance and Karawitan (UIGE600025),
Comic (UIGE600026), Painting (UIGE600027), Music and Vocal (UIGE600028), Theater (UIGE600029),
Wayang (UIGE600030)

SPORT
UIGE600040-48
1 sks
The option of subjects that can be choosen :
Basketball (UIGE600040), Volley Ball (UIGE600041), Badminton (UIGE600042), Futsal (UIGE600043),
Hockey (UIGE600044), Football (UIGE600045), Softball (UIGE600046), Tennis (UIGE600047), Table
Tennis (UIGE600048)

SYLLABUS OF BASIC ENGINEERING SUBJECTS

CALCULUS 1
ENGE600001/ENGE610001
3 sks
Syllabus : This subject gives the opportunity for students to understand the basic concept of cal-
culus and to be able to solve applied calculus problems. Students are also given the opportunity
to understand basic concepts the functions of one variable, derivatives and integral functions of
one variable, and its application.
CALCULUS 2
ENGE600002/ENGE610002
3 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, or variables, total derivative and integral of the function of two or more variables and application. In addition, students can understand the basic concepts of sequence and series.

CALCULUS
ENGE600003/ENGE610003
4 sks
Syllabus: This subject gives the opportunity for students to understand the basic concept of calculus and to be able to solve applied calculus problems. Students are also given the opportunity to understand the basic concept the function of two variables, the total derivative of the function of two or more variables and its application. Students are also expected to understand the basic concept of sequence and series and the basic concept of vector and analytical geometry.

LINEAR ALGEBRA
ENGE600004/ENGE610004
4 sks
Syllabus: This subject gives the opportunity for students to master the basic techniques of Linear Algebra and gain knowledge on how to implement said techniques in solving System of linear equations, determining the bases and dimension of vector space, as well as calculating eigen values and eigen vectors. This subject also gives students the opportunity to work with other objects, especially vectors and matrices.

PHYSICS (MECHANICS AND THERMAL)
ENGE600005/ENGE610005
3 sks
Syllabus: Physics (Mechanics and Thermal) subject includes the topics of mechanics and thermodynamics. Calculus is use as a mathematic helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only aim to increase the students' knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their skills, such as: independent and group work and their communication skill.
Students will also be train on how to explain and analyse the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept. This subject will give students the opportunity to develop their presentation ability analyse the nature phenomenon and the result of human engineering from the mathematics and natural science point of view integrative and comprehensively.

PHYSICS (MECHANICS AND THERMAL) LABORATORY
ENGE600006/ENGE610006
1 sks
Notes: For Architecture and Interior Architecture Program, practical is not mandatory.

PHYSICS (ELECTRICITY, MWO)
ENGE600007/ENGE610007
3 sks
Syllabus: Physics (Electricity, MWO) subject includes the topics of electricity, magnet, wave, and optics. Calculus is used as a mathematical helping tool in the learning process. Students are given the opportunity to learn how to unite their understanding of the basic concept of the analytical capability, their numeracy in learning mechanics and thermodynamics. During the course of this subject, students are not only to increase the students’ knowledge of the basic physics concepts but also to increase their capability in using information technology and computer and to train their soft skills, such as: independent and group work and their communication skill. Students will also be trained on how to explain and analyze the nature phenomenon and the result of human engineering exist in their everyday lives by using the basic physics concept and applied them in their daily lives. Students are also taught to develop their synthesis ability and evaluating both quantitative and qualitative natural phenomenon and the result of human engineering in their surrounding environment by using basic physics concept.

PHYSICS (ELECTRICITY, MWO) LABORATORY
ENGE600008/ENGE610008
1 sks

BASIC CHEMISTRY
ENGE600009/ENGE610009
2 sks
Syllabus: As an engineer, you must have understanding on the chemistry that provides not only the basis for much of what goes on in our world but also that it is a vital, continually developing science. In this study the students will learn many subjects such as matter and measurement; atoms, molecules, and ions; stoichiometry; aqueous reactions; thermochemistry; properties of solutions; chemical kinetics; chemical equilibrium; and electrochemistry. Learning activities will be conducted through various methods, which consists of: problem based learning (PBL), interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

STATISTIC AND PROBABILITY
ENGE600010/ENGE610010
2 sks
Syllabus: Statistics and probability has been known as applied mathematics which is widely used in collecting, organizing, presenting, interpreting and analyzing data to support valid conclusions. Furthermore, these conclusions will be used as recommendation in decision making. The course of Statistics and Probability is intended to give a basic ability for students to handle quantitative data and information. There are two stages that are delivered which is descriptive and inductive/inference stages. Descriptive stage includes collecting, organizing, and presenting the data in a scientific manner. Then, inductive/inference stage includes the process of estimating and drawing conclusion based on available data and relations between variables. Hence, students are expected to apply their knowledge of statistics in conducting experiments in laboratory works/assignments as well as research studies in their final projects.

ENGINEERING ECONOMICS
ENGE600011/ENGE610011
3 sks
Syllabus: This course introduces students to the basic of engineering economy. It covers the time value of money (TVOM) and interest rate; tools for evaluating project alternatives for both non discounted and discounted methods, for instance present worth analysis, annual worth analysis, future worth analysis, rate of return (ROR) analysis and benefit/cost analysis; and choosing the best alternative, break even analysis, and effect of depreciation and after tax analysis and sensitivity analysis, and replacement analysis. Learning activities will be conducted through various methods, which consist of: interactive lectures, question-based learning, discussion, and structure assignments. Assessment will be made
thoroughly through sets of exercises/quizzes, group discussion, midterm and final exam. To expose students on the latest utilization of engineering economy and train them how to use it, a project will be assigned. As an integral part of course, computer utilization such as Microsoft Excel will be demonstrated and discussed on the class.

HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION
ENGE600012/ENGE610012
2 sks
Syllabus: The teaching of Safety, Health and Environmental (SHE) protection to undergraduates studying engineering courses is an important part of the education of future engineers at all levels. It is the generally expressed view amongst practitioners in industry, business and other organisations that all engineers need to be equipped to appreciate, understand and implement the requirements of SHE management and practice to meet the working needs of industry and of their company (or other organisation). Whilst the level of risk and degree of control is dependant on the industry sector concerned the basic principles do not change. In addition, according to code of ethics of engineers, engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.

The module covers the regulation framework and standards, risk perception, assessment, and management and detail discussion on physical, chemical and process hazards, and related engineering and management controls. Maintenance of safety conditions, personal protective equipments, audit, incident and emergency planning are discussed in accordance to measures for improving students awareness to their daily activities within the campus premises and local environment.

Learning activities will be conducted through various methods, which consist of: interactive lecture, question-based learning, discussion, demonstration and unguided structured assignments. Assessment will be made continuously through a set of exercises, group discussion, mid semester exam and final exam.

Course Syllabus

MPKT B / INTEGRATED CHARACTER BUILDING B
General Instructional Objective: Develop students paticipation to improve awareness of social issues, national state, and the environment that is based on faith and piety, manners, and ethics in the context of academis science and technology development.
Learning Objectives: Students are expected to capable of: (1) Understanding, explaining, and analyzing the philosophy and logical science, attitude, social and culture in Indonesia. (2) Understanding academic and nation values from social and cultural diversity in Indonesia. (3) Understanding the problems by applying step learning actively and using information technology (4) Using Indonesian language in discussion and academic writing as well.
Syllabus: Topic which appropriate with target and method learning, problem based learning (PBL), Collaborative Learning (CL) and Computer mediated learning (CML)
Pre-requisite(s): -
Text Book(s): Appropriated with topic

ACADEMIC WRITING
Learning Objectives: After attending this subject, students are expected to capable of use English to support the study in university and improve language learning independently.
Syllabus: Study Skills: (Becoming an active learner, Vocabulary Building: word formation and using the dictionary Listening strategies Extensive reading) Grammar: (Revision of Basic grammar Types of sentences Adjective clauses, Adverb clauses Noun clauses, Reduced clauses) Reading: (Reading skills: skimming, scanning, main idea, supporting ideas, Note-taking Reading popular science article, Reading an academic text) Listening: (Listening to short conversations, Listening to a lecture and notetaking, Listening to a news broadcast, Listening to a short story) Speaking: (Participating in discussions and meetings, Giving a presentation) Writing: (Writing a summary of a short article Describing graphs and tables, Writing an academic paragraph, Writing a basic academic essay (5 paragraphs))
Pre-requisite(s): -
Text Book(s): Poerwoto, C. et.al. Reading Comprehension for Engineering Students
INTRODUCTION TO INDUSTRIAL ENGINEERING
Learning Objective(s): Early understanding about the Industrial Engineering Discipline scope and contributions, which includes concepts, methods and tools and how it relates to each other in service or manufacturing industry.

Syllabus: History of Industrial Engineering, Scope of Industrial Engineering, Brief introduction and explanation of component system which build Industrial Engineering, Explanation of curriculum structure in Industrial Engineering, Example of contribution of Industrial Engineers in service and manufacturing industry, Development of Industrial Engineering in the future, Professionalism definition and Ethics Engineering, and Cases in Ethics and Professionalism.

Pre-requisite(s): -

Text Book(s):

INTRODUCTION TO ECONOMICS (2 SKS)
Learning Objective(s): Introduce the scope of economics science and business as an integral part of human activities to survive.

Pre-requisite(s): -

Text Book(s):

INTRODUCTION TO ENGINEERING MATERIALS
Learning Objective(s): Students are expected to understand the processing, characteristics and application of engineering materials. structure and bonding in materials, material processing for all types of engineering materials as well as basic concept in materials testing.

Syllabus: (1) Types of engineering materials and their applications; (2) Structures of engineering materials; (3) Properties of material; (4) Manufacturing and Processing of Metallic Materials; (5) Steel and iron: production and properties; (6) Aluminium: production and properties; (7) Other non-ferrous alloys: production and properties; (8) Polymer: processing and properties; (9) Ceramic: processing and properties; (10) Composite: processing and properties

Prerequisite:

Textbooks:

ISLAMIC STUDY
General instructional objectives: The cultivation of students who have concern for social, national and country's issues based on Islamic values which is applied in the development of science through intellectual skills.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Islamic values they adopted
2. Analyze the problem by implementing active learning stages
3. Discuss and express their thoughts and ideas by using proper and correct Indonesian language in discussion and academic writing

Syllabus: Islam history: the meaning of Islam, the characteristic of Islam, the sources of Islamic
teachings, Muhammad SAW as prophet and history figure, introduction of Islam in Indonesia, the teaching essence of Islam: the basic principle of Islam teachings, the unity of Allah, worship practice in live, eschatology and work ethics, human’s basic rights and obligation, social structure in Islam: sakinah mawaddah and ramhah family, the social implication of family life, Mosque and the development of Islam, zakat and the economic empowerment of the people, Islam society, Science: reason and revelation in Islam, Islam’s motivation in development of science, science characteristics, source of knowledge, IDI (each Faculty and Department/Study Program)

Prerequisite(s): MPKT

Textbooks: Adjusted to topics

CATHOLIC STUDY

General instructional objectives:
1. To help deliver students as intellectual capital in implementing lifelong learning process to become scientists with mature personality who uphold humanity and life.
2. Be scholars who believe in God according to the teachings of Jesus Christ by continuing to be responsible of his faith in life in church and society.

Syllabus: Almighty God and the God teachings; Man, Morals, science technology and art; harmony between religions; Society, Culture, Politics, Law: the substance of theses studies will be addressed by integrating the four dimensions of the teachings of the Catholic faith: the personal dimension, the dimension of Jesus Christ, the dimension of the Church, and Community dimension. Dimensions are implemented in the following themes: People, Religion, Jesus Christ, the Church, and Faith in the society.

Prerequisite(s): MPKT

Textbooks: Adjusted to topics

CHRISTIAN STUDY

General instructional objectives: Cultivating students with comprehensive Christian knowledge and teaching in the midst of the struggle and the fight of the nation while also discussing the student’s participation in line with the study to help improve and build our country.

Learning Objectives: Course participants are expected to do the following when faced with a problem or issue which they must solve:
1. Analyze the problem based on the Christian values
2. Analyze the problem by implementing active learning stages
3. Discuss the problem by using proper and correct Indonesian language

Prerequisite(s): MPKT

Textbooks: Adjusted to topics

BUDHIST STUDY

Syllabus: Almighty God and the God Study (Faith and piety, Divine Philosophy / Theology), Human (Human Nature, Human Dignity, Human Responsibility), Moral (Implementation of Faith and Piety in everyday life), Science, Technology and Art (Faith, Science and Charity as a unity, the Obligation to study and practice what you are taught, Responsibility for nature and environment), harmony between religion (religion is a blessing for all mankind, the essence of the religious plurality and togetherness), community (the role of religious society in creating a prosperous independent society, the responsibility of religious society in the realization of human rights and democracy), Culture (the responsibility of religious society in the realization of critical thinking (academic), work hard and fair), Politics (Religion contribution in the political life of nation and country), Law (Raise awareness to obey and follow God’s law, the role of religion in the formulation and enforcement

Prerequisite(s): MPKT

Textbooks: Adjusted to topics
of law, the function of religion in
the legal profession)
Prerequisite(s): MPKT
Textbooks: Adjusted to topics

HINDU STUDY
Syllabus: Character, History (Character in Hindu religion, Hindu history), Source and
scope of Hinduism (the Veda as the source of Hindu religion teachings, the scope of the
teachings in Hindu religion), The concept of the God (Brahman) according to the Veda,
the Path to Brahman (Catur Marga Yoga, Mantra and Japa), Human Nature (The purpose
of human life, Human’s duties, obligations, and responsibilities both individually or collectively),
Ethics and morality (Principles teaching, self-control), in-depth understanding
of the scripture (deep understanding of the Bhagawadgita, deep understanding of the
Sarasamuschaya), The Role of Hinduism in science, technology, and art (Hinduism benefits
in science and technology in accordance with each department, benefit / the role of Hinduism
in the arts), Cohesion and community’s prosperity /independence (Benefits of unity
in the religious plurality, independent community (kerthajagathita) as a common goal,
Tri Pitakarana), Culture as an expression of Hindu religious practice, Contribution to the
Hindu religion teachings in the political life of nation and country, laws and the enforcement
of justice, Awareness of and obeying the Rita / Dharma.
Prerequisite(s): MPKT
Textbooks: Adjusted to topics

LINEAR ALGEBRA
Learning Objectives: Students can explain/ understand/apply linear algebra and associate this
subject with some other subjects.
Euclidean vector space, General vector space, Review of vector space, Product space, Value and
diagonalization eigen vector, Liner Transformation, Application on the system of differential
equation, Application on the quadratic surface, Decomposition of LU, Least
Squares.
Prerequisite: -
Handbook:

SPORTS / ARTS
The Art subject discuss on how to develop the student’s participation and appreciation
to fully understand, have aesthetic concerns, have imagination, have
creativity to create work of art and culture in the form of art works such as: painting, batik,
photography, calligraphy, comic or in the form of performance art such as: film appreciation,
Bali dance and music, Javanese music, theatre and traditional puppet performance. The Sport
subject discuss the general knowledge of sport (history, rules of the games and how to lead
a match) and sport skills (physical aspects of movement, technique, tactics and mentality)

MECHANIC AND THERMAL PHYSICS + LAB
Learning Objectives: Students understand the concepts and basic laws of mechanic physics
and applied in a systematic and scientifically problem solving that influenced by the force,
both moving or not moving objects.
Syllabus: Scale, kinematics of point objects, mechanics of point objects, law of conservation
of linear momentum and energy, harmonic motion, gravity, dynamics and kinematics of
rigid objects, Introduction and basic concept (pressure, thermodynamic system, state of the
system, temperature), expansion, equilibrium energy (thermal state equation), heat transfer,
ideal gas, first law of thermodynamics, enthalpy and entropy, The first law of thermodynamics
application for open and closed system, Second law of thermodynamics, kinetic theory of ideal
gas.
Practical of Mechanics: Measurement, Moment of inertia, Gravity acceleration, Fluid density,
Scratch coefficient, Collision, Swing torque, Viscosity of water, Young’s modulus, Viscosity of

Prerequisite: -

Handbook:

MPKT A / INTEGRATED CHARACTER BUILDING A

General Instructional Objective: To develop student’s participation in raising their awareness towards issues within the society, country, nation, and surrounding environment based on their faith, piety, manners, and academic ethics in order to develop Science and Technology.

Learning Objectives: Students are expected to capable of:
1. Understanding, explaining, and analyzing the philosophy and logical science, attitude, social and culture in Indonesia.
2. Understanding academic and nation values from social and cultural diversity in Indonesia.
3. Understanding the problems by applying step learning actively and using information technology.
4. Using Bahasa Indonesian in discussion and academic writing as well.

Syllabus: Topic which appropriate with target and method learning, problem based learning (PBL), Collaborative Learning (CL) and Computer mediated learning (CML)

Prerequisite: -

Handbook: Appropriated with topic

Engineering Drawing

Learning Objective(s): Course participants are able to transfer geometric component by drawing according to standard draw which is recognized by International Standard Organization (ISO). Students understand the theory and procedure of engineering drawing based on ISO standard. Students are able to read, interpret, and transfer 2D/3D geometric draw from component or construction. Students are able to draw the orthogonal projection based on ISO standard.

Syllabus: Illustration: Function and benefit of Engineering Drawing; SAP; Measurement and Evaluation; Introduction to drawing equipment; Basic definition of geometric, paper format, draw regulation, line, field, line configuration, basic geometric form; Visualization geometric: Skew projection and isometric, function and line types, configuration geometric form; Orthogonal Projection: Projection standard, viewing concept, width display principle; Advanced orthogonal projection: Circle region concept, special region concept, trimming concept, display width, refraction.

Pre-requisite(s): -

Text Book(s):
2. A.W. Boundy, Engineering Drawing , McGraw-Hill Book Company

OPTICS, ELECTRICITY, AND WAVE PHYSICS + LAB

Learning Objectives: Students understand the concept and basic law of Magnet and Electricity physics and apply it systematically and scientifically in solving everyday magnet and electricity physics problem, can understand the concepts and basic law of Optical and Wave physics and apply systematic and scientific problem solving in a natural wave phenomenon or wave that arises due to technical, physical properties of light and geometric optics.

Prerequisite:

Handbook:
4. D.C.Giancoli, General Physics, Prentice Hall

METHODS, STANDARDS AND WORK DESIGN +

LAB Learning Objective(s): Course participants are able to measure, analyze, design and increase the effectiveness and efficiency of human work through methods improvements and work standards.

Pre-requisite(s): Statistics and Probability

Text Book(s):
2. The Ergonomics Kit for general industry, dan Macleod, Taylor & Francis, 2006

COST ACCOUNTING

Learning Objective(s): Course participants understand accounting principles and are able to calculate accounting problems systematically and present them as a financial report. They should also be able to analyze and evaluate the conditions of the company based on those reports.

Pre-requisite(s): Introduction to Economics

Text Book(s):
2. Weygrandt, Kieso, Kell, Accounting Principles, John Willey and Sons CO., Canada, 2003

ENIE600005

PRODUCTION PROCESS + LAB (3 SKS)

Learning Objective(s): Course participants have the knowledge about technology and process to understanding how a product is made through manufacturing processes.

Pre-requisite(s): Introduction to Industrial Engineering
LINEAR PROGRAMMING

Learning Objective(s): Course participants are able to implement mathematical model in developing solutions for engineering and management problems.

Pre-requisite(s): -

Text Book(s):

Introduction to Mechanics and Electronics Factory

Learning Objective(s): Course participants understand basic concepts from engineering mechanics and also can identify various factory facility based on prime movers and electric power.

Syllabus: Introduction to engineering mechanics; Introduction to prime movers; Gasoline Ignition Engine; Diesel Ignition Engine; Turbine Principle; Basic definition of electric power system; Electric power system element (Transformer, Machine AC, Machine DC); PLC; Pneumatic System.

Pre-requisite(s): Material Sciences

Text Book(s):
2. Popov, Mechanics of Materials, MIR Publisher, 1979

Human Factor in Engineering & Design + Lab

Learning Objective(s): Course participants are able to analyze and design a human machine interaction and its workplace

Pre-requisite(s): -

Text Book(s):

Maintenance Systems

Learning Objective(s): Course participants understand the important aspects in the maintenance system management and the type of approach that is currently used in the industry.

Pre-requisite(s): Production Process

Text Book(s):
2. Seilichi Nakajima, Introduction to Total Productive Maintenance, 1988
3. Antony Corder, di alih bahasa oleh Ir. Kusnul Hadi, Teknik Manajemen Pemeliharaan, Erlangga,
Industrial Statistics + Lab
Learning Objective(s): Course participants are able to organize the collection, process, and analysis of data using statistics and engineering principles to support decision making process, within DOE - Design of Experiment.
Text Book(s):
2. Design and Analysis of Experiments, Angela Dean and Daniel Voss, Springer-Verlag, 2000
3. Experimental Design with Applications in Management, Engineering, and the Sciences, Paul D. Barger and Robert E. Maurer, Thomson Learning, 2002

Production Planning and Inventory Control + Lab
Learning Objective(s): Course participants are able to analyze, design, implement and evaluate an integrated production planning and control system by controlling information flow, scheduling of production resources and internal processes, resulting a high quality product at the right time and the right cost.
Syllabus: Production planning system, Master Requirement Planning (MRP), Material Requirement Plan, Capacity planning, Inventory control, Lot sizing, Production scheduling, Sequencing and evaluation, TOC/DBR concepts, PPIC game.
Pre-requisite(s): -
Text Book(s):
2. Chapman, Stephen N.; The Fundamentals of Production Planning and Control; Pearson - Prentice Hall, 2006

Organization & Industrial Psychology
Learning Objective(s): Course participants are able to analyze the influencing factors of design and organizations management in industry including human capital assets.
Pre-requisite(s): -
Text Book(s):

PLANT LAYOUT DESIGN
Learning Objective(s): Course participants are able to design the layout of a plant based on constraint and optimum goals.
Syllabus: Design function, Design procedure, Process planning, Material flow planning, Analysis technique, Relationship planning between activities, Plant and production support services,
Space calculations, Area allocation, Material handling equipment, Plant layout development, Plant location considerations.

Pre-requisite(s): -

Text Book(s):

PRODUCT DESIGN + LAB
Learning Objective(s): Course participants are able to create new product or service concept ideas according to structural market study based on marketing mix

Prerequisite(s): Human Factors in Engineering

Text books:

INDUSTRIAL FEASIBILITY ANALYSIS (3 SKS)
Learning Objective(s): Course participants know the aspects used to analyze industry feasibility and able to identify and analyze investment of facility feasibility

Syllabus: Project feasibility study, scope function, market and marketing aspects, engineering and technology aspects, operation management aspect, environment aspect, law aspect, economics aspect, financial aspect

Prerequisite(s): Cost Accounting, Engineering Economics

Text books:
2. Siswanto Sutojo, Studi Kelayakan Proyek, PPM, 1995

QUALITY SYSTEM (3 SKS)
Learning Objective(s): Course participants are able to design a quality improvement system that able to do assurance and improvement of continuous product and process quality based on the fact (number) using mathematical (statistical) method with world’s quality standard consideration

Syllabus: 3 quality basics: continuous improvement, customer focus and total participation, PDCA concept, 7 tools and 7 new tools, technique of process mapping, standard role, internal standard (SOP, WI, etc), and external standard (ISO, JIS, etc), Lean Six Sigma

Prerequisite(s): Statistics and Probability

Text books:

SYSTEM MODELLING + LAB
Learning Objective(s): Course participants are able to design a computerized model based on discrete-event modeling from micro industrial system, simulating that model to do feasibility analysis and generating recommendation from the model (becoming discrete-event model)
Syllabus: Modeling concept, general method of system modeling: conceptualization, development, simulation and analysis, modeling case study, validation and verification of discrete model, user requirement method, technique of report design, and presentation of modeling result

Prerequisite(s): Statistics and Probability

Text books:

PRODUCTION SYSTEM + LAB

Learning Objective(s): Course participants are able to analyze, design, implement and improve the performance of an operation system, especially with significant impact to the long term strategic goals of the organization to produce the right product for the customer.

Pre-requisite(s): Production planning and inventory control

Text Book(s):
2. Heizer, Jay and Render, Barry; Operations Management; Pearson-Prentice Hall; 2006

INDUSTRIAL PROJECT MANAGEMENT (2 SKS)

Learning Objective(s): Course participants are able to plan, conduct, and control projects in industry

Syllabus: Project management description, system theory, project of PMDA organization, project of human resource, staff organization and project team, time management, special topic of PERT, project graph, cost control

Prerequisite(s): Operational Research

Text books:
2. Operation Research

Learning Objective(s): Course participants are able to use mathematical optimization model to solve engineering and management problems that could be converted to deterministic and stochastic quantitative model

Pre-requisite(s): Linear Programming

Text Book(s):

Computation Lab

Learning Objective(s): Course participants are able to use computational language tools, such as flow charts, pseudo codes, and IDEF to make an algorithm. Participants should also be able to solve a problem in the field of Industrial Engineering using computational programs.

Syllabus: Design tools, branching, loop, data structure, sorting, and optimization.

Pre-requisite(s): Linear Programming

Text Book(s):
Occupational, Health, Safety & Environment

Learning Objective(s): Course participants are able to identify various hazard, characterization, propose suitable method for minimizing and mitigating risks, and also designing management system of safety work. Students is also expected to increase their awareness about health and safety in industry, and understand about framework and safety standard regulation and also environment program.

Syllabus: Introduction to Regulation and Standards; Risk Perception, Assessment and Management; Machinery Hazards; Noise Hazards; Process Safety Hazard; Fire and Explosion Hazard; Electrical Hazard; Toxicology in The Workplace; Environmental Protection; Environmental Protection Control Processes; Hazard Communication to Employees; Personal Protective Equipment (PPE): Types of PPE and Selection of PPE; Safety Audits, Incident and Emergency Planning.

Pre-requisite(s): -

Text Book(s):
3. National Regulations on Safety and Health Management

Supply Chain Management

Learning Objective(s): Course participants are able to understand about concept and application of SCM to analyze and evaluate the role of operators in a whole supply chain

Prerequisite: Quality System

Text Book(s):

Industrial Simulation + Lab

Learning objective(s): Course participants are able to design a complex computerized model from industrial systems and simulate and conduct a simple feasibility study and design a recommendation from model simulation result (becoming a continuous system modeler)

Syllabus: Concept of continuous modeling, method of continuous modeling, causal loop diagram, stock and flow diagram, comprehending of behavior overtime, model development based on real case study, technique of scenario development, validation and verification of continuous model, introduction of study concept based on simulation game

Prerequisite: System Modeling

Text books:
3. SEMS Courses Module, 2011

Industrial Engineering Design + Lab

Learning objective(s): Course participants are able to conduct product development process by considering the interaction between material, human resources and production process and able to analyze technical and financial aspects of the NPD project for commercialization.

Prerequisites: Perancangan Produk, Analisa

Kelayakan Industri
UNDERGRADUATE PROGRAM

Text Book(s):

Information System
Learning Objective(s): Course participants understand the role of information system management and technology in the industry to face the globalization era.
Pre-requisite(s): Organization and Industrial Psychology
Text Book(s):

SPECIAL TOPICS IN INDUSTRIAL ENGINEERING
Learning Objective(s): Course participants will have a broad description about the current progress in the service and manufacturing industry, and how industrial engineering could contribute to the enhancement of efficiency and effectiveness.
Syllabus: Inviting guest lecturers from various field of expertise
Pre-requisite(s): 7th semester or above students
Text Book(s): -

INTERN Shiop (2 SKS)
Learning Objective(s): Course participants are able to understand about industrial engineering implementation in industry and implement all the subjects that have been studied in real world
Syllabus: Prerequisite(s): Notice the SOP of internship
Text books: -

UNDERGRADUATE THESIS
Learning objective(s): Course participants are able to identify problems and opinion in scientific discussion systematically, clearly, and accurately. Capable of sorting ideas/solutions/opinions in a scientific writing based on scientific writing guideline that integrates a whole knowledge.
Syllabus: Industrial Engineering to solve a case in real world
Prerequisite(s): Notice SOP of final project
Text books: Guideline of Undergraduate Thesis in University of Indonesia

Technology Management
Learning objective(s): Course participants are able to identify technology development that have an impact to industry, identify that technology, and translate into technology plan for improving organization competitiveness
Syllabus: Introduction to technology management, business model concept, innovation and technology, chasm and tornado, competence, introduction to change management, introduction to risk management, patents in Indonesia, sustainability issue in technology, outsourcing, ERP trend
Prerequisite(s): Introduction to Industrial Engineering
Text books:

Multivariate Analysis
Learning Objective(s): Course participants are able to organize the extraction, process & analysis of multivariate data in a right way to make decisions.

Pre-requisite(s): Statistics and Probability, Industrial Statistics

Text Book(s):

Interpersonal Skills
Learning Objective(s): Course participants are able to implement the principles of effective communication and behavior standard according to ethics and habits in a professional level of organization.

Syllabus: Basics of Communication Science. Reading and Controlling Body Language. Listening and Inquiring Skill to Facilitate, Development of Presentation Materials, Presentation Preparation, Processing the Question and Answer Session, Formal Writing Skill (Proposal, Report, Letter, Correspondence, Manner), and Effective Reading.

Pre-requisite(s):

Text Book(s):

Product Life Cycle Management
Learning Objective(s): Course participants are able to understand the product life cycle and its role in creating company’s innovation strategy.

Pre-requisite(s): Product Design

Text Book(s):

Macro Ergonomics
Learning Objective(s): Course participants are able to understand comprehensively about work system design that consists of interacting variables such as hardware and software within internal and external physical environment, organization structure and process in order to make it better. Ability to understand how to implement ergonomic science.

Syllabus: Introduction to macroergonomics, method and tools that are used in work system design and analysis, introduction to organization integration in productivity, safety, health and quality of work life context.

Pre-requisite(s): Human Factors in Engineering and Design

Text Book(s):

Finance and Investments
Learning Objective(s): Course participants possess the knowledge about industrial finance and investments in general and multinational including international trading and finance.

Pre-requisite(s):

Text Book(s):

Innovation Management

Learning Objective(s): Course participants are able to understand the concept and steps in developing innovation within organization.

Pre-requisite(s): -

Text Book(s):

Customer Relationship Management

Learning Objective(s): Course participants are able to understand the role and function of customer relationship management in improving organization’s/company’s competitiveness.

Syllabus: Concept and Procedure of CRM Implementation in Organization, CRM Process Management, Managing Networks for CRM performance CRM Success Measurement, Best Practices of CRM Implementation, Managing supplier partner relationships, IT for CRM

Pre-requisite(s): Information System

Textbooks:

Lean Operations

Learning Objective(s): Course participants are able to understand the concept of effective manufacturing process.

Syllabus: History and Concept of Lean Operations and Manufacturing, Strategy and Procedure of Lean Manufacturing Implementation, Toyota Production System

Pre-requisite(s): Production System

Text Book(s):

Reconfigurable Manufacturing System

Learning Objective(s): Course participants are able to understand the concept of manufacturing facility analysis and planning and the differences compared to models of manufacturing system and supported with laboratory work.

Syllabus: General RMS Characteristics, Enabling Technologies and Reconfigurable Characteristics, Reconfigurable Machines.

Pre-requisite(s): Production System
Linear and Stochastic Programming

Learning objective(s): Course participants could understand the theory and basics of linear and stochastic programming, able to use advance methods in linear and stochastic programming, and could use software to solve problems in linear and stochastic programming.

Textbooks:

Queuing Theory

Learning objective(s): Course participants are able to understand simple, network and cycle queuing models. Participants are also able to understand methods for solving queuing models and translating real-world problems into a queuing model.

Textbooks:

Data Mining

Learning Objective(s): Course participants are able to organize the extraction, process, and data analysis in a right way to make decisions.

Syllabus: Concept and Process of Data Mining, Algorithm in Data Mining, Data Mining Application in Organization.

Pre-requisite(s): Statistics and Probability, Industrial Statistics.

Text Book(s):

Systems Engineering

Learning Objective(s): Course participants are able to understand the basics of system engineering management in industries to be able to cultivate a design process, installation, management and termination of a complex system.

Pre-requisite(s): System Modeling

Text Book(s):
Enterprise Competitiveness Analysis

Learning Objective(s): Course participants are able to analyze company’s internal and external factors for setting up company strategy for achieving competitive advantage through value innovation and strategic position and capabilities development.

Syllabus: Understanding Industry Profitability, The Vertical Boundaries of the Firm, Strategic Positioning for Competitive Advantage, Leveraging Market Power to Grow, Risk Management, Competitor and Competition, Competitive Intelligence

Pre-requisite(s): Cost Accounting

Text books:

Advanced Optimization

Learning Objective(s): Course participants are able to design and implement various heuristic and meta-heuristic optimization algorithms to solve problems in industrial engineering field.

Pre-requisite(s): Operation Research

Text Book(s):

Sustainable Manufacturing and Innovation

Learning Objective(s): Course participants are able to understand the environmental and sustainability aspects of manufacturing process and their roles in increasing the competitiveness of enterprise and innovation development.

Syllabus: Concept and Sustainability Process in manufacturing process. Green Manufacturing (Remanufacturing, Reuse, Recycling), Renewables and Resource Utilizations, Green Logistics and SCM, Eco-Innovation, Best Practices in Sustainable Manufacturing.

Pre-requisite(s): Production System

Text Book(s):

Human Digital Modeling and Simulation

Learning objective(s): Course participants are able to model digital human and simulate it to obtain more effective and efficient work design

Text books:
2. Jack Software Module dari Ergonomic Centre

Decision Uncertainties and Risk
Learning objective(s): Course participants are able to analyze risks and uncertainties based on statistical tools accurately to make decision
Syllabus: Concept and Decision Making Process, Uncertainty Theory, Risks Analysis Prerequisites: Statistics and Probability, Industrial Statistics
Prerequisite(s): Statistics and Probability
Text books:

Maritime Logistics
Learning objective(s): Course participants are able to design, analyze and decrease workflow of a maritime logistic system, container terminal and scheduled shipping (liner).
Textbooks:

Energy Management
Learning objective(s): Course participants are able to understand the energy management principles, including energy supply and demand, which grows sense of the importance of energy and include it in decision making.
Syllabus: Energy and civilization, sources of energy and sustainability, energy future, economic and life cycle cost analysis, Life cycle analysis, lighting, ventilation and refrigeration systems, system of sustainable transport, effective energy management program, effective program management of energy, Modeling policy and energy planning
Textbooks
5. Papers and related publications

Design Thinking
Learning objective(s): Course participants could understand design and its implementation; also the advantage of using design thinking in the design process, decision process and problem solving activity.
Syllabus: Philosophy of Design Thinking, Steps and Phases in Design Thinking, Design Centric Culture, User Centric Design, , Lean UX, Design Thinking and Problem Solving
Textbooks:
1. Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, Harper Collins Publisher, 2009
2. Thomas Lockwood, Design Thinking: Integrating Innovation, Customer Experience, and Brand Value, Allworth Press, 2009

Numerical Methods and Application
Learning objective(s): Course participants could understand the logic of numerical methods in
solving mathematical and physical problems found in the field of engineering, social and economy. Course participants are able to solve difficult problems using dynamic systems which use iteration methods in industrial engineering cases.

Syllabus: simple problems in function theory (average rate, effect of linearization of a multi ranked function, roots and zero point of a function, interpolations and extrapolations); calculating the area and volume of an object without any form using numerical approach based on the formula of integration; Solving multi-variables equation system (including simulations on models of the equation system); multi-variables regression models; Eigenvalue and eigenvector problems; Start Value and End Value problems; Partial differential.

Textbooks:

Business Process Reengineering

Learning objective(s): Course participants are able to design a system by using business process reengineering which could measure and assure the quality and speed of an organization’s operation process based on facts by using mathematical approaches, simulations and information stream compared to worldwide best-practice.

Textbooks:

Algorithm and Programming

Learning objective(s): Course participants know and are able to use computer programming techniques. They are able to design and implement algorithms to solve problems in the field of Industrial Engineering. Course participants could analyse how efficient an algorithm is.

Syllabus: Introduction to programming language and algorithm; Types, variables, operators; Loops and arrays; Objects and classes; Sorting: Insertion Sort and Merge Sort; Asymptotic Notation; Recurrences; Substitution, Master Method; Divide-and-Conquer: Strassen, Fibonacci,
Polynomial Multiplication; Quicksort, Random Number, Randomized Algorithms; Tree, Hashing, Hash Functions; Greedy Algorithms, Minimum Spanning Trees; and Shortest Paths: Dijkstra’s Algorithm, Breadth-first Search.

Prerequisite(s): Basic Statistics

Textbooks:

Heuristic Methods in Optimization

Learning objective(s): Course participants are able to design heuristic and metaheuristic algorithms to solve optimization problems with single or multiple objectives. Course participants are also able to design parallel and hybrid metaheuristic algorithm. These meta-heuristic algorithms would be implemented in a programming language.

Syllabus: Introduction, Single-Solution Based Metaheuristics, Population-Based Metaheuristics, Population-Based Metaheuristics, Metaheuristics for Multiobjective Optimization, Hybrid Metaheuristics, Parallel Metaheuristics.
CHAPTER 5
PROFESSIONAL PROGRAM
5. PROFESSIONAL PROGRAM FOR ARCHITECT

Program Specification

1. **Awarding Institution**: Universitas Indonesia
2. **Teaching Institution**: Universitas Indonesia
3. **Program**: Architects Professional Program
4. **Class**: Regular
5. **Degree Offered**: Arsitek (Ar.)
6. **Accreditation / Recognition**: -
7. **Language of Instruction**: Bahasa Indonesia
8. **Study Scheme (Full Time / Part Time)**: Full Time
9. **Entry Requirement**: Graduate from Undergraduate Architecture Program
10. **Duration of Study**: 1 year
11. **Graduates profile**: Graduates with the ability to design professionally with compliance to codes and regulation to fulfill the competency as architect.
12. **Graduates’ Competencies**:
 1. Able to create architectural design that complies to codes related to services to clients, compliance to local building codes, and technical aspects of building structure, and construction, mechanical and electrical.
 2. Able to manage architectural consultation service that comprises of preliminary design, building permit, design development and the completion of tender documents.
 3. Able to integrate knowledge of ethical codes and architects’ professional codes of conduct into professional practice.
 4. Able to integrate knowledge on theory of architecture and sustainability into professional practice.
 5. Able to explain the principles of consultation administration and project management.

13. **Course Composition**

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Courses</th>
<th>Credits</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>University General Subjects</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Basic Engineering Subjects</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Architecture Core Subjects</td>
<td>21</td>
<td>87.5%</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>3</td>
<td>12.5%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>100%</td>
</tr>
</tbody>
</table>
14. **Total Credits for Graduation**: 24 Credit Semester Unit
NETWORK COMPETENCIES

Graduates’ Profile:
Graduates with the ability to design professionally with compliance to codes and regulation to fulfill the competency as architect.

Able to manage architectural consultation service that comprises of preliminary design, building permit, design development and the completion of tender documents.

Able to create architectural design that complies to codes related to services to clients, compliance to local building codes, and technical aspects of building structure, and construction, mechanical and electrical.

Able to explain the principles of consultation administration and project management.

Able to integrate knowledge of ethical codes and architects’ professional codes of conduct into professional practice.

Able to integrate knowledge on theory of architecture and sustainability into professional practice.
COURSE STRUCTURE
PROFESSIONAL PROGRAM FOR ARCHITECT

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>sks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ENAR701001</td>
<td>Design Project 1</td>
<td>6</td>
</tr>
<tr>
<td>ENAR701003</td>
<td>Professional Ethics and Practice</td>
<td>3</td>
</tr>
<tr>
<td>ENAR701004</td>
<td>Technology & Sustainable Environment</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ENAR702002</td>
<td>Design Project II</td>
<td>6</td>
</tr>
<tr>
<td>ENAR702005</td>
<td>Architectural Design Theory</td>
<td>3</td>
</tr>
<tr>
<td>Elective*)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
</tr>
</tbody>
</table>

*In addition to taking courses Elective Subjects for Professional Program, student can also take Compulsory Subjects and Elective Subjects available in Master of Architecture Program or other department which are equal with the Program.

Resume

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wajib Program Studi</td>
<td>21</td>
</tr>
<tr>
<td>Peminatan</td>
<td></td>
</tr>
<tr>
<td>Jumlah</td>
<td>21</td>
</tr>
<tr>
<td>Pilihan</td>
<td>3</td>
</tr>
<tr>
<td>Total Beban Studi</td>
<td>24</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAR700006</td>
<td>Building Information Modelling</td>
<td>3</td>
</tr>
<tr>
<td>ENAR700007</td>
<td>Capita Selecta</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE DESCRIPTION

ENAR701001
DESIGN PROJECT I
6 CREDIT UNITS

Learning Objectives:
Students should be able to understand and apply the knowledge of design presentation techniques, ethics, code of compliances relating to the preliminary design through design development for the purposes of building permit, project administration and project management at consultant which relate to the production and documentation of drawings, details, and building specification; Students should be able to demonstrate knowledge of various building materials.

Syllabus:
Professional ethics; relationship of architect and the client is focused on understanding, expression or presentation of ideas and service to clients as outlined in preliminary design products; understanding of local building codes; producing Bill of Quantity (BQ); administration of architecture consultation including the preparation of contracts and payment for services; the role of Building Information Modeling (BIM) in design practice.

Prerequisites:

References:
9. *Buku Pedoman Hubungan Kerja antara Arsitek dengan Pengguna Jasa*, Ikatan Arsitek Indonesia
10. Peraturan Daerah Provinsi DKI Nomor 1 Tahun 2014 tentang Rencana Detail Tata Ruang dan Peraturan Zonasi
11. Peraturan Daerah Provinsi DKI Nomor 7 Tahun 2010 tentang Bangunan Gedung
12. Pedoman Detail Teknis Ketatakotaan Pemerintah Daerah Provinsi DKI Jakarta 1995
13. Peraturan Kepala Dinas DKI Jakarta (Perkadis) Nomor 3 Tahun 2014
15. Peraturan Menteri PU Nomor 30 Tahun 2006 tentang Pedoman Teknis Fasilitas dan Aksesibilitas pada Bangunan Gedung dan Lingkungan

ENAR701003
PROFESSIONAL ETHICS AND PRACTICE
3 CREDIT UNITS

Learning Objectives:
Student should be able to demonstrate understanding of architects as profession and normative aspects of professional practice; Student should be able to understand the relationship between formal architecture education in university and further professional process to become architect, according to national and international agreement.
Syllabus:
Architect profession, architectural project, architectural firm; description about architectural practice where professional ethics become the main guide for conduct.
Professional ethics: understanding of law implication, code of ethics, professional code of conduct; knowledge on the existing resources to understand the emerging issues in architectural practice.
Relationship with professional regulation: Regulation and code of ethics used by Ikatan Arsitek Indonesia (IAI), and international recommendation/policy which is agreed by all the members of Union Internationale des Architectes (UIA).

Pre-requisites:

References:
1. Kode Etik Ikatan Arsitek Indonesia (IAI)
2. Dokumen Union Internationale des Architectes (UIA)
3. Landasan Etika Profesi

ENAR701004
TECHNOLOGY AND SUSTAINABLE ENVIRONMENT
3 CREDIT UNITS

Learning Objectives:
Students should be able to perform an analysis on various approaches and strategies in building technology and the design of built environment towards sustainable environment.

Syllabus:
Environmental sustainable building technology principles; building technology, engineering, construction process, and building service and their impact on environmental sustainability; relationship among climate, built environment, construction, energy consumption and human well-being; application of building technology strategy in design project that complies with relevant building and environmental standard and regulation.

Pre-requisites:

References:
2. T. Jacob, Menuju Teknologi Berperikemanusiaan: Pikiran-Pikiran Tentang Indonesia, Jakarta: Yayasan Obor Indonesia. 1996
8. Edward Burtynsky, Manufactured Landscapes, Zeitgeist Video. 2007
9. Discovery Channel, Extreme Engineering: Turning Torso, Discovery Communication. 2010
10. Discovery Channel, Next World: Future Megatropolis, Discovery Communication. 2010

ENAR702002
DESIGN PROJECT II
6 CREDIT UNITS

Learning Objectives:
Student should be able to understand and apply knowledge on design presentation technique, ethics, code of compliances which are related to the production of complete tender document and proj-
ect supervision; Student should be able to describe construction management process that covers interdisciplinary coordination, adaptation of design to site condition, and regular site supervision; Students should be able to make decision regarding the use of building materials in the design.

Syllabus:
Professional ethics; relationship between architect and engineer and other related experts which is focused on collaborative work, application of engineering standard which is demonstrated in complete tender document including working drawings, technical specification and implementation, and budget planning; the role of Building Information Modeling (BIM) in design practice.

Pre-requisite: -

References:
9. *Buku Pedoman Hubungan Kerja antara Arsitek dengan Pengguna Jasa*, Ikatan Arsitek Indonesia
10. Peraturan Daerah Provinsi DKI Nomor 1 Tahun 2014 tentang Rencana Detail Tata Ruang dan Peraturan Zonasi
11. Peraturan Daerah Provinsi DKI Nomor 7 Tahun 2010 tentang Bangunan Gedung
12. Pedoman Detail Teknis Ketakotaan Pemerintah Daerah Provinsi DKI Jakarta 1995
13. Peraturan Kepala Dinas DKI Jakarta (Perkadis) Nomor 3 Tahun 2014
15. Peraturan Menteri PU Nomor 30 Tahun 2006 tentang Pedoman Teknis Fasilitas dan Aksesibilitas pada Bangunan Gedung dan Lingkungan

ENAR702005
ARCHITECTURAL DESIGN THEORY
3 CREDIT UNITS

Learning Objectives:
Students are able to perform critical analysis to architectural ideas in classic and contemporary architectural literature, and able to identify the relationship between theory and practice in architectural design practice.

Syllabus:
The development in the mechanism of generating architecture from classical architecture to contemporary architecture; current ideas on the discourses of architectural design theorul and practice; multidisciplinary approach (art, mathematics, natural sciences, social sciences) in architectural theory and design.

Pre-requisite: -

References:

ENAR700006
BUILDING INFORMATION MODELING
3 CREDIT UNITS

Learning Objectives:
Student should be able to use Building Information Modeling tool in the design, development, and documentation of architectural design.

Syllabus:
Introduction to BIM in architecture; model development, information and database handling, analysis and documentation.

Prerequisites: -

References:

ENAR700007
CAPITA SELECTA
3 CREDIT UNITS

Learning Objectives:
Students should be able to expand their knowledge on various topics that support the mastery of professional architecture competence.

Syllabus:
Selected topics that are relevant to the mastery of professional architecture competence and the development of architecture knowledge

Prerequisite: -

References: Relevant references to the topic offered.
5. STUDY PROGRAM
PROFESSIONAL PROGRAM FOR ENGINEERS

Program Specification

<table>
<thead>
<tr>
<th>No</th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Fakultas Teknik Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Program</td>
<td>Professional Program for Engineers</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Degree Offered</td>
<td>Insinyur (Ir.)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Language of Instruction</td>
<td>Bahasa Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirement</td>
<td>Graduate from Undergraduate Engineering Program with 2 (two) years working experience.</td>
</tr>
<tr>
<td>10</td>
<td>Duration of Study</td>
<td>1 year (2 semesters)</td>
</tr>
<tr>
<td></td>
<td>Semester Number</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>2</td>
</tr>
</tbody>
</table>

11. Graduates profile:
Professional Graduates with the ability to design and solve problems in engineering areas based on technological advancement in accordance to the professional ethics.

12. Graduates Competencies (Indonesia National Qualification Framework (KKNI) Level 7):
1. Able to manage comprehensively the engineering resources under their responsibility by using Science and Technology to create engineering steps in strategic development of their organization.
2. Able to conduct research to help in strategic decision making with full accountability and responsibility over all aspects under their areas of expertise.
3. Able to solve science and technology problems by producing added value and benefit for society in the engineering areas through the mono-discipline and multidiscipline approaches.

13. Course Composition

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Courses</th>
<th>Credits</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Ethical Code and Professional Engineer Ethics</td>
<td>2</td>
<td>8.3%</td>
</tr>
<tr>
<td>ii</td>
<td>Professionalism</td>
<td>2</td>
<td>8.3%</td>
</tr>
<tr>
<td>iii</td>
<td>Health, Safety and Environmental and Work Safety</td>
<td>2</td>
<td>8.3%</td>
</tr>
<tr>
<td>iv</td>
<td>Engineering Practices</td>
<td>12</td>
<td>50%</td>
</tr>
<tr>
<td>v</td>
<td>Case Studies</td>
<td>4</td>
<td>16.6%</td>
</tr>
<tr>
<td>vi</td>
<td>Seminar, Workshop, and Discussion</td>
<td>2</td>
<td>8.3%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>100%</td>
</tr>
<tr>
<td>14</td>
<td>Total Credits for Graduation</td>
<td>24 Credit Semester Unit</td>
<td></td>
</tr>
</tbody>
</table>
Competency Framework
Professional Engineer Study Program

Professional Graduates with the ability to design and solve problems in engineering areas based on technological advancement in accordance to the professional ethics.

Able to solve science and technology problems by producing added value and benefit for society in the engineering areas through the mono-discipline and multidiscipline approaches

Able to conduct research to help in strategic decision making with full accountability and responsibility over all aspects under their areas of expertise

Able to manage comprehensively the engineering resources under their responsibility by using Science and Technology to create engineering steps in strategic development of their organization
Course Network
Professional Engineer Study Program

SEMESTER 1
- Ethical Code and Professional Engineer Ethics
- Professionalism
- Health, Safety and Environmental and Work Safety
- Case Studies

SEMESTER 2
- Engineering Practices
- Seminar
The Relation between Graduate Competencies, Assessment Materials, and Courses
Professional Engineer Study Program

<table>
<thead>
<tr>
<th>Competency</th>
<th>Assessment Materials</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ability to plan and manage the engineering resources under their</td>
<td>Basic Knowledge</td>
<td>• Ethical Code and Professional Engineer</td>
</tr>
<tr>
<td>responsibility, and comprehensively evaluate by using Science and</td>
<td>Professional Basic Competency</td>
<td>Ethics</td>
</tr>
<tr>
<td>Technology to create engineering steps in strategic development of their</td>
<td></td>
<td>• Professionalism.</td>
</tr>
<tr>
<td>organization.</td>
<td></td>
<td>• Health, Safety and Environmental and Work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safety.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Case Studies</td>
</tr>
<tr>
<td>The ability to solve science and technology problems by producing added</td>
<td>Practice ability and case studies</td>
<td>• Engineering Practices</td>
</tr>
<tr>
<td>value and benefit for society in the engineering areas through the</td>
<td></td>
<td>• Case Studies</td>
</tr>
<tr>
<td>mono-discipline and multidiscipline approaches.</td>
<td></td>
<td>• Seminar</td>
</tr>
<tr>
<td>Able to conduct research to help in strategic decision making with full</td>
<td>Behavior Skills</td>
<td>• Engineering Practices</td>
</tr>
<tr>
<td>accountability and responsibility over all aspects under their areas of</td>
<td></td>
<td>• Case Studies</td>
</tr>
<tr>
<td>expertise.</td>
<td></td>
<td>• Seminar</td>
</tr>
</tbody>
</table>

Learning Outcomes
Professional Engineer Study Program

<table>
<thead>
<tr>
<th>KKNI Level 7</th>
<th>General Competency</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Able to manage comprehensively the engineering resources under their responsibility by using Science and Technology to create engineering steps in strategic development of their organization.</td>
<td>Pre-design report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design development report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bidding documents</td>
</tr>
<tr>
<td></td>
<td>Able to conduct research to help in strategic decision making with full accountability and responsibility over all aspects under their areas of expertise.</td>
<td>Pre-design report and design development which shows codes compliance and the implementation of continuous engineering science theory.</td>
</tr>
<tr>
<td></td>
<td>Able to integrate the knowledge on ethical codes and the rules for engineering behavior into professional practice.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Able to describe the consultancy administration principles and project management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Able to solve science and technology problems by producing added value and benefit for society in the engineering areas through the mono-discipline and multidiscipline approaches.</td>
<td>Case studies report on ethical codes and the rules for engineering behavior.</td>
</tr>
<tr>
<td></td>
<td>Able to design technological solution by following the codes relating to services to clients, in accordance to the local regulation and engineering issues.</td>
<td>Design report which showed project administration aspects.</td>
</tr>
<tr>
<td></td>
<td>Able to integrate the theoretical knowledge of continuous engineering science into professional practices.</td>
<td></td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE

Professional Engineer Study Program

<table>
<thead>
<tr>
<th>No</th>
<th>Courses</th>
<th>Credits</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Code of Ethics and Ethics of Engineers</td>
<td>2</td>
<td>ENIR701001</td>
</tr>
<tr>
<td>2</td>
<td>Professionalism</td>
<td>2</td>
<td>ENIR701002</td>
</tr>
<tr>
<td>3</td>
<td>Health, Safety and Environmental and Work Safety</td>
<td>2</td>
<td>ENIR701003</td>
</tr>
<tr>
<td>4</td>
<td>Case Study</td>
<td>4</td>
<td>ENIR701004</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Engineering Practices</td>
<td>12</td>
<td>ENIR702005</td>
</tr>
<tr>
<td>2</td>
<td>Seminar</td>
<td>2</td>
<td>ENIR702006</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
COURSE SYLLABUS

Code of Ethics and Ethics of Engineers
ENIR701001
2 credits
Description:
1. Understanding the meaning of professional, professionalism, ethical code, and
code of rules for engineering behavior.
2. Understanding competency and engineering body of knowledge.
3. Recognizing engineer ethics responsibility, sensitivity, and care on duty, function,
responsibility, and accountability.
4. Understanding the Indonesia Engineer Ethics Code
5. Able to discuss the dilemma faced during decision making process in regards to
Engineering Ethics Code
6. Able to increased conscience sensibility in handling ethical issues in engineering
7. Able to prepare decision making draft in addressing engineering ethics cases (form-
mulize, prepare supporting data, prepare the choice of a solutions and recommen-
dations).

Professionalism
ENIR701002
2 credits
Description:
1. Student understand how to implement planning and design to give added value.
2. Student understand in respect of health, safety, and environmental preservation.
3. Student understand the influence of technical and non-technical factors and the
implementation of professional ethics in the implementation of work.
4. Student understand the Engineering Standard.
5. Student understand how to conduct data analysis and evaluation.
6. Student is able to recognize the ability, weakness and strength of work space.
7. Student is able to work together in a team in a limited period of time.
8. Student is able to perform feasibility and appropriateness selection for decision
making process.
9. Student is able to communicate and coordinate.

“EXPLANATION”
The title is change into a noun: the desired planned learning impact was too broad,
since - Engineer Professionalism - is the end result desired. The time constraint is the
reason why more than 50% of the learning impact is understanding. Thus, the focus of
this teaching method is “ENGINEERING ROLE PLAY” by using life cycle simulations of
planning, designing and implementation. The teaching materials for this course in-
cludes the preparation stages and simulation of engineering practices.

Safety, Health, Work and Environmental Safety
ENIR701003
2 credits
Description:
1. Students are able to identify the purpose of each safety, health, work safety and
environment policy, procedures, and benefit in their line of work.
2. Students are able to demonstrate their understanding on the background of inves-
tigation concept and report system by using the ICS (Incident Command System) method.
3. Students are able to do evaluation based on behavior industry in implementing pre-determined investigative procedures.
4. Students are able to provide insight on “Emergency Preparedness Process & System Concept”, thus enabling them to prepare Emergency Preparedness System in their work.
5. Students are able to understand the stages needed to be taken in implementing the Health, Safety and Environmental and Work Safety and what should be done in each stages.
6. Students have an awareness in the form of responsible behavior in carrying out health, safety and work environment.

Case Study
ENIR701004
4 credits
Description:
1. Students are encouraged to have analytical abilities towards practical engineering issues arising.
2. Students are able to independently develop ideas and solutions and implement their theoretical knowledge in solving problems.
3. Students are able to prepare themselves in handling crisis situation in various professional engineering/industry environment (in accordance to UU-11).
4. Students are able to comprehend multidiscipline communication and have an appreciation to other discipline.
5. Students understand the core problem and essence and how to address engineering problems.

Engineering Practices
ENIR702005
12 credits
Description:
1. Students understand the engineering philosophy through experience by conducting on the job training.
2. Students understand the trend on engineering science through their experience in their on the job training.
3. Students have an understanding on industry system or engineering system through the use of said systems in their industry or company where the students conduct their on the job training.
4. Students are able to solve problems in their on the job training.
5. Students are able to write complete report on how appropriate engineering report in accordance with the desired term of reference by the end user of the engineering service.
6. Students are able to present and communicate their engineering results as part of their on the job training outputs.
Seminar
ENIR702006
2 credits
Description:
1. Students understand the Term of Reference (TOR) as speaker in seminar, workshop, or discussion.
2. Students understand the requested general theme and the subtheme.
3. Students are able to compile materials.
4. Students are able to convey said materials consecutively and structurally within the allocated time frame.
5. Students are able to understand and answer questions.
6. Students are able to have a discussion and communicate.
6. MASTER PROGRAM

6.1 MASTER PROGRAM IN ENERGY SYSTEM ENGINEERING

Program Specification

1. Awarding Institution | Universitas Indonesia
2. Teaching Institution | Faculty of Engineering Universitas Indonesia
3. Programme Title | Energy System Engineering
4. Class | Special Class
5. Final Award | Magister Teknik (M.T.)
6. Accreditation / Recognition | -
7. Language(s) of Instruction | Bahasa Indonesia
8. Study Scheme (Full Time / Part Time) | Full Time
9. Entry Requirements | Bachelor degree in Engineering/ Bachelor degree in Engineering Education/ Bachelor degree in science in relation with Energy.
10. Study Duration | Designed for 2 years (4 semesters)
 Type of Semester | Number of Semester | Number of weeks / semester
 Regular | 4 | 16-17
11. Graduate Profiles:
 1. Benefitted to the society
 2. Produce innovative work
 3. Have advantage in their field
 4. Have leadership in their field
 5. Have interest on the development of science and technology
 6. Have acknowledge skill
12. Expected Learning Outcomes:
 1. Able to develop knowledge, technology, and /or art in their respective field or professional practice through research that resulted in innovative and tested work.
 2. Able to solve problems on science, technology and/or art in their respective field through inter and multi discipline approach.
 3. Able to manage research and development which benefitted to society and science and able to get national and international recognition.
13. Classification of Subjects

<table>
<thead>
<tr>
<th>No.</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Study Program Subjects</td>
<td>28</td>
<td>Compulsory study program core expertise subject</td>
</tr>
<tr>
<td>ii</td>
<td>Elective Subjects</td>
<td>16</td>
<td>Elective subjects</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
14. Total Credit Hours to Graduate | 44 Credits |
Competence Network
Master Program of Energy System Engineering

Graduate Profile: Master of Engineering with the ability to analyze and design energy systems, provide solutions for energy issues that are interdisciplinary and multidisciplinary in nature, and able to manage research through research activities, energy system development, and policymaking.

9. Able to develop entrepreneurship in the energy field.
10. Able to work together in a team and provide professional service to the society.

5. Able to manage and compile research design and conduct applied research in energy field.
6. Able to analyze policies on energy.
7. Able to develop new and renewable technology.
8. Able to apply engineering science to develop energy models in supporting policies in the energy field.

1. Able to analyze energy demand.
2. Able to conduct energy audit.
3. Able to optimize energy usage.
4. Able to conduct energy efficiency and conversion.
LEARNING COMPETENCE
(Equivalent to the Indonesia Competence Framework / KKNI Level 8)
Master Program of Energy System Engineering

<table>
<thead>
<tr>
<th>No.</th>
<th>KKNI Level 8</th>
<th>General Competence</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| 1 | Able to develop knowledge, technology, and or art in their area of expertise or professional work through research resulting in innovative and tested result. | 1. Able to analyze energy demand.
2. Able to optimize energy usage.
3. Able to perform energy efficiency and conservation in industry.
| 2 | Able to solve science, technology, and or art issues in their area of expertise through interdisciplinary or multidiscipline approach. | 1. Able to conduct industry energy audit.
2. Able to analyze energy policies.
| 3 | Able to manage research and development that might be useful to the society and scientific field and able to gain national and international recognition. | 1. Able to manage and compile research design and conduct applied research in the energy-engineering field.
2. Able to develop entrepreneurship in energy field.
3. Able to work together in a team and provide professional service to the society. | Thesis, Paper, Publication, including Thesis summary with UI repository journal format. Course assignment report. |
CURRICULUM STRUCTURE

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ENES801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ENES801002</td>
<td>Sustainable Energy Systems</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ENES801003</td>
<td>Energy Technology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ENES802004</td>
<td>Technical Research Method</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elective 1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elective 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester 3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ENES803005</td>
<td>Energy Planning and Policy</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elective 3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elective 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester 4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ENES804006</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>ENES804007</td>
<td>Scientific Publications</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-Total</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>44</td>
</tr>
</tbody>
</table>

Elective Subjects for Energy System Engineering Study Program

<table>
<thead>
<tr>
<th>No</th>
<th>Code</th>
<th>Elective Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENES802008</td>
<td>Energy Modelling and Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ENES803017</td>
<td>Energy Economy</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ENES802009</td>
<td>Basic to Nuclear Engineering</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ENES802010</td>
<td>Nuclear Thermohydrolics</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ENES803018</td>
<td>Nuclear Power Plant System</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>ENES803019</td>
<td>Nuclear Safety and Security System</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>ENES802011</td>
<td>Engineering Material and Material Structure</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>ENES802012</td>
<td>Energy Materials</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>ENES803020</td>
<td>Energy Conservation</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>ENES803021</td>
<td>Solar Cell and Fuel Cell</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>ENES802013</td>
<td>Intelligent Network and Scattered Generator</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>ENES802014</td>
<td>New and Renewable Energy</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>ENES803015</td>
<td>Regulation and Market of Electricity</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>ENES803016</td>
<td>Human Resources Management</td>
<td>4</td>
</tr>
</tbody>
</table>
Cross Department Elective Subjects

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>CREDIT</th>
<th>SEMESTER</th>
<th>DEPARTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste to Energy</td>
<td>3</td>
<td>2</td>
<td>Civil Engineering Department</td>
</tr>
<tr>
<td>Emission Control</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Environmental System Dynamics</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Energy Management System</td>
<td>4</td>
<td>1</td>
<td>Mechanical Engineering Department</td>
</tr>
<tr>
<td>Energy Management Engineering</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Thermal Power Generation</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Energy Audit</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ocean Energy</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Optimization of Energy System</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Management of Maritime Energy</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Power Generation Operation and Control</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Electric Utility Power Generation Economic</td>
<td>3</td>
<td>1</td>
<td>Electrical Engineering Department</td>
</tr>
<tr>
<td>Dynamic System and Modelling</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Economics Energy and Management</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electric Power System Planning</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Energy and Environment</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Explor and Product of Hydrocarbon</td>
<td>3</td>
<td>1</td>
<td>Chemical Engineering Department</td>
</tr>
<tr>
<td>Natural Gas Processing</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Natural Gas Project Management</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Natural Gas Economics</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Transportation and Utilization of Natural Gas</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>3</td>
<td>1</td>
<td>Industrial Engineering Department</td>
</tr>
<tr>
<td>Logistics System</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Conceptual System Planning</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Logistics and Support for System Engineering</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Technology Policy Modelling with System Dynamics</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
COURSE SYLLABUS

COMPULSORY SUBJECT:
ADVANCED ENGINEERING MATHEMATICS
ENES801001
4 credits
Course description: This subject will discuss advanced engineering mathematic concept in solving engineering problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

SUSTAINABLE ENERGY SYSTEM
ENES801002
4 credits
Course Description: This subject will give a description on the development of energy technology, energy source and the use of energy today. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

ENERGY TECHNOLOGY
ENES801003
4 credits
Course description: This subject will discuss the concept of Energy Technology in solving engineering problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

TECHNICAL RESEARCH METHODS
ENES802004
3 credits
Course description: This subject will discuss the basic concept and the nature of re-
search; variety of research; research steps and methods that are used in engineering research. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

ENERGY PLANNING AND POLICY
ENES803005
3 credits

Course description: This subject will give the concept for Planning and Energy Policy in solving engineering problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

Syllabus: Statistical Review on Energy Modelling; Model Use in Decision Making; Method for Model Evaluation; Communication Problem in Energy Policy Analysis; Modelling Energy Demand in Short and Middle Term; Energy Model and Technology Review; Electricity Development in the Future; Production Modelling and Price Decision; Analysis and Energy Demand Modelling; Using Energy Modelling for Business Decision; Model Comparison for Policy and Energy Planning; Validation Problem and Energy Model Assessment.

THESIS
ENES804006
8 credits

SCIENTIFIC PUBLICATION
ENES804007
2 credits

ELECTIVE SUBJECTS:
ENERGY ECONOMY
ENES803017
3 credits

Course description: This subject will give the concept of Energy Economy in solving engineering problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

Syllabus: Energy Leading Economic Development; Policy for Economic and Energy Development; Energy Supply and Demand; Leading Economy: Case Study on Economic Development; Energy Conservation and Efficiency; Economy Crisis Infrastructure; Land Use and Energy Leading Economic Development; Building Urban Energy Center; Building Green Economy; Energy Flakes Revolution.

ENERGY MODELLING AND POLICY ANALYSIS
ENES802008
3 credits

Course description: This subject will give the concept for Energy Modelling and Policy Analysis in solving engineering problems. The subject will be done by using interactive
class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia. Syllabus: Conceptual Framework; Basic Engineering; Sub-sectoral Analysis; Sectoral Integration; Implementation.

BASIC NUCLEAR ENGINEERING
ENES802009
4 credits
Course description: This subject will give the concept for nuclear technology by focusing on fiction reaction as their energy source, generator design, reactor, instrumentation, safety and waste management. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

NUCLEAR THERMOHYDROLICS
ENES802010
4 credits
Course description: This subject is focusing on the thermos-hydraulic analysis on nuclear energy system, mass conversion, movement, energy, reactor response. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

NUCLEAR POWER PLANT SYSTEM
ENES803018
4 credits
Course description: This subject is giving the explanation on design and key features on nuclear energy generator, including: reactor, control system and operation, and safety. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

NUCLEAR SAFETY AND SECURITY SYSTEM
ENES803019
4 credits
Course description: This subject will give the explanation on basic safety element and safety from nuclear plant facility. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

ENGINEERING MATERIAL AND MATERIAL STRUCTURE
ENES802011
4 credits
Course description: This subject will give basic materials theory that support energy
engineering which includes: atomic theory, atomic bond, bonding system, crystal structure, materials structure and characteristic, iron material selection, marking classification and steel specification, low steel alloy, heat treatable carbon steel and low alloy steel, tool steel selection, stainless steel selection, cast iron, non-ferrous material selection (Al, Ti, Mg and Ni and their fusion). The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

ENERGY MATERIALS
ENES802012
4 credits
Course description: This subject will give the explanation on materials for energy field and other connected area, with the application in energy production and conservation with the main concept in renewable energy. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

ENERGY CONSERVATION
ENES803020
4 credits
Course description: This subject will focus on the specific material used as energy storage. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

SOLAR CELL AND FUEL CELL
ENES803021
4 credits
Course description: This subject will give the basic materials theory used in solar cell and fuel cell. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

INTELLIGENT NETWORK AND SCATTERED GENERATOR
ENES802013
4 credits
Course description: This subject will give the concept of Smart Network and Dispersed Generator in solving engineering problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia.

Syllabus: Contextual regulation: what, why, how, if, and when for Smart Grid; Smart Supply: Integrating Renewable Generation & Distribution; Smart Infrastructure, Smart Price, Smart Device, Smart Customer, Smart Demand; Study Case & Application.
NEW AND RENEWABLE ENERGY
ENES802014
4 credits
Course description: The subject will study the concept for new and renewable energy in solving engineering problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia. Syllabus: Earth Energy Source; Recycle; Alternative Vehicle for Gasoline; Petroleum Refining; Clean Energy Innovation; Green Building Design; Energy in Solid Biomass; Future Demand.

REGULATION AND MARKET OF ELECTRICITY
ENES803015
4 credits
Course description: This subject will discuss the concept of Regulation and Electricity Market in solving engineering problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia. Syllabus: The Industry so far; Current Policy Problems; The Future.

HUMAN RESOURCES MANAGEMENT
ENES803016
4 credits
Course description: This subject will discuss the concept of Human Resources Management in solving Engineering Problems. The subject will be done by using interactive class method and active learning via small group discussion and problem-based learning. Assessment for this subject is done through individual assignment, group assignment, quiz, midterm examination, and final examination. This subject is delivered in Bahasa Indonesia. Syllabus: Introduction to Human Resources; Human Resources Management and Business Environment; Human Resources Organization; Human Resources Strategy; Talent Source; Employee Relations.
6.2 MASTER IN CIVIL ENGINEERING

Program Specification

1. Awarding Institution: Universitas Indonesia
2. Teaching Institution: Universitas Indonesia
3. Programme Title: Graduate Program in Civil Engineering
4. Class: Regular
5. Final Award: Master Teknik (M.T)
7. Language(s) of Instruction: Bahasa Indonesia and English
8. Study Scheme (Full Time / Part Time): Full Time
9. Entry Requirements: Bachelor Degree (S1)
10. Study Duration: Designed for 2 years

<table>
<thead>
<tr>
<th>Type of Semester</th>
<th>Number of Semester</th>
<th>Number of weeks / semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

11. Graduate Profiles:
Magister of Civil Engineering who has specialization, profesional ethic and an ability to conduct independent research and to pursue study.

12. Expected Learning Outcomes:
1. Problem Recognition and Solving: Synthesize the solution to an ill-defined engineering problem into a broader context that may include public policy, social impact, or business objectives. (L5)
2. Experiment: Specify an experiment to meet a need and conduct the experiment, analyze and explain the resulting data (L5)
3. Technical Specialization: Evaluate a design of a complex design or process, or evaluate a validity of newly created knowledge or technologies in a traditional or emerging advanced specialized technical area appropriate to civil engineering.
4. Sustainability: Analyze systems of engineered works, whether traditional or emergent, for sustainable performance. (L4)
5. Communication: Plan, compose, and integrate the verbal, written, virtual, and graphical communication of a project to technical and nontechnical audiences (L5).
6. Lifelong Learning: Identify additional knowledge, skills, and attitudes appropriate for professional practice. (L4)

13. Classification of Subjects

<table>
<thead>
<tr>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i Program Study Subjects</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>ii Specialization Subjects</td>
<td>12 - 22</td>
<td>28-49</td>
</tr>
<tr>
<td>iii Elective Subjects</td>
<td>3 - 12</td>
<td>7-28</td>
</tr>
<tr>
<td>iv Seminar, Thesis, Scientific Publications</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>100%</td>
</tr>
</tbody>
</table>

14. Total Credit Hours to Graduate: 44 Credits
Learning Outcomes

Graduate Profile:
Magister of Civil Engineering who has specialization, professional ethic and an ability to conduct independent research and to pursue study

Evaluate a design of a complex design or process, or evaluate a validity of newly created knowledge or technologies in a traditional or emerging advanced specialized technical area appropriate to civil engineering (L6)

Synthesize the solution to an ill-defined engineering problem into a broader context that may include public policy, social impact, or business objectives. (L5)

Specify an experiment to meet a need and conduct the experiment, analyze and explain the resulting data (L5)

Plan, compose, and integrate the verbal, written, virtual, and graphical communication of a project to technical and nontechnical audiences (L5).

Identify additional knowledge, skills, and attitudes appropriate for professional practice. (L4)

Analyze systems of engineered works, whether traditional or emergent, for Sustainable performance. (L4)
Flow Diagram of Subjects - Graduate Program on Civil Engineering

CIVIL ENGINEERING

MASTER PROGRAM

STRUCTURE
- Semester 1
 - Prestressed Structure
 - Structural Dynamics

- Semester 2
 - Advanced Mechanics of Material
 - Concrete Technology & Advanced Reinforced Concrete
 - Advanced Steel Structure

- Semester 3
 - Offshore Structure
 - Plate & Shell
 - Bridge Structure
 - High Rise Structural Building
 - Special Topic of Structural Engineering

- Semester 4
 - Thesis

GEOTECH
- Semester 1
 - Applied Math
 - Engineering System & Value
 - Geotechnic Investigation
 - Advanced Soil Mechanics

- Semester 2
 - Research Methodology
 - Slope Stabilization & Soil Improvement
 - Environmental Geotechnics

- Semester 3
 - Research Proposal
 - Numerical Methods in Geotechnical Engineering
 - Dynamics & Earthquake in Geotechnics
 - Special Topics in Geotechnics
 - Advanced Foundation Engineering & Deep Excavation

- Semester 4
 - Thesis
 - Scientific Publications
 - Choose 2 courses
MASTER PROGRAM

CIVIL ENGINEERING

570

FACULTY OF ENGINEERING
CURRICULUM STRUCTURE OF GRADUATE PROGRAM ON CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>Kode</th>
<th>Subject</th>
<th>SKS</th>
<th>Major</th>
<th>STR</th>
<th>GT</th>
<th>TR</th>
<th>SDA</th>
<th>TL</th>
<th>MP</th>
<th>MK</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STR</td>
<td>GT</td>
<td>TR</td>
<td>SDA</td>
<td>TL</td>
<td>MP</td>
<td>MK</td>
<td>MI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV801001</td>
<td>Applied Math</td>
<td>3</td>
</tr>
<tr>
<td>ENCV801002</td>
<td>Engineering System & Value</td>
<td>3</td>
</tr>
<tr>
<td>ENCV801101</td>
<td>Prestressed Concrete Structure</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV801102</td>
<td>Structural Dynamics</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 801 201</td>
<td>Advanced Soil Mechanics</td>
<td>3</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 801 202</td>
<td>Geotechnic Investigation</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 801 301</td>
<td>Traffic Control Engineering</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 801 302</td>
<td>Transportation System</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 801 401</td>
<td>Engineering Hydrology</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 801 402</td>
<td>Ground Water Hydraulics</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV801501</td>
<td>Environmental Risk Management</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV801502</td>
<td>Technology of Solid Waste Treatment: Operational and Design</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 801 601</td>
<td>Project Investment and Finance</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 801 602</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>Major Compulsary Courses</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802003</td>
<td>Research Metodology</td>
<td>3</td>
</tr>
<tr>
<td>ENCV802101</td>
<td>Earthquake Resistance Building</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802102</td>
<td>Finite Element Method</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802103</td>
<td>Advanced Mechanics of Material</td>
<td>3</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802104</td>
<td>Advanced Steel Structure</td>
<td>3</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802105</td>
<td>Concrete Technology & Adv. Reinforced</td>
<td>3</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802201</td>
<td>Slope Stabilization and Soil Improvement</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802202</td>
<td>Environmental Geotechnics</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802203</td>
<td>Numerical Methods in Geotechnical Engineering</td>
<td>3</td>
<td>3</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 802 301</td>
<td>Transportation Economics</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 802 302</td>
<td>Transportation Policy</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV 802 303</td>
<td>Transportation Safety</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802401</td>
<td>Environmental Fluid Mechanics</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802402</td>
<td>Water Resources Management</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802403</td>
<td>Hydraulics Structures</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802501</td>
<td>Contaminating and Soil Remediation</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802502</td>
<td>Advanced Waste Water Engineering</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802503</td>
<td>Waste to Energy</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802504</td>
<td>Emission Control</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802505</td>
<td>Technology of Resources Efficiency - Life Cycle Analysis (LCA)</td>
<td>3 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802506</td>
<td>Pollution Prevention</td>
<td>3 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802507</td>
<td>Environmental System Dynamics</td>
<td>3 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802601</td>
<td>Time & Cost Management</td>
<td>3 3 P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802602</td>
<td>Quality & Risk Management</td>
<td>3 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802603</td>
<td>Procurement Management, Contract & Claim Administration</td>
<td>3 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802604</td>
<td>Advanced Construction Methods & Equipment</td>
<td>3 P P P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENCV802605</td>
<td>Legal & Institutional Framework</td>
<td>3 P P 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major Compulsory Courses

<table>
<thead>
<tr>
<th></th>
<th>6 6 9 9 12 9 9 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Total</td>
<td>9 9 12 12 15 12 12 12</td>
</tr>
</tbody>
</table>

3rd Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV803101</td>
<td>Offshore Structure</td>
<td></td>
</tr>
<tr>
<td>ENCV803102</td>
<td>Bridge Structure</td>
<td></td>
</tr>
<tr>
<td>ENCV803103</td>
<td>Highrise Structural Building</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 201</td>
<td>Adv. Foundation Engineering & Deep</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 202</td>
<td>Dynamics & Earthquake in Geotechnics</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 203</td>
<td>Special Topics in Geotechnics</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 301</td>
<td>Transportation Modelling</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 302</td>
<td>Public Tranport Management and Planning</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 303</td>
<td>Harbor Transportation Management and Planning</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 304</td>
<td>Airport Planning and Management</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 305</td>
<td>Advanced Road Geometric Design</td>
<td></td>
</tr>
<tr>
<td>ENCV803306</td>
<td>Advanced Pavement Engineering</td>
<td></td>
</tr>
<tr>
<td>ENCV803307</td>
<td>Advanced Highway Materials</td>
<td></td>
</tr>
<tr>
<td>ENCV803308</td>
<td>Road Preservation Strategy</td>
<td></td>
</tr>
<tr>
<td>ENCV803309</td>
<td>Railway Transportation Planning</td>
<td></td>
</tr>
<tr>
<td>ENCV803310</td>
<td>Assets, Environment and Safety</td>
<td></td>
</tr>
<tr>
<td>ENCV803311</td>
<td>Construction & Rehabilitation of Railway Infrastructure</td>
<td></td>
</tr>
<tr>
<td>ENCV803312</td>
<td>Advanced Railway Transportation Technology</td>
<td></td>
</tr>
<tr>
<td>ENCV803313</td>
<td>Operational & Maintainance of Railway Transportation</td>
<td></td>
</tr>
<tr>
<td>ENCV803314</td>
<td>Transportation & Environment</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 315</td>
<td>Logistic Transportation</td>
<td></td>
</tr>
<tr>
<td>ENCV 803 401</td>
<td>Ecohydrology</td>
<td></td>
</tr>
<tr>
<td>ENCV803402</td>
<td>Water Related Disaster Management</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENCV803403</td>
<td>Watershed Vulnerability Assessment</td>
<td>0</td>
</tr>
<tr>
<td>ENCV803404</td>
<td>Operation & Maintenance of Hydraulics</td>
<td>6</td>
</tr>
<tr>
<td>ENCV803501</td>
<td>Urban water Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>ENCV803502</td>
<td>Environmental Audit</td>
<td>3</td>
</tr>
<tr>
<td>ENCV803503</td>
<td>Advanced Environmental Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>ENCV 803 601</td>
<td>Human Resource and Project Communication Management</td>
<td>3</td>
</tr>
<tr>
<td>ENCV803602</td>
<td>Technology Management for Competitive Advantage</td>
<td>6</td>
</tr>
<tr>
<td>ENCV 803 603</td>
<td>Infrastructure and Regional Development</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 803 604</td>
<td>Infrastructure Asset Management</td>
<td>3</td>
</tr>
<tr>
<td>ENCV 803 605</td>
<td>Management System of Health, Safety and Environment</td>
<td>3</td>
</tr>
<tr>
<td>ENCV800001</td>
<td>Research Proposal</td>
<td>3</td>
</tr>
<tr>
<td>Total Compulsary Courses</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCV 804 101</td>
<td>Special Topics on Structural Engineering</td>
<td>P</td>
</tr>
<tr>
<td>ENCV 800 002</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENCV800003</td>
<td>Scientific Publications</td>
<td>2</td>
</tr>
<tr>
<td>Total Compulsary Courses</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Sub Total

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

STR = Structure
GT = Geotech
TR = Transportation
SDA = Water Resources Management
TL = Environmental Engineering
MP/MK/MI = Construction/Project/Infrastructure Management
ENCV801001
Applied Math
3 SKS
Learning Outcomes:
1. Students should be able to implement procedures to find solutions of differential equations, equations which are common in civil science discipline, both analytically and numerically

Competence in Curriculum: Prior knowledge for problem recognition & solving
Prerequisites:
Text Books:

ENCV801002
Engineering System & Value
3 SKS
Learning Outcomes: Able to evaluate system engineering including analysing, simulating and optimizing to produce a better designed and more valuable system engineering.

Competence in Curriculum: Prior knowledge for problem recognition & solving
Syllabus: Course Overview; Introduction to Systems Definitions & Concepts; Introduction to Sustainability Development; Optimization and Reliability, Design & Operation, Decision Making; Issues on Human, Organizational and Technology; Value Engineering and Innovation; New Product Development; System Dynamic and Simulation (MCS)
Prerequisites:
Text Books:
3. Value World, Journal of Society of American Value Engineers (SAVE International), USA.

ENCV802003
Research Methodology
3 SKS
Learning Outcomes:
1. Able to explain the thinking concept of research method and apply them in selecting the appropriate research methodology and in preparing the research proposal
2. Able to explore the uniqueness and originality of the proposed research (uniqueness of civil engineering problems)

Competence in Curriculum: Prior knowledge for research/experiment dan WA10 (communication)
Syllabus: Methodological principles, research characteristic and process, quantitative and qualitative research paradigm, scientific method, problem statement, construct hypotheses, critical and logic thinking, research strategy, data collection techniques and analysis techniques, scientific paper, seminar drafting guidance with potential mentors

Prerequisites:

Text Books:
1. Nazir, Moh, Metode Penelitian, Ghalia Indonesia, 2003
2. Keputusan Rektor UI No 628, Pedoman Teknis Penulisan Tugas Akhir Mahasiswa Universitas Indonesia, 2008
5. Riduwan, Skala pengukuran variable-variabel penelitian, Alfabeta, 2002

ENCV800001
Seminar
1 SKS
Learning Outcomes: Students should be able to apply the knowledge from the specificity / specialization that has been gained in preliminary studies, analyze the results and describe it orally (presentation) and written (seminar book)

Competence in Curriculum: Prior knowledge for Research/Experiment, WA10 (communication) and WA12 (lifelong learning)

Syllabus:
Prerequisites: Research Methodology

ENCV 800 002
Thesis
7 SKS
Learning Outcomes:
1. Able to integrate the knowledge specificity of Civil Engineering in the design and implementation stage of the research to solve a problem, able to analyze and interpret research data to obtain valid conclusions
2. Able to explain the results of the research in the form of a scientific paper (thesis) and presentation

Competence in Curriculum: Prior knowledge for WA2 (problem analysis), WA3 (design/development of solutions), WA5 (modern tool usage), WA6 (the engineer and society), WA7 (environment and sustainability), WA9 (individual and team work) dan WA10 (communication) and WA12 (lifelong learning)

Syllabus: -
Prerequisites: Research Methodology and Seminar

Text Books:

ENCV800003
Scientific Publication
2 SKS
Learning Outcomes:
1. Students should be able to explain the results of his/her research in the scientific literature using a proper Indonesian / English language according to the intended standard of writing journals / proceedings.

Competence in Curriculum: Prior knowledge untuk WA10 (communication)

Syllabus: -
Prerequisites: Thesis

Text Books:

Course Syllabus of Structure Specialization
ENCV801101
Prestressed Concrete Structure
3 SKS
Learning Outcomes:
1. Students should be able to design pre-stressed concrete according to the standard regulations, in buildings and long span bridges using factored Strength (Load and Resistance Factored Design, LRFD), serviceability Competence in Curriculum: Technical Specialization, Communication
Syllabus:
Prestressed material review and how to design for bending based on Serviceability Limit State Design (SLSD) method. Load and factored strength design in the aspect of bending, shear and torsion. Serviceability limit on the aspect of deflection. Statically indeterminate structure. Loss of prestressing force due to friction and wobbling, Elastic shortening of concrete, anchor slip, creep and shrinkage of concrete, along with the relaxation of prestressing steel. Analysis of the columns and beams prestressed meeting point; analysis of prestressed anchor zone. Application in buildings and long span bridges. external prestressing, and special applications in cable stayed bridge. Prerequisites: -
Text Books: -
3. ACI 318-02 & ACI 318R-02: “Building code requirements for structural concrete and commentary”, American Concrete Institute, 2002.

ENCV801102
Structural Dynamics
3 credits
Learning Outcomes: Students should be able to analyze civil engineering buildings subjected to dynamic forces.
Competence in Curriculum: Technical Specialization
Syllabus: Dynamic load types, structures and responses; structural modeling as a single-degree-of-freedom (SDOF) system; SDOF free vibration; SDOF Forced vibration: harmonic dynamic loads, periodic and erratic loads; Response analysis to SDOF using numerical integration method; general-
ization of SDOF; modelling of Multi-Degrees-of-Freedom (MDOF), static condensation applications; eigen problem; forced vibration on harmonic loading, spectra responses.

Prerequisites:
Text Books:

ENC802101
Earthquake Resistance Building
3 credits
Learning Outcomes: Students should be able to analyze the effect of earthquakes on civil engineering buildings and able to design earthquake proof buildings

Competence in Curriculum: Technical Specialization
Syllabus: Introduction: aspects of earthquake, causes, fault, wave, damage mechanism, size of the earthquake; Characteristics of ground motion and response spectrum; Architectural Considerations on the earthquake resistant structural system; Building dynamic response; Equivalent Static Analysis: The principle of equivalent static seismic forces, Equivalent static procedure according to SNI standard; Advanced Equivalent Static Analysis: The principle of equivalent static seismic forces; Equivalent static procedure according to SNI standard; Lateral stability and drift design; Seismic design of floor diaphragms; The design concept of capacity and ductility in earthquake planning; Portal structural seismic design and detailing: beams, columns, beam-column joint; Advanced seismic Structure Design & detailing portal: beams, columns, beam-column joint; Advanced seismic Structure Design & detailing portal: beams, columns, beam-column joint; Advanced shear wall structure seismic design and detailing; Double structural seismic design and detailing: portal and sliding walls

Prerequisites:
Text Books:
1. Farzad Naeim, the Seismic Design Handbook, 1989
4. BSN, Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung, SNI 03-1726-2002
5. BSN, Tata Cara Perencanaan Struktur Beton untuk Bangunan Gedung, SNI 03-2843-2002
6. BSN, Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung, SNI 03-1729-2002

ENC802102
Finite Element Method
3 credits
Learning Outcomes:
1. Able to apply finite element method (FEM) for 3-dimension elastic problem and 2-dimension solid elastic (plane stress and strain)
2. Able to use finite element method package, and create sub routine matrix of element strength.

Competence in Curriculum: Technical Specialization
Syllabus:
Introduction, FEM definition and concept, variation methods, Galerkin and Ritz solution, shape function, model displacement and mixed, one-dimensional element (1D) bars and beam of Euler Bernoulli, 2D isoperimetric element (plane stress, plain strain), 3D isoperimetric element, stiffness and time matrix, Gauss and Hammer numeric integration, application programming packages in 2D and 3D elastic problem, task of making subroutine elements (2D and 3D) and their incorporation in a PCFEAP (Personal Computer Finite element Analysis program) main program.

Prerequisite: Applied Mathematics
Reference Book:
2. R.D. Cook, Malkus, M.E. P1esha, Concepts and Application of Finite Element Analysis,
ENCV802103
Advanced Mechanics of Material
3 Credits
Learning Outcomes:
Able to deeply analyze the structure response due to static load or temperature with considering material and structure properties in elastic and inelastic condition.

Competence in Curriculum: Technical Specialization

Syllabus:
Mechanical properties of materials; Stress-strain theory; Temperature- stress strain relationship; Inelastic material properties; Application methods of energy; Torque; Asymmetric moment on straight beam; Central shear on beam with a cross section of thin walls; Curved beams; Beam over elastic foundation.

Prerequisite:
Reference Book:

ENCV802104
Advanced Steel Structure
3 Credits
Learning Outcomes:
Able to design steel structure component that includes connection design, girder plate, portal and composite structure on simple high-rise building using elastic and plastic method.

Competence in Curriculum: Technical Specialization

Syllabus:

Prerequisite:
Reference Book:
4. SNI-03-1729-2021, Badan Standarisasi Indonesia, Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung, Standar, 2002

ENCV802105
Concrete Technology & Adv. Reinforced Concrete
3 Credits
Learning Outcomes:
1. Able to identify modern and future concrete technology, especially high-performance and/or high-grade concrete,
2. Able to design high quality concrete mix to achieve specific performance according to applicable legislation, to be applied in high-rise buildings and long span bridges.
3. Able to design reinforced concrete structural components include shear walls, beams coupling, boundary elements, beam-column panel connection.

Competence in Curriculum: Problem Recognition and Solving, Technical Specialization

Syllabus:
• Modern and future concrete, technology, engineering and behavior according to SNI (DOE) and ACI; Abrams-FXS formulation; Feret and Bolomey formulations. Concrete rheology; FXS model for concrete rheology; Visco elastic behavior of concrete rheology and its application in creep and shrinkage of concrete; FXS models of non-Newtonian.

• Reinforced concrete design for bending, axial, shear and torsion and confined concrete structure.

• Various research and developments; comparison of conditions based on SNI, ACI and NZS

• Design: Ductile structure wall, beam coupling, boundary elements, connection panel of portal beams and columns; shear strength, adhesion and stiffness of connection panel; Mechanisms and behavior of elastic and inelastic. Diagonal press field theory; Modified compression field theory.

• Models strut and tie; and applications in the design of concrete structures.

Prerequisite:

Reference Book:
1. ACI: “ACI Manual of Concrete Practice”, American Concrete Institute, 2015.
8. ACI Committee 318: “Building Code Requirements for Structural Concrete, ACI 318-14”, American Concrete Institute, Detroit, 2014.
11. Beban minimum untuk perancangan bangunan gedung dan struktur lain, SNI 1727 : 2013
Learning Outcomes:
1. Able to analyze the development of bridge structure that includes determining the location and layout, know the structural system and types of steel and concrete bridge.
2. Able to design upper and lower bridge structure and plan the bridge construction method.

Competence in Curriculum: Technical Specialization

Syllabus:
The development and history of bridge; Bridge location and layout; Load regulation on highways and railways; Bridge structural system: top and bottom structure and foundation and support, bridge type geometry; wooden bridge; steel bridge: rolled and plate girders, composite, orthotropic deck, bridge frame, arch, suspension, cable stay; concrete bridges: bridge plate, deck girder, box girder, pre-stressed segmental bridges, reinforced concrete frame, frame, arch, cable stay and pre-stressed bridge; substructures, pier and abutment; analysis and design of bridges: bridge load, load distribution on stringers, longitudinal beams and floor beams, pre-stressing effects, structural analysis and design; load on the substructure, soil pressure, seismic design; Design placement.

Prerequisite:

Reference Book:
1. MS Troisky, Planning and Design of Bridges, John Wiley & Sons, Inc, New York, 1994
2. SNI No. 1725-1989-F, Departemen Pekerjaan Umum, Pedoman Perencanaan Pembebanan Jembatan Jalan Raya
3. Departemen Pekerjaan Umum, Peraturan Perencanaan Teknik Jembatan - Bridge Management Systems, 1992,
5. PP Xanthakos, Theory and Design of Bridges, John Wiley & Sons, New York, 1994

ENCV803103
Highrise Structural Building
3 Credits

Learning Outcomes:
1. Able to apply the procedures for design and technology of pre-stressed concrete according to the standard regulations that apply to buildings and long span bridge.
2. Able to apply procedures for the design-based methods of Load Design and PBKT factored strength, Load and Resistance Factored Design (LRFD), as well as the limits of serviceability on various aspects of strength, stability and deflections, as well as pre-stressed anchor zones.

Competence in Curriculum: Technical Specialization

Syllabus:
Definition, history, and basic concept of pre-stressed concrete; Typical use of pre-and posttensioning technology; Material properties of concrete and soft reinforcing steel and pre-stress. Pre-stresses losses; Analysis of bending due to the workload (section are not linear elastic fractured); Ultimate strength of pre-stressed concrete cross section; Design of pre-stressed concrete cross section; Design of flexible cross section; Camber and deflection; Pre-stressed continuous beam analysis; Shear strength in pre-stressed beams; Bond and anchorage of pre-stressing steel; Applications for pre-stressed concrete slab. Application of pre-stressed concrete on bridge. Criteria for design of high-rise buildings; Load: gravity, wind and earthquakes; System Structure: Retention of gravity and lateral bracing; Modeling and Analysis. Frame planning (concrete and steel) and sliding walls and double system.

Prerequisite:

Reference Book:
1. SNI 03-2874-2002:’”Tatacara Perencanaan Struktur Beton untuk Bangunan Gedung”, Badan Standarisasi Nasional, 2002
2. Building Code Requirements for Structural Concrete (ACI 318-05), Reported by ACI Committee
318
6. Podolny, W. and Muller, J.M., Construction and Design of Prestressed Concrete Segmental Bridges, John Wiley & Sons, 1982
8. Specification for Structural Steel Buildings, ANSI/AISC 360-05

ENCV803104
Plate and Shells
3 Credits
Learning Outcomes:
1. Able to apply finite element method to analyze and designing of plate and shells structure.

Competence in Curriculum: Technical Specialization

Syllabus:
Plates: Plates formulation; Plate element with shear deformation; Kirchoff element; Test validation and performance of plate element; Shell: geometric description, the principle of virtual work and forms variation, isoperimetric elements, facet-plan element type; Design and analysis of shell structure; concept of plate and shell structures, type and shape of the structure shells, Some aspects of FEA for shell structure, Design and analysis: roof structure; cylindrical shell, gable HP, Folded Plate, Dome; Structure of tank with circular pre-stressing; silos and bunkers.
Prerequisite: -
Reference Book:
1. I. Katili, Metode Elemen Hingga untuk Pelat Lentur, Penerbit Universitas; 2003

ENCV 804 101
Special Topics in Structural Engineering
3 Credits
Learning Outcomes:
1. Knowing the latest technology or topics on structure specificity as well as the development of structural knowledge in the future.

Competence in Curriculum: Technical Specialization

Syllabus:
Selected topics in structure specificity.
Prerequisite:
Reference Book: Selected Journal/Book

Course Syllabus of Geotechnics Specialization

ENCV 801 201
Advanced Soil Mechanics
3 Credits
Learning Outcomes:
1. Able to formulate the behavior of kinds of soil and soil condition.

Competence in Curriculum: Problem Recognition and Solving

Syllabus:
Critical state of soil mechanics; Effects of testing on soil shear strength; Effective stress and total stress approach; Loading and unloading; Short-term and long-term behavior; Further consolidation; The use of horizontal drainage. Unsaturated soil mechanics; Differences in behavior of saturated and unsaturated soil; Soil constitutive model.

Prerequisite:

Reference Book:

ENCV 801 202

Advanced Geotechnical Investigation

3 Credits

Learning Outcomes:
1. Able to formulate complex geotechnical investigation program

Competence in Curriculum: Problem Recognition and Solving, Experiment/Research

Syllabus:
General introduction of Advanced Experimental Laboratory that associated with Geotechnics; introduction, understanding and usage of test results using a Dilatometer, Pressuremeter, Plat Bearing, Swelling, Geotechnical instrumentation, Centrifuge, Triaxial UU/CU/CD, Long-Term Consolidation, Triaxial Cyclic. Further introduction and testing in the laboratory by means of triaxial CU and swelling; as well as field tests with Pressuremeter.

Prerequisite:

Reference Book:

ENCV802202

Slope Stabilization and Soil Improvement

3 Credits

Learning Outcomes:
1. Able to create synthesis of complex slope stabilization solution and the necessary strengthening.

Competence in Curriculum: Problem Recognition & Solving; Experiments/Research, Technical Specialization, Sustainability

Syllabus:
Slope stability analysis of finite and infinite with method of fellinius, bishops, and other methods; Analysis of avalanches by using software; Avalanche hazard analysis and slope improvement / strengthening: soil nailing; strengthening retaining wall structure; Soil improvement: stabilization by mechanical means (dynamic compaction, vibro flotation / compaction) vertical drainage with sand post (sand pile and sand drained), stabilization with chemicals, injection method.

Prerequisite:

Reference Book:

ENCV802202

Environmental Geotechnics

3 Credits
Learning Outcomes:
1. Able to make synthesis of geotechnical solution from complex environmental issue.

Competence in Curriculum: Problem Recognition & Solving, Sustainability; Technical Specialization

Syllabus:
Geotechnical aspects: landfill geotechnical structure, behavior and properties of garbage, geosynthetic applications for landfill, cover land, landfill geotechnical analysis and design, long-term behavior of landfills; Type of soil and groundwater pollution, contaminated soil sampling, transfer of contaminants in ground water, type of soil and groundwater containment, type of soil and groundwater remediation.

Prerequisite:
Reference Book:

ENC802203
Numerical Method in Geotechnical Engineering
3 Credits

Learning Outcomes:
1. Able to determine, executing, and analyzing the result of complex geotechnics issue.

Competence in Curriculum: Problem Recognition and Solving, Experiments and Research

Syllabus:
Introduction to numerical methods in geotechnical engineering; Geotechnical considerations; Constitutive law for geological media; Finite element in linear and non-linear material; Stress strain law in elastic-plastic and elasto-visco-plastic condition; Soil mechanics model with critical conditions (critical states); Completion of finite difference method and finite element in the beam foundation and elastic plate; Analysis of consolidation on soft ground and seepage; Some historical case. Geotechnical case analysis using numerical methods, and interpret the analysis result.

Prerequisite: -
Reference Book:

ENC 803 201
Adv. Foundation Engineering & Deep Excavation
3 Credits

Learning Outcomes:
1. Able to make synthesis of complex deep excavation solution

Competence in Curriculum: Problem Recognition and Solving, Experiment/Research, Technical Specialization.

Syllabus:
Lateral deep foundations; Construction and analysis of diaphragm walls; Constitutive soil models and characteristics of compressible soil; Mat foundation application; The construction methods for large diameter bored pile; Interpretation result of loading test; Deep foundations lateral capacity; construction and analysis of diaphragm walls; Geotechnical work surveillance method.

Prerequisite:
Reference Book:
7. Smith & Paul. Soil Mechanics & Foundation

ENCV 803 202
Dynamics & Earthquake in Geotechnics
3 Credits
Learning Outcomes:
1. Able to create synthesis solution of various problem of geotechnics against earthquake and able to formulate machine foundation solution.

Competence in Curriculum: Problem Recognition and Solving, Sustainability, Technical Specialization.

Syllabus: Dynamic on soil; Basic vibration; Wave in elastic medium; Dynamic soil properties; Vibration foundation; Effect of earthquake on the ground; Seismic lateral earth pressure; Liquefaction; Engine foundation above pole; Vibration theory; Waves in an elastic medium; Dynamic properties of the soil; foundations and vibration. Introduction to the probabilistic analysis of earthquake hazard; Amplification analysis of ground earthquake; Liquefaction phenomenon; Slope stability analysis of earthquake; Analysis of lateral earth pressure due to earthquake. The introduction of soil improvement methods in order to lower the vibration and earthquake effects on the ground.

Prerequisite:
Reference Book:

ENCV 803 203
Special Topics in Geotechnics
3 Credits
Learning Outcomes:
1. Able to formulate solutions for complex soil-structure interaction.
2. Able to formulate the behavior of different kinds of rocks and rock mass conditions.
3. Able to formulate solutions for slope stability of rock mass.

Syllabus:
General introduction: Soil Structure Interaction; Buried structure and sheet pile wall and shallow foundation; SSI modelling in Plaxis 3D program; 3D plaxis application on the sheet pile wall and pile group; The use of geotextile in high vacuum to accelerate the consolidation process; The use of other additives to enhance the strength of the soil; The use of high pressure to perform injection for structure test strength associated with the sub structure.

Prerequisite:
Reference Book:
1. Journal ASCE, yang berkaitan dengan Soil Structure Interaction
2. Canadian Geotechnical Journal yang berkaitan dengan Soil Structure Interaction
3. Journal ASCE yang berkaitan dengan Stabilisasi Tanah
4. Canadian Geotechnical Journal yang berkaitan dengan stabilisasi tanah
5. Non-destructive test

Course Syllabus of Transportation Specialization
ENCV 801 301
Traffic Control Engineering
3 Credits
Learning Outcomes:
1. Students should be able to analyze traffic condition and characteristics using
 mathematical models and micro and macro modeling techniques as a tool for traffic
 flow analysis.

Competence in Curriculum: Technical Specialization

Syllabus: Introduction; Characteristics of Humans; Vehicles and traffic infrastructure in traffic
analysis; Junction control; Traffic flow surveys; Volume of traffic characteristic. Characteristics of
traffic flow speed. Analysis of traffic flow density. Queues analysis and bottle neck theory. Models
of traffic flow; Analysis of shock wave traffic management.

Prerequisite:

Reference Book:
 Willey & Sons.
 Hodder Arnold.
 Hill.

ENCV 801 302
Transportation System
3 Credits
Learning Outcomes:
1. Able to analyze the components of transport system from various dimensions, as well as
 the latest issues related to the Indonesian and global transport system.
2. Able to design a transportation system that includes an operating system, which meets
 the demand and supply aspects of sustainability.

Competence in Curriculum: Problem Recognition and Solving

Syllabus:
Transportation system overview. Characterization and categorization of transportation system for
single and dual mode. (Influence) Factors in the transportation system (planning, design, invest-
ment, operation, maintenance). System Demand. Supply systems. Issues of equality, accessibility,
environmental, economic and disability.

Prerequisite: Transportation Engineering

Reference Book:
 1st ed., The MIT Press.

ENCV 802 301
Transportation Economics
3 Credits
Learning Outcomes:
1. Able to use economy, social impact, in the process of problem solving of complex
 transportation.
2. Able to analyze the demand and supply of transport systems based on economic theory
 and behavior of the traveler.
3. Able to analyze the economic investment of transportation short-term and long-term
 project including measurement of the cost of externalities and financing aspects.

Competence in Curriculum: Problem Recognition and Solving, Sustainability
Syllabus:
Introduction to transport economics; Concept of demand and supply of transport systems. Spatial problems: movement, transport and location. Transport demand, costs and direct benefits of transport and recovery costs. External costs of transport: congestion, pollution, accidents and social impact. Transportation investment: the basics of pricing, subsidy, competence between transporta-
tion systems, understanding investment decisions (BCR, IRR and NPV).
Prerequisite:
Reference Book:

ENCV 802 302
Transportation Policy
3 Credits
Learning Outcomes:
1. Able to bring the uniqueness and originality from suggestion of transportation policy arrangement.
Competence in Curriculum: Experiment/Research, Technical
Syllabus:
Transport Policy Formulation; framework for assessing transport policy - land use, accessibility, air pollution, noise, accidents, and sustainability. Planning and transport policies and interaction with layout. Institutional arrangements for transportation planning and management. Risks, uncertainties and complexities in setting transportation policy. Transport policy at the local, regional, metropolitan and national; logistics transport policy.
Prerequisite:
Reference Book:

ENCV 802 303
Transportation Safety
3 Credits
Learning Outcomes:
1. Students able to design prevention program and transportation safety measures, road transportation (C5) and perform simple road transport audit.
Competence in Curriculum: Problem Recognition and Solving, Sustainability
Syllabus:
Introduction: The problem of road safety in Indonesia, road safety policy, and the introduction of road safety engineering. Data accidents: Development of road traffic accident data. The factors that cause accidents: factors of road users, vehicles factor and road and environment factor. Analytical approaches: starting point, macroscopic study, multivariate study and evaluation of the effectiveness of efforts to improve road safety. Handling of road engineering: the roadside hazard management, the protection system, safety at road works and the introduction of a road safety audit. Transport safety: the safety of railways, air transport safety and the safety of shipping.
Prerequisite: Has already taken Road Geometric Design or following matriculation subjects of Road Geometric Design in Strata 1.

Reference Book:

ENCV 803 301

Transportation Modelling

3 Credits

Learning Outcomes:

1. Able to make a model based on transportation infrastructure network.

Competence in Curriculum: Problem Recognition and Solving

Syllabus:

Human characteristics; Vehicle and infrastructure in transportation analysis; Junction control; Traffic flow survey; Characteristics of: volume of traffic flow, traffic flow speed and density; Analysis of queue and bottlenecks theory; Traffic flow models; Shock wave analysis; Traffic Management.

Prerequisite: -

Reference Book: -

ENCV 803 302

Public Transport Management and Planning

3 Credits

Learning Outcomes:

1. Students are able to plan and design public transport system operation.

Competence in Curriculum: Technical Specialization

Syllabus:

Prerequisite: Transportation Engineering, Transportation System

Reference Book:

ENCV 803 303

Harbor Transportation Management and Planning

3 Credits

Learning Outcomes:

1. Able to plan a port based on the technical, operational and environmental aspect as well as to meet and reflect it in a planned and structured way to support the role and functions in the integrated development of port infrastructure.
2. Able to design the layout of the port (water and land space) and calculate the structure of the port buildings facilities facility while taking into account the global aspect of freight
and container.

Competence in Curriculum: Technical Specialization

Syllabus: Introduction: Definition of port according to function, purpose, and type of ports; Port planning concepts; Major factors in the planning of port: type and size of vessel, space and land needed, current composition of existing goods and forecasting; Port Performance: The introduction of performance indicators in relation to the port facilities by considering the needs of Berth Occupancy Ratio (BOR), time of service, productivity and equipment utility; Port planning instruments: Strategic Plan for Ports, Ports main Plan, Land use plan. Determining the location and layout of port in terms of technical, operational and environmental. Analysis of the needs for port facility; Design of port facility: ships and its effect on port structure (the type and characteristics of the vessel, the forces due to ships, wind, waves, tides and currents). Wave retaining structures planning.

Basics Port planning (determining the shape, port dimensions and maneuver ponds, determining the location and width of the groove for entering the port), fender system (definition of fender, fender type and the selection and calculation of fender) and dock. Freight transport: global and national freight transport growth, understanding of multimodal transport and the development of hinterland region in a port.

Prerequisite: Has taken concrete construction class.

Reference Book:

ENCV 803 304
Airport Planning and Management
3 Credits

Learning Outcomes:
1. Able to plan and design land facilities of an airport with concerning recent issue that affect aviation world.

Competence in Curriculum: Technical Specialization

Syllabus:

Prerequisite:

Reference Book:

ENCV 803 305
Advanced Road Geometry Design
3 Credits

Learning Outcomes:
1. Able to design road geometry, road supporting facility, junction, geometric and parking facility with considering certain aspects regarding road safety.

Competence in Curriculum: Technical Specialization

Syllabus: Introduction: basic of road geometric design associated with cross-section of the road,

Prerequisite: Has already taken Road Geometric Design or following matriculation subjects of Road Geometric Design in Strata 1.

Reference Book:

ENCV803306
Advanced Pavement Engineering
3 Credits

Learning Outcomes:
1. Able to investigate and conducting experiment of flexible and rigid road pavement.
2. Able to calculate the thickness of road pavement based on Mechanistic-Empirical Pavement Design principle with considering the nature and rheology of material due to load from traffic and environment condition so it has Long Term Pavement Performance (LTPP) and fulfill the criteria provided.

Competence in Curriculum: Technical Specialization

Syllabus:
Reviewing the various types of road pavement viewed from basic analysis and planning approach, Various forming materials related to the nature and base characteristics, Main factor for stress strain analysis planning for flexible pavements; Analysis of stress and strain for rigid pavement; Material characterization based on modulus, Fatigue characteristics and deformation; Loading and type and characteristics of loading; The use of software to calculate pavement thickness. The design of flexible pavements based on the empirical and mechanistic principle; Design of rigid pavement.

Prerequisite: Material Properties, Pavement Design

Reference Book:

Advanced Highway Materials

3 Credits

Learning Outcomes:

1. Able to analyze the nature and characteristic of material due to stress and strain as well as rheology of pavement material.

Competence in Curriculum: Technical Specialization

Syllabus: Modeling of concrete pavement: pavement response models and performance models; Asphalt rheology: rheological models of asphalt mix, asphalt binder rheology; Damage resistance characterization; Rigidity characterization: Modulus characterization of asphalt material and asphalt concrete; Asphalt concrete damage models: model of deflection (rutting), model of fatigue; Characteristics of asphalt concrete mixture: stiffness characteristics, characteristics of deflection / wave; fatigue characteristics and water content, influence of load and temperature. Rheological models of asphalt binder and the usage of binder modification; The use of additive materials for improving the quality of asphalt and asphalt concrete: polymer, recycled materials. Waste and by-product materials. Complex modulus and resilient of indirect tensile test, development model in making asphalt concrete models.

Prerequisite: Material Properties, Pavement Design

Reference Book:

Railways Transportation Planning

3 Credits

Learning Outcomes:

1. Able to plan and design the construction of buildings above and below railways and at the base of the bridge.
2. Able to plan railways geometric
3. Know the strategy in constructing railways and its equipment with support from transportation and construction knowledge.

Competence in Curriculum: Technical Specialization

Syllabus: Introduction to the history of technological development of railways and train transportation system. Planning criteria; Speed and double load, classification and space limits the room for railways, railways structure (superstructure and substructure), Terms and conditions for level crossings. Geometric design of railways; width and gauge widening, connections, wedel, curved requirements and rail elevation. Equipment, retrofitting, ventilating equipment and other works in tunnel construction. Function of signs, signals, telecommunications, CTC, operational (one lane or two lanes, station design, goods emplacement and containers, classification, signals and traffic control systems, emplacement and station supporting facilities.

Prerequisite:

Reference Book:

Construction & Rehabilitation of Railway Infrastructure

3 Credits

Learning Outcomes:
1. Know the construction method for railways repair, able to monitor and assess the necessary repair and maintenance of railways.

Competence in Curriculum: Technical Specialization

Syllabus:
Railways infrastructure construction: Geo technology for subgrade, embankment, train lane, and mechanization for track construction; Maintenance and repair of railways; General aspects in the maintenance of railways infrastructure, rail grinding and re-profiling, tamping machines, stone blowing, ballast profiling and stabilization, mechanized track maintenance train, ballast cleaner, formation rehabilitation technologies; Inspection methods, methods of monitoring and detection methods; Monitoring substructure, vehicle for recording railways conditions, railways condition recording system.

Prerequisite

Reference Book:

Course Syllabus of Water Resources Management Specialization

ENCV 801 401
Engineering Hydrology
3 Credits

Learning Outcomes:
1. Assess the effectiveness of flood mitigation infrastructure in controlling water destructive force, based on the analysis of the results of reconstruction of hydrological design using deterministic and stochastic hydrological model (C5).
2. Self-organizing in independent and groups work, so as to demonstrate the mastery of course competencies in the form of a systematic written document and oral presentations that are effective and efficient (A4).

Competence in Curriculum: Technical Specialization, Communication, Lifelong Learning

Syllabus:
Hydrological model system and classification; Hydrological phenomena in volume control, Work equation for various hydrological processes on volume control in the atmosphere; Work equation for various hydrological processes in the subsurface; Work equation for various hydrological processes on the surface; Basic and applied principles of hydrograph; Flood tracking through the dam; Flood tracking through channels; Hydrological statistics; Frequency analysis; Hydrology design; Hydrologic design reconstruction of water damage control infrastructure; Hydrology design effectiveness of water damage control infrastructure.

Prerequisite: Fluid Mechanics

Reference Book:

ENCV 801 402
Groundwater Hydraulics
3 Credits

Learning Outcomes:
1. Able to weighing the alternatives of land use establishment based on the formulation of the recharge / discharge characteristic and spatial distribution pattern of groundwater
Able to prepare a paper on the alternative of land use establishment in a region with the characteristics of the groundwater flow in the known area, and present it orally.

Competence in Curriculum: Experiment/Research, Technical Specialization, Communication, Lifelong learning.

Syllabus: Concept of groundwater conservation; Role of groundwater flows quantification for civil engineering for conservation; Hydraulic head; Hydraulic conductivity; Calculation of flux (q) using Darcy’s law; The law of mass conservation in a controlled volume space; Land property; General equation of groundwater flow, Radial flow formulation; Effect of pump network pumping on limited aquifer; Calculation of K and S value based on data from pumping tests; Formulations of the basic flow net theory equation; Flow net classical method application; Flowline concept application on the field; Regional groundwater; Numerical solution for differential equations; MODFLOW package usage; Project task

Prerequisite:

Reference Book:
4. Manual SEEP2D, ASRI
5. Manual Modflow, ASRI
6. Dynamics of Porous Media Edisi 1, Jacob Bear, Dover, 1988

ENCV802401
Environmental Fluid Mechanics
3 Credits

Learning Outcomes:
1. Able to formulate equations of advection dispersion that accommodate chemical decay and precipitation in physics (sink / source), and
2. Able to write a paper about the model of dispersion of pollutants in water surface and underground, and present it orally.

Competence in Curriculum: Technical Specialization, Sustainability, Communication, Lifelong learning.

Syllabus:
Chemical and physical properties of contaminants and water; Conservative form of mass conservation equations; General solutions; Particular solution; Advection dispersion equation that change in space and time for perfectly mixed systems; Analytic solution system advection dispersion equations changing space and time for the system perfectly mixed systems; Numerical finite difference method; Numerical solution of advection dispersion equations that change in space and time for perfectly mixed systems; Advection dispersion equation system varies with time and space for the imperfect mixed system; Advection dispersion analytic equation solution that change in space and time for an imperfect mixed system; Numerical solution of advection dispersion equations that change in space and time for an imperfect mixed system.

Prerequisite:

Reference Book:

ENCV802402
Water Resource Management
3 Credits
Learning Outcomes:
1. Able to work independently and in teams to assess (evaluate the process or complex design results) various aspects of Water Resources Management (MSDA) in solving the problem of water resources and is able to present the results of the assessment in the form of a written systematic document and able to present it verbally.

Syllabus:
Students are given the provision to understand: 1. The principles aspect and policy of water resources management (in Indonesia) and its development; 2. Aspects and models of Integrated Water Resources Management/IWRM for both national and international scale; 3. Management aspect based on regulation and government policy related to three (3) pillars of water resource management which is utilization, water destructive force controlling, and conservation; 4. Supporting aspects of water resources management which includes hydro economy; 5. Case management of water resources (or project) inside a Water Resource Management Area or basin.

Reference Book:

ENCV802403
Hydraulics Structures
3 Credits
Learning Outcomes:
1. Students are able to calculate the dimensions needed, evaluating the strength and stability of important waterworks that are in suppletion system through open channel, drainage and small reservoir and calculating the physical model dimension for various scale.

Syllabus: 1. Scope and definitions; 2. Suppletion system work principle through open channels: -weirs design, sluice gate, measuring building, dividing building; 3. The principle of drainage channels system; - Micro drainage channel network design; -Highway drainage design; 4. The design of complementary waterworks: Crossworks, diversions, drop structures), embankments, strengthening of the cliff and bridge wing (wing wall); 5. Type and working system of reservoirs: dimension requirements design, ogee and siphon spillway, pump; 6. Scale model and similitude.

Prerequisite: Fluid Mechanics, Hydraulics, Water Engineering 1, Water Engineering 2

Reference Book:

ENCV 803 401
Ecohydrology
3 Credits
Learning Outcomes:
1. Able to assess the harmony between existing condition with green infrastructure concept, eco urban village, and environmental construction (Low Impact Development - LID).
2. Able to give recommendation based on 3 green infrastructure integration, eco urban village, and environmental construction (Low Impact Development - LID).
ENCV803403
Watershed Vulnerability Assessment
3 Credits
Learning Outcomes:
1. Able to apply health rapid assessment device of a watershed based on Center Method for Watershed Protection.
2. Able to categorize the health status of the watershed based on waterproof land cover, water quality, and macrobentos diversity, and
3. Able to provide recommendations for further action to improve the health of the watershed.

Competence in Curriculum: Problem Recognition and Solving, Sustainability, Communication, Lifelong Learning.
Syllabus:
Prerequisite:
Reference Book:

ENCV803404
Operation & Maintenance of Hydraulics Structures
3 Credits
Learning Outcomes:
1. Able to perform waterworks technical audit that produce physical condition of waterworks.
2. Able to give follow up recommendation to expedite the operational of waterworks and preserve its sustainability.

Competence in Curriculum: Problem Recognition and Solving, Sustainability, Communication, Lifelong learning.
Syllabus:
Students are given the provision of: 1. Suppletion system audit that covers: dam, sluice gate, measuring building, dividing building; 2. Drainage channel system audit that covers: micro drainage channel network; 3. - road drainage; 3. Complimentary building that related to river audit: levee, retrofitting bridge cliff and wing, cross-structure, dodging-structure, threshold, crib; 4. Polder work system audit that includes reservoir, spillway and pump.
Prerequisite:
Reference Book:

ENCV803402
Water Related Disaster Management
3 Credits
Learning Outcomes:
1. able to design disaster mitigation system related to water damage
2. able to provide follow-up recommendations for increasing community resilience

Competence in Curriculum: Problem Recognition & Solving, Sustainability
Syllabus: disaster life cyle, disaster risk management cycle, Risk scoring system, design of mitigation systems
Prerequisite:
Reference Book:

Course Syllabus of Environmental Engineering Specialization

ENC801501
Environmental Risk Management
3 Credits
Learning Outcomes:
1. Able to analyze (C4) environmental risk based on toxicology approach to assess the impact of pollution to soil, air, and water.

Competence in Curriculum: Problem Recognition and Solving, Sustainability

Syllabus:
Introduction of environmental risks; Concepts, principles and usage of risk in environment; Risks typology and management methods; Techniques and methods for risk calculation; Integrated risk assessment; Ecological Risk Assessment (ERA) - Ecotoxicology; Human Risk Assessment (HRA) - Toxicology; The implementation of environmental risk assessment in industry; Application of environmental risk calculation in pollution case soil, air and water medium; Pollutant fate transport software usage, fugacity and risk assessment of chemicals in the environment.

Prerequisite: Has taken environmental chemistry class.

Reference Book:
1. Simon T (2014), Environmental Risk Assessment a Toxicological Approach
3. International Journal of Risk Assessment and Management (IJRAM)

ENC801502
Technology of Solid Waste Treatment: Operational and Design
3 Credits
Learning Outcomes:
1. Able to apply the knowledge regarding solid waste treatment in design process and treatment process.

Competence in Curriculum: Experiment/Research; Technical Specialization, Sustainability

Syllabus:
Overview of Integrated Solid Waste Management: the concept of sustainable solid waste management, Development of IWMS (case studies and analysis), Elements of IWM; Physical characteristics, chemical, biological and solid waste generation; biological treatment, mechanical, mechanical-biological; thermal processing, landfilling and coating technology; recirculation of solid waste; design, structure and planning for the operating units.

Prerequisite: Integrated Solid Waste Management Design

Reference:

ENC802501
Contaminating and Soil Remediation
3 Credits
Learning Outcomes:
1. Able to prepare remediation program design on contaminated land due to industrial activity or accident.

Competence in Curriculum: Problem Recognition and Solving

Syllabus: Activities that could potentially cause contamination of hazardous and toxic materials on the environment (soil and groundwater); Types and forms of hazardous and toxic pollutants; Patterns and characteristics of the travel and spread of contaminants in the soil; Impacts and risks that pollutant can cause to the environment; Elimination method for contaminants spread in the soil; Restoration method of hazardous and toxic contaminated land; Physical recovery, Chemistry
and Biochemistry; Technical design of soil and groundwater remediation; Economic and financial aspects for remediation projects; Field case study.

Prerequisite: Environmental laboratory, Environment microbiology, Operating and Process Unit, Industrial waste and hazardous material management, Liquid waste management.

Reference Book:
Remediation Engineering: Design Concept, Suthan S., CRC Lewis Publisher, 1999;
3. Environmental Hydrogeology, Philip E. LaMoreaux[et al], CRC Press.2009;

ENCV802502
Advanced Waste Water Engineering
3 Credits

Learning Outcomes:
1. Able to evaluate the implementation of waste treatment in the context resources recovery and analyze issues of sustainability in the operation and maintenance of waste treatment and combine the technical and non-technical aspect in ensuring the sustainability of wastewater treatment that based on resource recovery.

Competence in Curriculum: Problem Recognition and Solving

Syllabus: Nutrient recovery concept; Energy and water from waste; Sustainability in waste treatment in Indonesia; Sustainable waste treatment analysis; Nutrient recovery technology design; Energy and water (Biological Nutrient Removal, Anaerobic Digestion, Membrane Technology), Methods of pre-and post-processing of waste (processing mechanical, thermal and biological).

Prerequisite: Process and Operating Unit

Reference Book:
2. WEF, 2015, Moving Towards Resource Recovery Facilities
3. Kerstens et al, 2015, Feasibility analysis of wastewater and solid waste systems for application in Indonesia
5. Lohri, 2013, Feasibility assessment tool for urban anaerobic digestion in developing countries

ENCV802503
Waste to Energy
3 Credits

Learning Outcomes:
1. Able to identify characteristics and requirements of waste, whether its solid or liquid that has the potential to be recovered as a source of alternative energy that are environmentally friendly.

Competence in Curriculum: Problem Recognition and Solving, Technical Specialization

Syllabus: Calculation of thermo-chemical conversion and bio-chemistry against energy content in the waste material, technological alternatives that can be used and designing it applications. Lecture is held face-to-face, discussions, group work and presentations. Lectures conducted entirely in Indonesian, unless there is a teacher or guest speakers from abroad.

Prerequisite:

Reference Book:
5. Regulations (UU, PP, Perpres, Permen, Kepmen, Perda, Pergub, dll), Norms, standards, guidance, manuals, and others about waste management
6. Online references (Digital Journal and Clipping Media), Lecture handouts, and other reading materials relevant to this subject.

ENCV802504
Emission Control
3 Credits
Learning Outcomes:
Able to analyze and evaluate type and sources of greenhouse gas emission that were caused by solid waste treatment and the methods to control it.
Competence in Curriculum: Problem Recognition and Solving; Technical Specialization; Lifelong Learning
Syllabus:
Process in solid waste treatment that produce emission; Greenhouse gasses; Emission inventory; Emission control in landfill; Landfill design for emission control; Emission control with the usage of technology; Learning is done throughout interactive lecture, assignment, and assistances. Learning activities also includes researches. Scope of the study is solid waste and its management, emission produced, as well as its prevention. Indonesian and English language are used during the process of learning.
Prerequisite: Air Pollution
Reference Book:

ENCV802505
Technology of Resources Efficiency - Life Cycle Analysis (LCA)
3 Credits
Learning Outcomes:
1. Able to use a set of model to give an assessment on sustainable solid waste management.
Competence in Curriculum: Sustainability
Syllabus: Integrated solid waste management overview; Sustainable solid waste management concept; IWMS development (case study and analysis); IMW element; Solid waste generation and composition; Waste collection; Central sorting; Biological treatment; Thermal treatment; Landfilling; Material recycling; Model: STAN 2, Prognosis and IWM 2.
Prerequisite: Integrated Solid Waste Management
Reference Book:

ENCV802506
Pollution Prevention
3 Credits
Learning Outcomes:
1. Able to assess the engineering process in pollution prevention in a particular industrial sector with mass balance analysis and economic benefits of pollution prevention programs oriented to the concept of pollution prevention completion in a process of production/clean production and not an on of pipe solution.
Competence in Curriculum: Technical Specialization
Syllabus: Pollution prevention (P2) concept; Benefits and obstacles of P2; P2 application assess-
ment procedure and case studies; Economic analysis of P2 program application; Introduction of eco-labeling and life cycle assessment; P2 program on construction design process and demolition of buildings, food industry, wood products, agencies and offices; P2 Case Study on an industry.

Prerequisite:

Reference:
3. Paul Bishop, Fundamental and Practice, Pollution Prevention

ENCV802507
Environmental System Dynamics
3 Credits
Learning Outcomes:
1. Able to explain the basic principles of environment as a system with the interaction of environmental components (social, natural and artificial).
2. Able to formulate the amount, concentration, danger level and the impact of environmental pollutants.

Competence in Curriculum: Sustainability
Syllabus:
Definition of basic environmental system with natural environment subsystem, artificial and social; Dynamics of environmental system (integration of basic principles of environmental science: interaction, interdependence, diversity, harmony, and sustainability); Dynamics of physical environment system (cycle of matter and energy, hydrological cycle, food chain and environmental pollution harassment); Environmental physical system management model (determining factor, media and interaction of environmental physical component in an environment system) Social system management model (conflict management and environment mediation); Physical case studies; Social case study.

Prerequisite:

Reference Book:

ENCV803501
Urban water Quality Management
3 Credits
Learning Outcomes:
1. Student able to predict (C5) the capacity and load on the water surface with water quality modeling software.

Competence in Curriculum: Technical Specialization, Sustainability
Syllabus:
Introduction to urban water management in spatial planning and city infrastructure; Type of resources, allocation of water and water availability; Critical water quality and water usage in infrastructure perspective; Water quality and impact of urban waste in correlation with causality and health risks; Calculation of pollution load of solid and liquid waste; Determination of capacity and load on the water surface; Calculation of Total Maximum Daily Load (TMDL) on the water surface; Technology interventions and policy in controlling water quality and municipal waste; Water quality modeling (QUALZE, Epanet, Aquatox ..); Application of case management of urban water quality using software.

Prerequisite: Has taken environmental chemistry and Domestic Waste Water Planning and Applied Mathematics class.

Reference Book:

ENCV803502
Environmental Audit
3 Credits
Learning Outcomes:
1. Able to perform audit and arrange environmental audit report

Competence in Curriculum: Sustainability

Syllabus:
Definitions, principles, concepts and environmental policy in environmental audit; Basic Law and the policy of the environmental audit regulation; Basic Principles of AL (Determination of the key issues and the scope of the audit); Understanding of ISO 1400: Improvement of Environmental Management and Sustainable Development; Study of the Environment Manage Plan/Environmental Management Plan (RKL / RPL); Basic Principles of Auditing (basic principles, procedures, hierarchies and processes in environmental auditing); Types of Audit (compliance audits, waste audits, audit processes); Audit method (procedures for determining, weight, importance and valuation of the environmental audit). Audit document; Audit Case Study (documents cases study).

Prerequisite:
Reference Book:

ENCV803503
Advanced Environmental Chemistry
3 Credits
Learning Outcomes:
1. Able to analyze (C4) nutrient pollution problems and volatile organic substances in the environment and correlate with the sources of pollution, chemical reaction in water, air and soil, as well as equilibrium, thermodynamics and kinetics of these contaminants in various media.

Competence in Curriculum: Problem Recognition and Solving, Technical Specialization

Syllabus: Introduction to Environmental Chemistry (Material cycle before the era of anthropogenic, Cycles of major elements: carbon, nitrogen, sulfur), Water Chemistry (Water properties, water composition, acids and bases, gas in water vs. alkalinity, precipitation and complexation, soluble, water system using the basic concept of chemical equilibrium, thermodynamics, kinetics, anthropogenic versus natural cycles, pollution of water and material transfer of water bodies, Redox in water, adsorption-desorption, biotransformation, interaction phase and speciation), Atmospheric Chemistry (composition, photochemical, particulates, global atmosphere), Geosphere (Geosphere system and cycle, ground system), hazardous waste and Toxicology.

Prerequisite: Basic Chemistry
Reference Book:
Course Syllabus of Construction/Project/Infrastructure Specialization

ENCV 801 601
Project Investment and Finance
3 Credits
Learning Outcomes:
1. Able to implement the principle of project funding in analyzing the risks associated with the projects financing and evaluate project funding.
2. Able to analyze cases of investment and projects financing in real world.

Competence in Curriculum: Problem Recognition and Solving

Syllabus:
Basics of engineering economics; Basics of engineering economic analysis; Decision-making in engineering economics; Inflation, depreciation, tax and sensitivity analysis; introduction of project funding; Structure of project funding; Sources of project funding; Risks in project financing; Project funding modelling; Introduction of sharia-based project funding.

Prerequisite:
Reference Book:

ENCV 801 602
Project Management
3 Credits
Learning Outcomes:
1. Ability to make synthesis (identification, evaluation, and implementation strategy) solution of the problems associated with the entire group knowledge on project management.
2. Able to applying the knowledge of concept of thinking in project management to analyze the problem in the project, acquire the solution and implement it.

Competence in Curriculum: Problem Recognition and Solving

Syllabus:
Project management overview; Initiation and scope management; Time management; Cost management; Human Resource Management; Quality management; Communications management; Risk management; Management of procurement of goods and services; Execution & Control; Control & Closing.

Prerequisite:
Reference Book:
15. Project Management Institute, Project Management Journals.

ENCV802601
Time and Cost Management
3 credits
Learning Outcomes:
1. Able to make synthesis (identification, evaluation, and implementation strategy) solution of problems related to the management of time and costs in construction projects.
2. Able to arrange project scheduling, critical path analysis and how to manage the critical path.
3. Able to estimate the cost and arrange budget structure of a project, controlling, optimizing cash flow and calculating profit and loss in a project.

Competence in Curriculum: Problem Recognition and Solving, Technical Specialization

Syllabus:
Time Management:
Defining activities based on WBS and work packages; Relationship between activity, Activity sequence; Determining the activity of which may be done in parallel and must be done sequentially; Definition of the resources required to perform activities, including the competencies required; Time duration used for completing activities, Developing project schedule.
Cost Management:
Quantity surveyor task and cost estimator, Estimation process, budgeting, controlling, and earned value management (EMV).

Prerequisite: Have knowledge of: 1) Project integration management (project lifecycle, project change management), 2) Project scope management (scope statement, WBS, RAM, etc.)

Reference Book:
1. Skill and Knowledge of Cost Engineering, AACE 2004
2. Hougan, Gregory Effective Work Breakdown Structure, Management Concepts
3. Boussabaine Halim A., Whole Life-cycle Costing, Risk and Risk Responses, Blackwell Publishing
4. Potts, Keith, Construction Cost Management, Taylor & Francis
5. Cost and Value Management in Projects, Ray R.Venkataraman, John Wiley and Sons
7. Control of Risk, A guide to the systematic management of Risk from Construction, CIRIA
8. Dell’Isola Alphonse Value Engineering Practical Application for design, construction, maintenance and Operation, RS Mean
10. Practice Standard for Earned Value Management, PMI

ENCV802602
Quality and Risk Management
3 Credits
Learning Outcomes:
1. Able to make synthesis (identification, evaluation, and strategic implementation) solution of issue regarding quality and risk management in construction project.

Competence in Curriculum: Problem Recognition and Solving, Technical Specialization

Syllabus:
Definition and benefits of quality and risk management, as well as the influence of risk in achieving the quality of the project; Quality of the project which includes the identification of needs and
standards so as to achieve the expected quality; Documenting project implementation process and evaluate the process and work result in accordance to plan; Evaluation of the project results and provide the innovation and know the issues regarding quality management; Risks that could cause failure in project quality achievement; Planning and potential risk identification during the project; Various methods and software to analyze the identified risks priorities; Identification of various actions (risk response) in order to minimize the impact of risk; Supervision to know the indication of deviation with risk management approach; Application of risk management that has been used on various types of projects.

Prerequisite:

Reference Book:

ENCV802603
Procurement Management, Contract & Claim Administration
3 Credits
Learning Outcomes:
1. Able to make synthesis (identification, evaluation, and implementation strategy) solution of problems related to procurement management, contract administration and claims on construction projects.
2. Able to manage project procurement as well as able to make the project contract.

Competence in Curriculum: Problem Recognition and Solving, Technical Specialization

Syllabus:
Planning and procurement strategy; Contract planning; Tender evaluation and selection; Selection and arrangement of procurement procedures strategy; Type of contracts and arrangement of agreement in work contract; Contracts closing and litigation; Legal and regulatory aspects involved in procurement process; Legal and regulatory aspects involved in the process of contract administration; Validation of work contracts.

Prerequisite:
Reference Book:

ENCV802604
Advanced Construction Methods & Equipment
3 credits
Learning Outcomes:
1. Able to make synthesis (identification, evaluation, and implementation strategy) solution of problems related to the method determination and construction equipment.
2. Able to develop methods and equipment in construction projects.

Competence in Curriculum: Problem Recognition and Solving, Technical Specialization

Syllabus:
Concept and definition of construction methods and examples of construction projects; Project life cycle and technology in construction; Construction projects implementation; Methods used for project implementation; Definition of project scope, Description of the project; In depth study of condition in the field of construction projects; Discussions regarding project layout condition; Determining the necessary resources; Explanations of technology for foundation construction; Determining the sequence of project activities; Explanations of technology for high-rise buildings construction; Project risk determination; Explanation of road construction technology; Determination of health and safety policy; Factors of incidents and loss prevention; Explanation of bridge construction technology; Evaluation of quality policy; Technology of tunnels and dams construction; Cost and budget determination; Resource consumption planning; Preparation of project reports.

Prerequisite:

Reference Book:
1. Construction Methods & Management (Nunnally) - Pearson Practice Hall
7. Project Management Body of Knowledge, Project Management Institute - USA.
8. Project Management - Techniques in Planning and Controlling Construction Projects, Ahuja, H.N.
11. Project Management for Engineering and Construction, Garold D. Oberlender

ENCV802605
Legal and Institutional Framework
3 Credits

Learning Outcomes:
1. Able to apply knowledge of various regulations and policies in the field of infrastructure to resolve the legal issues in the case of infrastructure projects.

Competence in Curriculum: Problem Recognition and Solving

Syllabus: State institutions related to infrastructure; Laws and regulations related to infrastructure; Authority of central and regional government; Contract law; Land law (the provision of land for construction of public interest), Law of corporation; GCG and corruption; Supporting law/related (business ethics, business competition, etc.); Case study of legal aspects related to infrastructure.

Prerequisite:

Reference Book:
1. UUD 1945 and Amendments;
5. Taryana Soenandar, Prinsip-prinsip Unidroit sebagai Hukum Kontrak dan Penyelesaian Sengketa Bisnis Internasional, Penerbit Sinar Grafika, Jakarta, 2004

ENCV 803 601
Human Resource and Project Communication Management
3 Credits

Learning Outcomes:
1. Able to identify and analyze the process of human resource management and communication
in construction projects.

2. Able to manage the organization and human resources required during the project

Compentence in Curriculum: Technical Specialization

Syllabus:
HRM organization function; Scope and depth of HRM; HR planning; Develop Human Resource Plan; Project organization; Job Description, RAM / RACI, Job Analysis, Job value / Positional weight; Acquire project team; Procurement and placement of human resources; Develop project team; Process of improving competence; Manage project team; Project team performance assessment; Communication management, Process, Flow Document; Project Performance Report; Stakeholders Management; Measurement and evaluation of project performance; Calculating project overhead cost.

Prerequisite:

Reference Book:

ENC803602

Technology Management for Competitive Advantage

3 Credits

Learning Outcomes:
1. Able to explain the impact of competitive technologies in context of business, industry and economy, as well as cultural and organizations context in application.
2. Able to choose and compile competition strategy to increase competitiveness.
3. Able to innovate and creatively selecting and implementing technology in a process in order to meet VRIO (Valuable, Rare, inimitable and organized) criteria to enhance its competitiveness in the global competition.

Compentence in Curriculum: Technical Specialization

Syllabus:
Technology in the context of economy, industry, business and company; Culture and organizational context; Competitive strategy; Technology, product and industry evolution; Intellectual property rights protection; Developing road map of application of technology management in business models.

Prerequisite:

Reference Book:
7. Nayaranan V.K., Prentice Hall, 2001Managing Technology and Innovation for Competitive Advantage-
8. Stuart Hart and Bernard Ramantsoa Strategic Technology Management-Pierre Dussauge,
9. Khalil, Tarek M Management of Technology -
ENCV 803 603
Infrastructure and Regional Development
3 Credits
Learning Outcomes:
1. Able to identify and analyze infrastructure development in a region associated with the region’s economy.
2. Able to explain the conception of the relations between planning and developing of infrastructure in a region and its relationship with the region’s economy.

Competence in Curriculum: Technical Specialization
Syllabus: Introduction; Theory of regional development; Developing the concept of spatial transport and strategic area; Determining the area of regional influence; Urban and rural area development; Development and spatial planning of coastal areas; Future regional spatial planning; Developing economic corridor; Regional connectivity; Connectivity of ASEAN regional area; Financing regional development; Infrastructure in regional development; Infrastructure case study in regional Development.
Prerequisite:
Reference Book:

ENCV 803 604
Infrastructure Asset Management
3 Credits
Learning Outcomes:
1. Able to identify and analyze the process of infrastructure asset management
2. Able to describe infrastructure asset management and give an illustration in implementations of asset management in an infrastructure to achieve sustainability in the infrastructure sector.

Competence in Curriculum: Technical Specialization
Reference Book:

ENCV 803 605
Management System of Health, Safety and Environment
3 SKS
Learning Outcomes:
1. Be able to identify and analyze the process of health management, occupational safety and environmental protection in construction projects.
2. Be able to implement MHSE in any construction projects in order to not damaging the environment as well as in efforts to create a working environment that is healthy, safe, and productive.

Competence in Curriculum: Technical Specialization, Sustainability
Syllabus: Basic principles and standards of HSE Management; Relevance of Work Productivity
6.3 MASTER PROGRAM IN MECHANICAL ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td>Master Program in Mechanical Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Magister Teknik (M.T.)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>BAN-PT: A - accredited</td>
</tr>
<tr>
<td>7</td>
<td>Language(s) of Instruction</td>
<td>Bahasa Indonesia and English</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirements</td>
<td>Bachelor Degree in Mechanical Engineering, Math and Physics; pass the entrance exam.</td>
</tr>
</tbody>
</table>

Study Duration

<table>
<thead>
<tr>
<th>Type of Semester</th>
<th>Number of semester</th>
<th>Number of weeks /semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Graduate Profiles:
Graduates who have the character of leadership and excellence in scholarship, research, expertise and professionalism in the field of Mechanical Engineering

List of Graduates Competences:

1. Ability to develop a logical, critical, systematic, and creative thinking through scientific researches, design creation or art product in the field of science and technology, by also putting attention to humanities value related to his/her field of expertise; to formulate scientific concept and research result based on principles and scientific ethics in a form of thesis or other equivalent forms and is uploaded on the university’s web page, as well as scientific article published by accredited international journal.

2. Ability to carry out an academic validation or in-depth study in the field of his/her expertise to solve problems in society or industry which is relevant for his/her knowledge and skill development

3. Ability to formulate ideas and scientific argument with responsibility and based on academic ethics, and to publish it through a media to the society

4. Ability to identify academic field which is his/her research object, and to position it in a research map via an interdisciplinary approach

5. Ability to take a decision in the context of problem solving of science and technology which puts attention to humanities values based on analytical study or experiment to a given information or data

6. Ability to manage, develop, and maintain working network with colleagues in wide research institutions and communities

7. Ability to self-improve his/her learning capacity

8. Ability to save/manage and subsequently find his/her research data for the purpose of guaranteeing originality and avoiding plagiarism

9. Ability to take responsibility toward society and to comply to professional ethics in solving engineering problems

10. Ability to carry out a life-long learning, including to get an access to knowledge of current issues
As a Universitas Indonesia student, every graduate of Mechanical Engineering Undergraduate Program should have the following competencies as follows:

1. Able to use information and communication technology;
2. Able to think critically, creatively, and innovatively and have intellectual curiosity to solve the individual and group problems;
3. Able to use verbal and writing communication in good bahasa Indonesia and English for academic or non-academic activity;
4. Has an integrity and able to respect others;
5. Able to identify entrepreneurship efforts which show innovation and autonomy based on ethics.

In the 2016 Mechanical Engineering Graduate Program curriculum, there are 6 Specialization Programs that can be chosen by the students according to their academic ability and interest, which are:

1. Energy Conversion
2. Building Utilities and Fire Safety
3. Design and Manufacture
4. Automation and Manufacturing System
5. Vehicle Engineering and Heavy Equipment
6. Marine Resources and Technology

Specifically, besides the 10 points of Graduates Competences, the students of The Graduates Program will have the competences in accordance to their specialization.

1. Competence in the field of Energy Conversion: Ability to analyse, apply and design a mechanical system by utilizing the law and phenomenon from the cutting-edge technology related to the field of energy conversion and conservation.
2. Competence in the field of Building Utility System and Fire Safety: Ability to analyse, apply and design the building utility efficiently and the fire safety system based on performance for the office and industrial buildings.
3. Competence in the field of Design and Manufacturing: Ability to analyse, apply and design a product, manufacture and assembly process by integrating the latest technology in the field of design and manufacturing.
4. Competence in the field of Automation and Manufacturing System: Ability to analyse, apply and design a manufacturing system and automation that will be used for a development and product manufacturing process by utilizing the cutting-edge technology in the field of manufacturing and automation.
5. Competence in the field of Vehicle Engineering and Heavy Equipment: Ability to analyse and design a vehicle system and heavy equipment for several fields, such as: industrial, construction, minerals and energy.
6. Competence in the field of Maritime Resources and Technology: Ability to analyse and design a system and apply the maritime technology related to the utilization of sustainable maritime resources.

Classification of Subjects

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Core courses of study program</td>
<td>10</td>
<td>22,73 %</td>
</tr>
<tr>
<td>ii</td>
<td>Core courses of specialization</td>
<td>16</td>
<td>36,36 %</td>
</tr>
<tr>
<td>iii</td>
<td>Elective courses of specialization</td>
<td>8</td>
<td>18,18 %</td>
</tr>
<tr>
<td>iv</td>
<td>Scientific Publication, Thesis</td>
<td>10</td>
<td>22,73 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>44</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Career Prospects

Graduates of Mechanical Engineering has devoted itself in various fields, including automotive industry, oil and gas, heavy machinery, educational institutions, research institutions and other industries.
Learning Outcomes Flow Diagram

Graduate Profile

- Ability to save/manage and subsequently find his/her research data for the purpose of guaranteeing originality and avoiding plagiarism (8)
- Ability to take responsibility toward society and to comply to professional ethics in solving engineering problems (9)
- Ability to carry out a life-long learning, including to get an access to knowledge of current issues (10)
- Ability to formulate ideas and scientific argument with responsibility and based on academic ethics, and to publish it through a media to the society (3)
- Ability to identify academic field which is his/her research object, and to position it in a research map via an interdisciplinary approach (4)
- Ability to carry out an academic validation or in-depth study in the field of his/her expertise to solve problems in society or industry which is relevant for his/her knowledge and skill development (2)
- Ability to take a decision in the context of problem solving of science and technology which puts attention to humanities values based on analytical study or experiment to a given information or data (5)
- Ability to self-improve his/her learning capacity (7)
- Ability to develop a logical, critical, systematic and creative thinking through scientific researches, design creation or art product in the field of science and technology, by also putting attention to humanities value related to his/her field of expertise (1)
- Ability to manage, develop, and maintain working network with colleagues in wide research institutions and communities (6)
Curriculum Structure

Core courses of specialization (16 sks)

Core courses of study program (8 sks)

Pre-requisite from Bachelor Degree

Elective courses of specialization (12 sks)

Seminar, Thesis (8 sks)
Flow Diagram of Subjects

Throughout the course of study, students of Magister Degree in Mechanical Engineering can opt and manage his/her subjects very flexibly, based on the credit of each subject. Given below are three different scenarios of flow diagram of subjects.

Scenario 1
Scenario 2

Adv Eng Math (4 SKS)	Design of Experiment (2 SKS)	Thesis (8 SKS)
Core of Specialization 1 (2 SKS) | Eng Computation (2 SKS) | Elective of Specialization 2 (4 SKS)
Core of Specialization 2 (2 SKS) | Academic Writing (2 SKS) | Core of Specialization 7 (2 SKS)
Core of Specialization 3 (2 SKS) | Core of Specialization 5 (2 SKS) | Elective of Specialization 1 (4 SKS)
Core of Specialization 4 (2 SKS) | Core of Specialization 6 (2 SKS) |

Semester 1 | Semester 2 | Semester 3 | Semester 4

Scenario 3

Adv Eng Math (4 SKS)	Design of Experiment (2 SKS)	Thesis (8 SKS)
Core of Specialization 1 (3 SKS) | Eng Computation (2 SKS) | Elective of Specialization 2 (4 SKS)
Core of Specialization 2 (3 SKS) | Academic Writing (2 SKS) | Core of Specialization 5 (2 SKS)
Core of Specialization 3 (2 SKS) | Core of Specialization 4 (4 SKS) | Elective of Specialization 1 (4 SKS)

Semester 1 | Semester 2 | Semester 3 | Semester 4

FACULTY OF ENGINEERING
CURRICULUM STRUCTURE OF MAGISTER PROGRAM OF MECHANICAL ENGINEERING

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Specialization Compulsory</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>2nd SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME802002</td>
<td>Design of Experiment</td>
<td>2</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Engineering Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENME802003</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Specialization Compulsory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td>3rd SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME800005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Specialization Compulsory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Specialization Electives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective Course #1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td>4th SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME800008</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Specialization Electives</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>44</td>
</tr>
</tbody>
</table>

1. Major in Energy Conversion

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENME801101</td>
<td>Advanced Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>ENME801102</td>
<td>Advanced Fluid Dynamics & Heat Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>2nd SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME802002</td>
<td>Design of Experiment</td>
<td>2</td>
</tr>
<tr>
<td>ENME802003</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Engineering Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENME802103</td>
<td>Optimization of Energy System</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td>3rd SEMESTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENME803104</td>
<td>Thermal Power Generation</td>
<td>4</td>
</tr>
<tr>
<td>ENME800005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Specialization Electives #1</td>
<td>4</td>
</tr>
</tbody>
</table>
List of Elective Courses in Energy Conversion Stream

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME803105</td>
<td>Internal Combustion Engine</td>
<td>4</td>
</tr>
<tr>
<td>ENME803106</td>
<td>Flow Measurement and Visualization</td>
<td>4</td>
</tr>
<tr>
<td>ENME803107</td>
<td>CFD Application</td>
<td>4</td>
</tr>
<tr>
<td>ENME803196</td>
<td>Rocket and Jet Propulsion</td>
<td>4</td>
</tr>
<tr>
<td>ENME803125</td>
<td>Energy and Environment</td>
<td>4</td>
</tr>
<tr>
<td>ENME803124</td>
<td>Energy Audit</td>
<td>4</td>
</tr>
<tr>
<td>ENME804109</td>
<td>Heat and Mass Transfer Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804110</td>
<td>Combustion Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804111</td>
<td>Aerodynamics Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804112</td>
<td>Turbo Machinery</td>
<td>4</td>
</tr>
<tr>
<td>ENME803108</td>
<td>Refrigeration Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

2. Major in Building Utilities and Fire Safety

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENME801129</td>
<td>Thermofluid and Radiation</td>
<td>2</td>
</tr>
<tr>
<td>ENME801113</td>
<td>Ventilation & AC System</td>
<td>4</td>
</tr>
<tr>
<td>ENME801130</td>
<td>Introduction to Fire Dynamics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>ENME802002</td>
<td>Design of Experiment</td>
<td>2</td>
</tr>
<tr>
<td>ENME802003</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Engineering Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENME802131</td>
<td>Fire Protection System</td>
<td>2</td>
</tr>
<tr>
<td>ENME802132</td>
<td>Building Mechanical Electrical System</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td>ENME803133</td>
<td>Design Assignm of Utility Sys for Building</td>
<td>2</td>
</tr>
<tr>
<td>ENME801121</td>
<td>Energy Management System</td>
<td>2</td>
</tr>
<tr>
<td>ENME800005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
</tbody>
</table>
3rd SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME803134</td>
<td>Enclosure Fire Dynamics Modelling</td>
<td>4</td>
</tr>
<tr>
<td>ENME803115</td>
<td>Clean Room</td>
<td>4</td>
</tr>
<tr>
<td>ENME803116</td>
<td>Plumbing and STP Systems</td>
<td>4</td>
</tr>
<tr>
<td>ENME803117</td>
<td>Building Environmental Assessment</td>
<td>4</td>
</tr>
<tr>
<td>ENME803135</td>
<td>Fire Fighting Strategy Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME803136</td>
<td>Fire Safety Management in Building</td>
<td>4</td>
</tr>
</tbody>
</table>

4th SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME802103</td>
<td>Optimization of Energy System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804118</td>
<td>Mechanical system for Building</td>
<td>4</td>
</tr>
<tr>
<td>ENME804119</td>
<td>Acoustics in Buildings</td>
<td>4</td>
</tr>
<tr>
<td>ENME804120</td>
<td>Building Utilities Management</td>
<td>4</td>
</tr>
<tr>
<td>ENME804137</td>
<td>Fire Investigation Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804138</td>
<td>Evaluation of Fire Protection System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804139</td>
<td>Fire Protection in Process Industry</td>
<td>4</td>
</tr>
</tbody>
</table>

3. Major in Design and Manufacturing

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENME801140</td>
<td>Materials and Manufacturing Processes</td>
<td>4</td>
</tr>
<tr>
<td>ENME801141</td>
<td>Product Design Methodology</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal: 12

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME802002</td>
<td>Design of Experiment</td>
<td>2</td>
</tr>
<tr>
<td>ENME802003</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Engineering Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENME802142</td>
<td>Designing Manufacturing Technology</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal: 10

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME803143</td>
<td>Mechanical Failure</td>
<td>4</td>
</tr>
<tr>
<td>ENME800005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>Specialization Electives #1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
List of Elective Courses in Design and Manufacturing Stream

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3rd SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME803145</td>
<td>Composite Product Development</td>
<td>4</td>
</tr>
<tr>
<td>ENME803146</td>
<td>Finite Element and Multiphysics</td>
<td>4</td>
</tr>
<tr>
<td>ENME803147</td>
<td>Toy Production Design</td>
<td>4</td>
</tr>
<tr>
<td>ENME803161</td>
<td>Micro-machining</td>
<td>4</td>
</tr>
<tr>
<td>ENME803144</td>
<td>Dynamics of Mechanical System</td>
<td>4</td>
</tr>
<tr>
<td>ENME803147</td>
<td>Toy Production Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4th SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME804148</td>
<td>DESIGN FOR MANUFACTURE ASSEMBLY</td>
<td>4</td>
</tr>
<tr>
<td>ENME804149</td>
<td>Noise and Vibration</td>
<td>4</td>
</tr>
<tr>
<td>ENME804162</td>
<td>Laser Assisted Process</td>
<td>4</td>
</tr>
</tbody>
</table>

4. Major in Manufacturing System and Automation

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENME801150</td>
<td>Management of Manufacturing IS</td>
<td>4</td>
</tr>
<tr>
<td>ENME801151</td>
<td>Manufacturing System and Processes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2nd SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME802002</td>
<td>Design of Experiment</td>
<td>2</td>
</tr>
<tr>
<td>ENME802003</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Engineering Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENME802152</td>
<td>Automation and Robotics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3rd SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME803153</td>
<td>Machine Vision System</td>
<td>4</td>
</tr>
<tr>
<td>ENME800005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4th SEMESTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialization Electives #2</td>
<td>4</td>
</tr>
<tr>
<td>ENME800008</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
</tbody>
</table>
List of Elective Courses in Manufacturing Technology and Automation Stream

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3rd SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME803154</td>
<td>Quality & Production Manag. System</td>
<td>4</td>
</tr>
<tr>
<td>ENME803174</td>
<td>Risk Management</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4th SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME804155</td>
<td>CAD/CAM</td>
<td>4</td>
</tr>
<tr>
<td>ENME804156</td>
<td>Manufacturing Performance Assessment</td>
<td>4</td>
</tr>
</tbody>
</table>

5. Major in Vehicle Engineering and Heavy Equipment

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENME801163</td>
<td>Vehicle Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME801164</td>
<td>Prime Mover & Drivetrain System</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2nd SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME802002</td>
<td>Design of Experiment</td>
<td>2</td>
</tr>
<tr>
<td>ENME802003</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Engineering Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENME802165</td>
<td>Vehicle Frame and Body Engineering</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3rd SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME803166</td>
<td>Vehicle Control System</td>
<td>4</td>
</tr>
<tr>
<td>ENME800005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Specialization Electives #1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4th SEMESTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialization Electives #2</td>
<td>4</td>
</tr>
<tr>
<td>ENME800008</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>44</td>
</tr>
</tbody>
</table>

List of Elective Courses in Vehicle Engineering and Heavy Equipment Stream

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3rd SEMESTER</td>
<td></td>
</tr>
<tr>
<td>ENME803167</td>
<td>Modern Vehicle Technology</td>
<td>4</td>
</tr>
<tr>
<td>ENME803195</td>
<td>Peralatan Pengeboran Minyak dan Gas</td>
<td>4</td>
</tr>
</tbody>
</table>
4th SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME804168</td>
<td>Railway Vehicle Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENME804197</td>
<td>Crane Equipment and Machinery</td>
<td>4</td>
</tr>
<tr>
<td>ENME804198</td>
<td>Plane Stability and Control System</td>
<td>4</td>
</tr>
</tbody>
</table>

6. Major in Marine Resources and Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME801001</td>
<td>Advanced Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>ENME801179</td>
<td>Advanced Thermofluid</td>
<td>4</td>
</tr>
<tr>
<td>ENME801180</td>
<td>SMaritime Resources</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal 12

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME802002</td>
<td>Design of Experiment</td>
<td>2</td>
</tr>
<tr>
<td>ENME802003</td>
<td>Academic Writing</td>
<td>2</td>
</tr>
<tr>
<td>ENME802004</td>
<td>Engineering Computation</td>
<td>2</td>
</tr>
<tr>
<td>ENME802181</td>
<td>Maritime Technology and Management</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal 10

KODE

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME803182</td>
<td>Ocean Energy</td>
<td>4</td>
</tr>
<tr>
<td>ENME800005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Specialization Electives #1</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal 10

4th SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME804186</td>
<td>Special Ship</td>
<td>4</td>
</tr>
<tr>
<td>ENME804187</td>
<td>Ship Production Management</td>
<td>4</td>
</tr>
<tr>
<td>ENME802103</td>
<td>Optimization of Energy System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804188</td>
<td>Management of Maritime Energy</td>
<td>4</td>
</tr>
<tr>
<td>ENME804189</td>
<td>Maritime Safety</td>
<td>4</td>
</tr>
<tr>
<td>ENME804190</td>
<td>Advanced Welding Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Subtotal 12

Total 44

List of elective courses in Marine Resources and Technology Study Program

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME803183</td>
<td>Marine and Offshore Structure</td>
<td>4</td>
</tr>
<tr>
<td>ENME803184</td>
<td>Sea Transport and Port Management</td>
<td>4</td>
</tr>
<tr>
<td>ENME803185</td>
<td>Maritime Law and Regulation</td>
<td>4</td>
</tr>
</tbody>
</table>

3rd SEMESTER

<table>
<thead>
<tr>
<th>Code</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME804186</td>
<td>Special Ship</td>
<td>4</td>
</tr>
<tr>
<td>ENME804187</td>
<td>Ship Production Management</td>
<td>4</td>
</tr>
<tr>
<td>ENME802103</td>
<td>Optimization of Energy System</td>
<td>4</td>
</tr>
<tr>
<td>ENME804188</td>
<td>Management of Maritime Energy</td>
<td>4</td>
</tr>
<tr>
<td>ENME804189</td>
<td>Maritime Safety</td>
<td>4</td>
</tr>
<tr>
<td>ENME804190</td>
<td>Advanced Welding Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>

Total 44
COURSE DESCRIPTION

ENME800001
ADVANCED ENGINEERING MATHEMATICS (4 SKS)
Learning Objective(s):
Complete student’s anylitical ability. Students understand and able to use the advances mathematical concepts in order to solve the engineering problems
Syllabus:
Introduction to differential equation, 1st order differential equation, 2nd order differential equation, higher order differential equation, vector analysis, vector differential, grad operation, divergence and culr, vector integration, laplace transform, laplace transform to solve the differential equation, fourrier transform, convulsion, numerical method, root of equation, numerical differentiation, numerical integral
Pre-requisite(s): -
Text Book(s):

ENME800003
DESIGN OF EXPERIMENT (2 SKS)
Learning Objective(s):
This course provides knowledge on methods of planning, execution and reporting of the research in the field of engineering so that students are able to apply scientific principles in the preparation of the thesis in particular, as well as in a scientific publication from the research. Students should be able to manage an investigation that began from the planning stages, applying the correct procedure and constructs apparatus design, and apply instrumentation and measurement systems, to execute and perform the analysis and interpretation of data by the rules of statistics properly.
Syllabus:
Pre-requisite(s) : -
Text Book(s):

ENME802003
ACADEMIC WRITING (2 SKS)
Learning Objective(s):
Student able to understand the basic academic writing to improve the capability of reading
the scientific paper, reference and to write argumentation accurately with the proper and proficient language effectively. This course also study the critical thinking, propose the argumentation, formulate basic reasoning and how to deliver the idea with correct language. Student will study how to write the scientific paper with good technique, able to find and to make proper list of reference.

Syllabus:
Introductoin to academic writing, rhetoric analysis in scientific paper, act critically and argumentation in academic writing, academic writing techniques, draft scientific paper, peer review and scientific paper revision, find scientific resources, synthesis scientific paper, present the paper as a result from this course

Pre-requisite(s): -

Text Book(s):

ENME800002
ENGINEERING COMPUTATION (2 SKS)
Learning Objective(s):
The purpose of this course is that students know well and are able to apply the processes and methods (algorithms) calculations (numerical and analytic) of engineering in the real world of computing and computer-based parameters that affect the speed and accuracy of the calculation.

Syllabus:
The purpose of this course is that students know well and are able to apply the processes and methods (algorithms) calculations (numerical and analytic) of engineering in the real world of computing and computer-based parameters that affect the speed and accuracy of the calculation.

Pre-requisite(s): -

Text Book(s):

ENME800005
SCIENTIFIC PUBLICATION (2 SKS)
Learning Objective(s):
Student can develop logical, critical, systematical and creative thinking using scientific research and/or creation of design in science and technology by consider and apply social values. And by using scientific concept and discussion, scientific way and ethics, the paper will be written and published in accredited scientific journal and accepted in international journal under supervision one or more supervisor.

Syllabus:
Pre-requisite(s): Academic Writing, Design of Experiment

Text Book(s):
1. Related papers to the current experiment

ENME800007
THESIS (8 SKS)
Learning Objective(s):
Student will study to apply the science and previous knowledge to conduct independent research under one or more supervisor(s). After completing this course, student should able to make research concept by applying related theories. Under supervision of supervisor, student
can design, integrate, implement and analyze concept and writing the research finding systematically and scientifically in thesis book. Student also should come to defend the design of experiment in front of board of examiner in thesis examination forum.

Syllabus:

Pre-requisite(s): Passed 32 credit units

Text Book(s):

1. Panduan Teknik Penulisan Tugas Akhir Universitas Indonesia

ENME801101 - ADVANCED THERMODYNAMICS (4 SKS)

Learning Objective(s):

Provide further understanding of the science of thermodynamics and its applications so that students are able to design and conduct a basic research mapun able to complete the analysis involves the calculation of the thermodynamic system correctly and systematically in order to find the best solution gentang effectiveness of the use of substances and energy, especially in the ‘engineering design’ by motto: ‘Low entropy production’, ‘high thermal efficiency’ and ‘low pollution effect’.

Syllabus:

Basic Thermodynamics and Gas Dynamics, Equilibrium of Thermodynamics System, Thermodynamics properties of System, Thermodynamics of ideal gas mixture, review of chemical thermodynamics, review of chemical kinetics, conservation equation for multicomponent reaction system, pre-mixed laminar flames, method of measuring flame velocity (bunsen burner), flame quenching, flammability limit of premixed laminar flame, gaseous diffusion flame and combustion of single liquid droplet, combustion in compression ignition engine, combustion in spark ignition engine, combustion research in hydrocarbon oxygen mixture, engine research, combustion-generated emission, experimental method: pressure measurement and recording; combustion photography and flame speed detection; spectrographic method; chemical analysis technique (NDIR, FID, Gaschromatography).

Pre-requisite(s): -

Text Book(s):

4. H.D. Baehr, Termodynamik, Springer Verlag
5. K. Stephan, Termodynamik, Grundlagen und technische Anwendung-en, Band 1, Band Springer Verlag.

ENME801102 - ADVANCED FLUID DYNAMICS AND HEAT TRANSFER (4 SKS)

Learning Objective(s):

Enhance the ability of students in the study of fluid mechanics in more detail so as to conduct research or the application of science in industrial applications. Studying the mechanism of heat transfer in a control volume due to the existence of the temperature difference and concentration as well as the involvement of one, two or three phases at the time simultaneously.

Syllabus:

Pre-requisite(s): -

Text Book(s):

ENME802103 - ENERGY SYSTEM OPTIMIZATION (4 SKS)
Learning Objective(s):
This course provides an understanding of mathematical modeling, simulation and optimization of energy systems through technical and economical approach. The course is intended to equip student with the ability to understand mathematical model, simulation and optimization of thermal systems.

Syllabus:
Workable System Design; Economical Evaluation; Determination of Mathematical Equations; Thermal Equipment Modeling; System Simulation; System Optimization: Objective Function, Constraints; Lagrange Multipliers: Lagrange multiplier to complete the optimization process; Dynamics, Geometric and Linear Programming; Mathematical Model of Thermodynamics Properties; Big System Simulation under Steady Condition; Big Thermal System Simulation; Calculation of Variables in Optimum Conditions.

Pre-requisite(s): -
Text Book(s):

ENME803104 – THERMAL POWER GENERATION (4 SKS)
Learning Objective(s):
The course objective is to provide an understanding of the basic principles of power generation, and basic competency in the design and development of power generation systems.

Syllabus:
Industrial Power Plant and Steam System: Boiler, Steam Turbine, Gas Turbine; Cogeneration Engineering, Instrumentation and Main Tools; Performance and Reliability Factors; Economical Aspects, Environmental Aspects: Settings and Prevention.

Pre-requisite(s): -
Text Book(s):
4. Black and Veath-Power plant engineering, Philips Keameh-Power generation handbook
5. Steam Generators by Babcock Willcock

ENME803105 – INTERNAL COMBUSTION ENGINE (4 SKS)
Learning Objective(s):
Student is expected to have competency and expertise in the field of his interest of internal combustion engine working principle and theory and is able to design and do construction calculation.

Syllabus:
Actual Cycle of Internal Combustion Engine; Fuel System; Ignition and Combustion in Spark Ignition Engine and Compressed Ignition Engine; Some Basic Characteristics and Calculations; Basic Engine Design; Determination of Engine’s Main Components; Kinematics and Dynamics Analysis of the Motion; Calculation and Planning of Lubrication and Cooling System.

Pre-requisite(s): -
Text Book(s):
ENME803106 - APPLIED FLOW MEASUREMENT AND VISUALIZATION (4 SKS)

Learning Objective(s):
Applied flow diagnostic study measurement and visualization techniques which have wide application both in industry and laboratory. The course gives basic competency for the student to be able to understand various measurement and visualization methods and to design appropriate flow diagnostic system in process installation in industry or experimental set up in a scientific research activities which related to fluid flow.

Syllabus:
Statistics Diagnostic Flow, Calibration in Flow Measurement; Momentum Sensing Meter (orifice plate, venturi, nozzle meters); Positive Displacement Flow Meter (Nutation Disc, Sliding Vane, Gear meters, etc.); Electromagnetic and Ultrasonic Flow Meters; Compressible Flow Meter (Wet Gas and Wind Anemometer); Principles Local Velocity Measurement in Liquid and Gases; Hot Wire Anemometry; Based Laser Velocimetry (LDV, PIV); Principles of Flow Visualization, Flow Visualization conventional; Shadowgraphs and Schliern Technique; Interferometry Technique; Light Sheet Based Technique; Image Processing and Computer Assisted Method.

Pre-requisite(s):
- Text Book(s):

ENME803107 - CFD APPLICATIONS (4 SKS)

Learning Objective(s):
Understanding the basic principles of CFD and having the basic knowledge in applying CFD (Computational Fluid Dynamic)

Syllabus:
Prediction-rule Principles, Numerical Solutions: Advantages and Disadvantages; Mathematical Description of Physical Phenomena; Basic Nature of Coordinates; Discretization Method; Volume-set Application on Heat Conduction Problem; Convection and Diffusion; Two-Dimension Discretization Equations; Three-Dimension Discretization Method; Special Procedure Needs; Some of Constraints Associated with the Representation of Pressure-gradient Factors, Continuity Equations Representation; Stayered Grid; SIMPLE Algorithm; Revision of SIMPLER algorithm; Final Solutions: Basic Properties of Iterative Numerical Procedures; Source-term Linearization, Irregular Geometries, Preparation and Testing a Computer Programs.

Pre-requisite(s):
- Text Book(s):

ENME803108 - REFRIGERATION ENGINEERING (4 SKS)

Learning Objective(s):
Refrigeration engineering course provides basic competency for the student to be able to do the simulation software to design a cooling system and equipments involved with a very close relationship with the Industrial and engineering users. Hence student will have understanding in design and development of cooling system and ability to evaluate and analyze its performance, especially on cold storage.
Syllabus:
Principles of Refrigeration and Heat Pump, Terminology and Units; Mechanical Vapor Compression Refrigeration Engine; Heat Transfer in Refrigeration System; Ph Diagram Calculation in Refrigeration Cycle; Refrigerant, Lubricant, Salt and the Environment; Compressors; Condenser and Evaporator; Refrigeration Piping System and Equipments; Automatic Control System and Safety Equipments; Air Properties; Psychrometric and its process; Absorption Refrigeration; Alternative refrigeration Cycles (adsorption, gas compression, and ejector); Display Case, Prefabricated Cold Storage and Cold Storage, Cold Room Calculations.

Pre-requisite(s):

Text Book(s):
4. ASHRAE Handbook of Fundamental, ASHRAE Atlanta, 2001

ENME803124 - ENERGY AUDIT (4 SKS)

Learning Objective(s):
This course focuses on the theory, techniques and practices of analyzing energy aspects of building operations and correlating a building envelope's interaction with the mechanical systems. Students will perform a detailed energy audit of a state-of-the-art commercial building design using energy modeling simulation software and develop energy conservation strategies, such as thermal storage, that can be applied to heating, cooling, and ventilating equipment to reduce utility bills. Students will apply supporting analytical data to develop operations and maintenance changes designed to improve energy efficiency and reduce operating cost.

Syllabus:

Pre-requisite(s):

Text Book(s):

ENME803125 - ENERGY AND ENVIRONMENT (4 SKS)

Learning Objective(s):
This course will provide an understanding of the impact of environmental damage caused by the processing and use of energy and the implementation of measures - preventive and remedial measures that are used in modern industrial processes.

Syllabus:
Ecological principles & energy flow, environment concerns of energy extraction, energy use & climate change, environmental and ethic concerns, International treaties & convention on environmental mitigation. Environmental technology and pollution prevention, planning and management of industrial processes in order to prevent potential damage to the environment. Process Safety, energy recovery from waste, sustainable development, combustion and gas explosions, alternative energy.

Pre-requisite(s): -
Text Book(s):
3. Banerjee BP. Handbook of energy and environment in India, Oxford University Press, 2005, India

ENME803196 - JET PROPULSION AND ROCKET (4 SKS)
Learning Objective(s):

ENME804109 - HEAT AND MASS TRANSFER ENGINEERING (4 SKS)
Learning Objective(s):
The course objective is to provide understanding of the heat exchangers used in many industrial processes and power plants as the application of heat transfer. This course provides a basic competency to know main heat exchanger types and to understand and able to select suitable heat exchanger type for current applications. Student is also expected to understand basic factors in designing heat exchangers, to estimate size and price and know and choose the type of heat exchanger. Provide basic understanding and various parameters on the drying process so that students can perform calculations and analysis of various drying techniques and their applications. This course also provides the expertise so that students are able to do drying modeling, to design and analyze the system for various materials (solid and solvent) so that the drying process can be suitably selected for particular product.

Syllabus:
Heat Transfer Review; Type and Application of Heat Exchangers; Practical Design of Shell and Tube Heat Exchanger (Thermal and Mechanical); Manufacturing Cost Estimation; Heat Exchangers; Operation and Monitoring of Heat Exchangers (Fouling And Vibration); Maintenance of Heat Exchangers; Corrosion on Heat Exchangers; Heat Exchanger Design Software; Presentation and Laboratory Practice of Heat Exchangers. Review Transfer Phenomena (Momentum, Heat and Mass); Drying Principles and Basics; Mathematical Modeling of Drying System; Classification and Selection of Dryer, Post-Harvest Drying and Storage of Grain; Rotary Drying; Vacuum Drying; Fluidized Bed and Spouted Bed Drying; Drum Dryer; Spray Drying, Freeze Drying; Conveyor Drying; Solar Drying; Energy Optimization in Drying System; Drying System Design.

Pre-requisite(s): -

Text Book(s):

ENME804110 - COMBUSTION ENGINEERING (4 SKS)
Learning Objective(s): Combustion Engineering provide basic competency to investigate, analyze and learn about the process of combustion of fuel, and the nature and behavior of flame. The course provides basic understanding to apply the laws of basic aerothermochemistry in the engineering calculation.
of practical combustion engineering. The student is expected to be able to analyze the combustion behavior of a flame and to develop knowledge in the field of combustion engineering.

Syllabus:
Syllabus: Important Meaning of Combustion Study; Basic Reaction and Stoikhiometry of Combustion; Gas Fuel (BBG); Liquid Fuel, Solid Fuel; Basic Thermochemistry and Fluid Dynamics of Combustion; Principles of Conservation of Mass and Continuity; Turbulence Premixed Flame Structure; Detonation; Combustion Technology; Fixed-Bed Combustion, Suspension, Fluidized-Bed; Study on Flame and Combustion Technology; Minimum Temperature Self-ignition (Auto/ Self-Ignition); Flammability Limit; Fire spread, Fire Suppression Material, Combustion and the environment. **Pre-requisite(s):** Basic Chemistry, Basic Thermodynamics, Basic Fluid Mechanic, Heat and Mass Transfer.

Pre-requisite(s):

ENME804111 - AERODYNAMICS ENGINEERING (4 SKS)

Learning Objective(s):
Aerodynamic Engineering is an advanced course of Fluid Mechanics which focusing on aeronautics applications. Through the course students is expected to be able to understand the fundamental principles and basic equations of aerodynamics and to apply them in the process of airfoil design and to understand performance characteristics of the airfoil. Student is able to understand the phenomenon of incompressible flow through the airfoil and finite wings. Student is expected to be able to have an understanding of subsonic and supersonic compressible flow phenomena through aerofoil and other compressible flow phenomena.

Syllabus:
Introduction on Aerodynamics; Basic and Principle Equations; Incompressible flow; Airfoil Aerodynamics Characteristics; Finite Wings; Incompressible Flow through Airfoil; Incompressible Flow through Finite Wings; Airfoil in Compressible Flow; Wings and Wings-Body Combination in Compressible Flow; Airfoil Design; Double Surface; Vortex Lift; Secondary Flow and Viscous Effect; Other Phenomena in Compressible Flow; Normal Shock Wave; Oblique Shock Wave; Expansion Wave; Supersonic Wave.

Pre-requisite(s):

Text Book(s):

ENME804112 - TURBOMACHINERY (4 SKS)

Learning Objective(s):
Students understand the different types of construction of gas and steam turbines, and their characteristics and performance, including support equipment.

Syllabus:
Characteristics and types of steam and gas turbines to the generated power output, the calculation of its performance, power improvement, condenser performance, combined cycle plant, system vibrations in turbine construction.

Pre-requisite(s):

Text Book(s):
1. Thermische Stroomung Machine by Traupel
ENME801113 - VENTILATION AND AIR CONDITIONING SYSTEM (4 SKS)
Learning Objective(s):
This course provides the understanding and basic competence in design the air conditioning system regarding a better air condition. The student will be provided with knowledge about the environmentally friendly refrigerant.
Syllabus:
Pre-requisite(s): -
Text Book(s):
2. Carrier: Handbook of HVAC
3. ASHRAE Standard

ENME801129 - THERMOFLUID AND RADIATION (2 SKS)
Learning Objective(s):
Students are able to understand and implement the knowledge of fluid mechanics and heat transfer convection and radiation to describe and analyze the phenomenon of fire and its effects on the environment.
Syllabus:
This course will discuss the knowledge of thermofluid, the phenomenon of heat transfer by convection and radiation, phenomena of thermofluid and radiation in various forms of combustion such as smoldering, pool fire, gasification, as well as the formation and the occurrence of radiant energy that led to ignition.
Pre-requisite(s): -
Text Book(s):

ENME801130 - INTRODUCTION TO FIRE DYNAMICS (2 SKS)
Learning Objective(s):
Students understand the basic and important parameters in the process of the fire, the phenomenon of fire dynamics and fire hazards.
Syllabus:
The fundamental laws of aerothermochemistry such as combustion thermodynamics, fluid mechanics, heat transfer, combustion chemical reactions in fire dynamics calculations. Students can perform experimental activities in the lab to understand the dynamics of fire behavior, with the equipment available, such as the phenomenon of flame premixed and non-premixed, ignition, combustion of solid and liquid, forming plumes and smoke production.
Pre-requisite(s): -
Text Book(s):
ENME802131- FIRE PROTECTION SYSTEM (2 SKS)

Learning Objective(s):
Students are able to understand the fire protection system both passive and active.

Syllabus:
Compartmentalization of fires, Strategy of passive fire protection, natural ventilation systems for controlling smoke and heat from fire, fire resistant material and installation, integration of automatic fire protection systems for passive fire protection strategies, the design of passive fire protection systems, fire modeling for the design of passive protection system. Physical and chemical phenomena that are relevant to a wide range of hardware and software of a fire protection system such as automatic sprinkler, gaseous agent, foam and powder chemical systems. Installation of fire protection systems according to prevailing standards. Refractory materials and installation.

Pre-requisite(s): -

Text Book(s):
5. Jurnal dan standar terkait

ENME804118 - BUILDING MECHANICAL AND ELECTRICAL SYSTEM (4 SKS)

Learning Objective(s):
The course’s objective is to deliver knowledge, skills and understanding of the mechanical and electrical systems in a modern building that has been increasing in its requirements in terms of sophistication, efficiency, and low energy use.

Syllabus:

Pre-requisite(s): -

Text Book(s):

ENME801121 - ENERGY MANAGEMENT SYSTEM (4 SKS)

Learning Objective(s):
Students are able to understand the concept, analysis and strategy of continuous improvement of energy performance by implementing effective energy management practices and energy processes in accordance with the standards and rules of both local and international as well as the use of associated technical equipment.

Syllabus:
ENME803133 - ASSIGNMENT OF BUILDING UTILITY SYSTEM DESIGN (4 SKS)

Learning Objective(s):
Students are able to use and apply the concept of utility system design of the building that includes a ventilation system and HVAC, plumbing, fire protection, and sewage treatment.

Syllabus:
The course consists of the task of designing a system utility story buildings.

Pre-requisite(s):

Text Book(s):
3. Effective implementation of an ISO 50001 energy management system (EnMS) / Marvin T. Howell. American Society for Quality, Quality Press, Milwaukee 53203 © 2014

ENME803134 - ENCLOSURE FIRE DYNAMICS AND MODELLING (4 SKS)

Learning Objective(s):
Students understand the various stages of fires and provide basic knowledge methods and techniques applied in the analysis of fire development, and develop students' ability to critically analyze the methods of practical application. This course also aims to improve the ability to understand and analyze the fires model.

Syllabus:
Introduction to the process of combustion, premixed flame and diffusion flame, ignition and spread of fire, classification of fires and the influence of the geometry of the room. Calorimetry fire: heat release rate, mass loss rate and the relationship between time and heat release rate, the growth of fire in the room, as well as testing methods. The dynamics of the flame: fire plume and flame (flame), a high flame, the flame height correlation.

Pre-requisite(s):

Text Book(s):
4. Thierry POINSOT, Denis VEYNANTE, Theoretical and Numerical Combustion.
5. Jurnal dan standar terkait.

ENME803115 - CLEAN ROOM (4 SKS)

Learning Objective(s):
Provide an understanding of the basic knowledge of clean room systems and its application in buildings, hospital and pharmaceutical industries. Understanding of the concept of air cleanliness, ventilation and fresh air exchange, application of laminar flow, the air pressure in the chamber and measuring systems, validation and its control.

Syllabus:
Indoor environment: human psychological and physiological aspects, BEAM IAQ assessment; Air quality: air cleanliness, ambient air quality, rationale for standards; Indoor air pollutants: gaseous pollutants, airborne particulate, VOCs, radon, biological contaminants; Indoor air movement: air flow in confined and unconfined spaces, filtration systems; Instrumentation and
measurement techniques; Control measures: improved IAQ by HVAC system design, removal of contaminants.

Pre-requisite(s): -

Text Book(s):

ENME803116 - PLUMBING AND WASTE WATER TREATMENT SYSTEM (4 SKS)

Learning Objective(s):

This course will study the specialization expertise and understanding of the system plumbing systems found on modern buildings which are increasing demands in terms of sophistication, efficiency, and use of more energy-efficient.

Syllabus :

Plumbing system in general, the calculation of water needs and hot water, water tanks, plumbing equipment unit, pumps, water hammer application, wastewater treatment systems. Will be given an understanding of the plumbing system of clean water for many multi-storey buildings and sewerage system and the filth and the effects of the foam pressure.

Pre-requisite(s): -

Text Book(s):

ENME803117 - BUILDING ENVIRONMENT ASSESSMENT (4 SKS)

Learning Objective(s):

Students are provided with an understanding to increase the awareness of environmental issues and the impact of buildings on the environment and be able to evaluate the ability of new and existing buildings to meet a wide range of environmental performance criteria.

Syllabus :

Global issues: electrical loading and equivalent CO2 production, ozone depletion and global warming, abusive use of natural resources; Local issues: demand of electricity, use of water, wastewater discharge, recycled material, local environmental impact; Building environmental assessment methods; Assessment of energy use; Energy audit; Indoor issues: indoor environmental quality factors, current legislation and standards; Pollutants in buildings; Indoor air quality; Health and safety; Safety audit; Health audit.

Pre-requisite(s): -

Text Book(s):

ENME803135 – FIRE FIGHTING ENGINEERING AND STRATEGY (4 SKS)
Learning Objective(s):
This course will provide scientific and practical knowledge on all aspects of the techniques and strategies to effectively extinguish the fire source.

Syllabus:
Forcible Entry, Fire Extinguishing Technique (covers the types of extinguishing material), Fire Fighting of High Rise Building, Safe Work at Heights, Compartment Fires and Tactical Ventilation and Fire Communication and Mobilization Officer.

Pre-requisite(s):

Text Book(s):
3. Jurnal dan standar terkait

ENME803136 – FIRE SAFETY MANAGEMENT IN BUILDING (4 SKS)
Learning Objective(s):
This course will provide scientific knowledge concerning all aspects of Safety Management in Buildings.

Syllabus:

Pre-requisite(s):

Text Book(s):
3. Jurnal dan standar terkait

ENME804118 – MECHANICAL SYSTEM FOR BUILDING (4 SKS)
Learning Objective(s):
These courses provide students a basic understanding and competency building mechanical system design that includes a ventilation system and HVAC, plumbing, fire protection, and sewage treatment.

Syllabus:
The course consists of the task of designing a buildings utility system.

Pre-requisite(s):

Text Book(s):

ENME804119 – ACOUSTIC (4 SKS)
Learning Objective(s):
Provide a basic understanding of the concept of acoustic, acoustic systems in buildings as well as the concept of controlling the propagation of sound in the ventilation system and ventilation.

Syllabus:
Acoustic fundamentals: fundamental properties of sound and waves, sound propagation and transmission inside buildings and in air ducts; Acoustic design and planning: requirements
for auditoria, lecture theatres, plant rooms and etc., directional and spacial impression, re-
verberation, echo, silencers, active noise control; Environment impact and local legislation;
Vibration: acoustically driven vibration, control and transmission; Problem investigations: noise
and vibration measurement, data analysis techniques, software packages.

Pre-requisite(s): -

Text Book(s):
 (1982).
8. ASHRAE HVAC System and Equipment, ASHRAE Atlanta, 2012

ENME804120 - MAINTENANCE MANAGEMENT OF BUILDING UTILITY (4 SKS)

Learning Objective(s):
After following this course, students will understand the strategic role of maintenance of
buildings based on the need for maintenance management of assets built that includes a needs
assessment, planning and prioritizing, budgeting and adequate information systems.

Syllabus:
Introduction, Scoping of Maintenance Function and Demand in Buildings, Essentials of Built
Assets Maintenance Management, Assignment: Contemporary Issues in Asset Maintenance
Management, Seminars/workshops

Pre-requisite(s): -

Text Book(s):
 Institution of Building Services Engineers, London.
 (ISBN: 0-632-03419-X)
6. Building Services Handbook, Sixth edition, Fred Hall and Roger Greeno, Butterworth-
 Heinemann, 2011

ENME804137 - FIRE INVESTIGATION ENGINEERING (4 SKS)

Learning Objective(s):
This course will provide an understanding and scientific knowledge of fire investigation within
the scope of the legislature regarding fire safety regulations.

Syllabus:
Compartment Fires, Flame Spread, Forensic Science, Laboratory Analytical Techniques, Model-
ing for helping the investigation, and case studies on fire.

Pre-requisite(s): -

Text Book(s):
 0-470-09113-4, 2006
4. Jurnal dan standar terkait

ENME804138 - EVALUATION AND MAINTENANCE OF FIRE PROTECTION SYSTEM (4 SKS)

Learning Objective(s):
Students can evaluate the performance of the fire protection system and to know and be able to plan maintenance of fire protection systems.

Syllabus:
This course will provide engineering evaluation of the performance of fire protection systems are used in various types of buildings and engineering preparation of a management plan for decision-making. Fire protection systems will be elaborated into elements that can be evaluated quantitatively using various types of fire studies.

Pre-requisite(s):

Text Book(s):
5. SNI, ASTM, NFPA, rules and standards

ENME804139 - FIRE PROTECTION IN PROCESS INDUSTRY (4 SKS)

Learning Objective(s):
This course will provide an understanding and scientific knowledge of fire protection systems in the process industry.

Syllabus:

Pre-requisite(s):

Text Book(s):
3. Jurnal dan standar terkait

ENME801140 - MATERIAL AND MANUFACTURING PROCESSES (4 SKS)

Learning Objective(s):
The course provides understanding and basic competence of theory, application method and product manufacturing processes that covers: working principle, process characteristics, process limitations, work and force due to the process, parameters that affects to the process and the relation of material with the process that needed for certain process.

Syllabus:

Pre-requisite(s):

Text Book(s):
1. Michael Ashby dan Kara Jhonson, Materials and Design : Arts and science in material selection in product design, Butterowrth-Heinemann, 2002
2. Michael Ashby, Material selection in Mechanical Design, Butterowrth Heinnean, 2005

ENME801141 - PRODUCT DESIGN AND DEVELOPMENT METHODOLOGY (4 SKS)

Learning Objective(s):
Provide an understanding and mastery of the theory and methodology of design and product development include: planning, concept development, system design, detailed design, testing and screening, production ramp-up, in a series of factors to consider overall product development.

Syllabus:

Pre-requisite(s):

ENME802142 - DESIGNING AND MANUFACTURING TECHNOLOGY INTEGRATION (4 SKS)

Learning Objective(s):
Provide an understanding of competence and capability in designing and manufacturing process by utilizing peracangan / includes latest design and manufacturing system CAD / CAM and reverse engineering and prototype development to improve efficiency and accelerate the production process, reduce errors, improve quality and reduce production costs.

Syllabus:
System Overview of CAD / CAM; Hardware & Software Systems CAD / CAM: Geometric Modeling: Type a mathematical representation of the model curve, surface and solid 3D modeling methods and manipulation of 3D models; exchange of data within and between system-CAD/CAM; CAD Laboratory Activity; Technology CNC; Tool Path Generation Method-CAM systems; Control ‘quality of machining’ (machined surface quality) in the system-CAM: Computer-Aided Process Planning CAPP; postprocessing; Practice CAM: 3D geometry measurements, principles and measurement based Coordinate Measuring Machine (CMM), the method of filtration data, the identification of boundary features, modeling and manipulation of point-based 3D models, 3D models for the modularization of the prototype, prototype and rapid prototyping method, discretization model, principles and application of SLS and SLM.

Pre-requisite(s):

ENME803143 - MECHANICAL FAILURE (4 SKS)

Learning Objective(s):
This course provides an understanding and competence about principles and modes of mechanical failure may occur and should be avoided so that should be considered in the design of mechanical, including buckling, Corrosion, fatigue, creep, melting, fracture, thermal, and wear.

Syllabus:
Theory and Buckling Mode (Torsional-lateral, Plastic, Dynamic), Theory and Corrosion mode (Metal, Non-Metal, Glass); Corrosion Prevention; Theory and Fatigue Failure Mode; Theory and creep mode; Theory and Melting Mode; Theory and Type of Fracture mode, Theory and the thermal failure mode; Theory and Wear mode; Failure Analysis and Prevention to: Buckling, Corrosion, Fatigue, creep, Melting, Fracture, Thermal, and Wear

Pre-requisite(s):
ENME803144 - DYNAMICS OF MECHANICAL SYSTEM (4 SKS)

Learning Objective(s):
Provide an understanding and competence in the principles and methods of dynamic analysis of mechanical systems as an important input in the design process to produce a mechanical system that has a better dynamic resistance and also know the effects they impose on other systems that interact.

Syllabus:

Pre-requisite(s): -

Text Book(s):
1. Palm, Modelling, Analysis, and Control of Dynamic Systems, Wiley, 2006

ENME803145 - COMPOSITE PRODUCT DEVELOPMENT (4 SKS)

Learning Objective(s):
Provide expertise and competence to students in the field of designing and manufacturing of parts/mechanical construction using composite materials. This course provides an understanding of composite materials, including the characteristics, testing, manufacturing process, and special applications in the engineering field.

Syllabus:
Composite Type, Material, Properties, Mechanics; Knowledge and Characteristics of Fiber Composite, Strength, Hardness, and the composite thermal expansion; Theory of Combination Fiber and Matrix; Matrix Composite Characterization; Laminar Theory On Axis and Off Axis; Composite Product Design, Composite Fabrication Technique; Testing Method; Future Applications.

Pre-requisite(s): -

Text Book(s):
4. Composites ASM handbook No 21

ENME803146 - FINITE ELEMENT AND MULTIPHYSICS (4 SKS)

Learning Objective(s):
Provide a basic understanding and skills regarding the principles of modeling, solution techniques such as ‘finite element method’ and its application in cases of design and engineering analysis. The models studied included physical aspects of the problem in Thermal, elasticity (plates and shells), acoustic, and electromagnetic.

Syllabus:
The introduction of FEA (Finite Element Analysis); Fundamental FEA I (basic concepts and formulations FEA FEA) FEA Fundamentals II (failure modes, Dynamic Analysis, FEA Capabilities and limitations); Basic Finite Element Modeling: Modeling CAD for FEA; Building a Finite...
Element Model: Model simulation and interpretation of results; Thermal-Structural; Pressure-Structural; Electromagnetic-Thermal-Structural; Analysis of Thermal Actuator; Coating process: Key elements of Successful Implementation of Technology multiphysics; Introduction to CFD and its Application.

Pre-requisite(s): -

Text Book(s):
3. Indra Siswantara, Catatan Kuliah Teknologi Multiphysics, 2008

ENME803147 - TOY PRODUCTION DESIGN (4 SKS)

Learning Objective(s):
Understanding the basics and design development of educational products in the industry props, product education, and game props.

Syllabus:

Pre-requisite(s): -

Text Book(s):

ENME803161 – MICROFABRICATION AND PRECISION MANUFACTURING (4 SKS)

Learning Objective(s):
In this course provides expertise of micro manufacturing process widely used in the making of MEMS (micro Electro mechanical system) at this time that has wide application of the biomedical system, sensors and micro-electronic devices (electronic devices). This course giving understanding of manufacturing techniques and basic structure mechanics in a product and also the micro-characterization of the process fabrication conducted in the laboratory. This course provides a basic competency of the principles in the design techniques which control the movement of the size or dimensions in a very small if compared with the size of the object that is designed and produced the correct design and the development machine and a precision mechanism.

Syllabus:
Introduction to Engineering Micro Fabrication; Lithography: The design aspect, masks making, etching technique (And Wet Etching Dry Etching); Deposisi Engineering: Chemistry and Chemicals; Electroplating, Micromolding, Beam Processing; Microscaling consideration; Transport Processes and Metrology in the micro-scope; Lab Practice and Applications, Philosophy Precision Manufacturing; kinematic concept; Pro and contra Flexures Design; Materials for Precision Components; Self Calibration Concept; Manufacturing Process which is Important in Precision Manufacturing, Precision Instruments; Basic Concept of Tolerance on Dimensions and geometric.

Pre-requisite(s): Basic mechanical design, Mechatronics, Design assignment, Metrology and Measurement, Engineering Materials, Manufacturing Process and Materials Selection.

Pre-requisite(s): -

Text Book(s):

ENME804148 - DESIGN FOR MANUFACTURE AND ASSEMBLY (4 SKS)
Learning Objective(s):
Provide knowledge, understanding and competence in the product design process which is considering, including factor and oriented on: material, manufacturing capability and assembling process. Therefore the product is expected to have made ease of manufacture and assembly.
Syllabus:
Review of the materials selection and processes, product design for manual assembly, design for automated assembly, PCB design for manufacture and assembly, machining process design, injection molding, sheet metal forming processes, die-casting.
Pre-requisite(s):
Text Book(s):
Boothroyd, Product Design for Manufacture and Assembly 3rd Ed, CRC Press, 2010

ENME804149 - NOISE AND VIBRATION (4 SKS)
Learning Objective(s):
This course provides competency to students to complete the issue of application of vibration on the mechanical structure of the construction, and plate or vessel (vessel), perform the calculation of vibration reducer system design, system and engine holder enhancing of production equipment. Finally students have to make basic vibration measurements; forecasts predicted the damage engine, the vibration analysis of the data signal and the vibration spectrum and carry out machine performance diagnosis based on data analysis of vibration data and other data related
Syllabus:
Mechanical vibration with Many Degrees Freedom; Vibration on the Structure Construction; Vibration on plate and body shell (Vibration Plate and Shell); Vibration Isolation; Designing Vibration Absorber; Engineering Vibration Measurement; Vibration spectrum analysis; Performance Diagnostic Machine.
Pre-requisite(s):
Text Book(s):

ENME804162 - LASER ASSISTED PROCESS (4 SKS)
Learning Objective(s):
Students are expected to understand knowledges related to fabrication process assisted by laser, and its direct application
Mahasiswa dapat memahami ilmu yang terkait dengan proses fabrikasi yang dibantu dengan teknologi laser, dan aplikasi serta penerapan langsung dari proses fabrikasi yang dibantu oleh teknologi laser.

Syllabus :

Pre-requisite(s): -

Text Book(s):
4. Jurnal dan standar terkait

ENME801150 – MANUFACTURING INFORMATION SYSTEM MANAGEMENT (4 SKS)
Learning Objective(s):
Provides understanding of the theory, method and application of information technology systems, management, and development of the concept of knowledge-based information systems (Knowledge Management System) and capable to apply in the manufacturing industry.

Syllabus :
Introduction to Information Systems; State of The Art Utilization Information System; Theory and System Methodology; Database Management Systems; System Design I: Overview functionality, enabling Technology (Automated Solution Assessments Quality, Multi Data Representation, Database Technology and XML); Design System II: (Database Design, Information Input, Output Information); Case Study: Documentation automation and Reporting System for Manufacturing; Introduction Knowledge Base Engineering, Concepts and Methodology in the KBE (System Specialists, Neural Network); KBE application..

Pre-requisite(s): -

Text Book(s):

ENME801151– MANUFACTURING SYSTEM AND PROCESSES (4 SKS)
Learning Objective(s):
Students are expected to know and be able to apply the conventional manufacturing process technology and non-conventional for the manufacture of a product and the parameters which influence it are devoted to the metal forming processes, machining, rapid prototyping process. In addition, knowing, and understanding the existing production systems in the industry.

Syllabus :

Pre-requisite(s): -
Text Book(s):

ENME802152 - AUTOMATION AND ROBOTICS (4 SKS)
Learning Objective(s):
Automation and Robotics course discusses technology and application in the automation industry and the design and control the robot emphasizes: understanding the types of automation systems, particularly in the manufacturing industry and the mechanism, the design and development of automation system that emphasizes the 3 things: reliability, quality and cost and the understanding robot control system. Automation and Robotics Lectures given with the aim that students have an understanding in the implementation of technology Automation and Robotics, especially in the manufacturing industry.

Syllabus:
Automation System; Classification Type Manufacturing Automation machinery; Actuator; Sensor System; PLC Control System in the Manufacturing Automation machinery; Robot- cs: Definitions and Principles of Robot; Spatial Descriptions: Definitions and Principles, Methods and Applications Spatial descriptions; Forward Kinematics: Definition, Principles and The Forward Kinematics; Jacobians: Speed, explicit shape, definition and principle of inverse Kinematics; Dynamic: The form of explicit, Acceleration and inertia; Control system robot: PID control, the Joint Space Control, Operational Control and Space Force Control; Robot Design Assignment.

Pre-requisite(s): -
Text Book(s):

ENME803153 - MACHINE VISION SYSTEM (4 SKS)
Learning Objective(s):
Machine Vision Industry Subjects provides the understanding and competency of the principles, methods and applications monitoring the production process by using visual-based camera technology, image processing, for the purpose of introducing the feature: product identification, selection and product screening, and quality control. With the completion of this course, students have the ability to apply and develop the visual method of monitoring the production process in the industry for the purpose.

Syllabus:

Pre-requisite(s): -
Text Book(s):

ENME803154 - QUALITY AND PRODUCTION MANAGEMENT SYSTEM (4 SKS)
Learning Objective(s):
Provides knowledge, understanding and ability to perform management, analysis and improvement of production systems in the manufacturing industry with the principles of efficiency and effectiveness, and able to understand and implement and develop policies and procedures are needed to improve and control the various processes.
Syllabus:
Pre-requisite(s): -
Text Book(s):
3. TQM, Text, Cases and Readings, Joel E. Ross, St. Lucie Press 100 E. Linton Blvd Suite 403 B Delray Beach, FL 33483

ENME803174 – RISK MANAGEMENT (4 SKS)
Learning Objective(s):
Students can explain and apply risk management in a risk assessment.
Syllabus:
Introduction to risk management, Value at Risk --VaR Risk measures for various asset classes, Monte Carlo Simulation, VaR Validation and Extremes, Regulatory Environment 25 years of risk related regulations, Multifactor models Discussion of multifactor analysis, Review of industry leading risk management system, Operational Risk and its Basel II requirements.
Pre-requisite(s): -
Text Book(s):
2. Roger Lowenstein, When Genius Failed, Random House, 2000

ENME804155 - CAD/CAM (4 SKS)
Learning Objective(s):
This lecture will discuss about technology of CAD, CAM, Integration of CAD / CAM application in the industry and the emphasis on: the principles modeling and surface curve geometry (Geometric modeling), design of 2D and 3D models with computer assisted. The principle of data exchange between CAD/CAM systems also tool path design using computer for prismatic and sculptured model. Lectures CAD / CAM are provided with the aim that students have the understanding and applying technology of CAD / CAM: starting the process from design to production process with the computers assistance.
Syllabus:
Overview of CAD / CAM System; Hardware & Software System of CAD / CAM; Interactive Tools and Computer Graphics Concepts, Geometric Modeling: Type & Representation of mathematical model Curve, Surface & Solid; Data Exchange in CAD / CAM system; Manufacturing Processes: Manufacturing Process Review Type and Parameter Calculation machining, Lab. practice of CAD; CNC Technology; Tool Path Generation Method in the CAM system; Control ‘quality of machinery’ in the CAM system; Computer Aided Process Planning-CAPP; Postprocessing; Lab. practice of CAM.
Pre-requisite(s): -
Text Book(s):
2. Choi B. K., Jerard R. B., Sculptured Surface Machining,

ENME804156 - MANUFACTURING PERFORMANCE ASSESSMENT (4 SKS)
Learning Objective(s):
Provides knowledge about the basic concepts of performance assessment of manufacturing industry relating to product performance, process, manufacturing system and its relation to manufacturing excellence. At the end of this course, students are expected to understand the methodologies and assessment tools manufacturing performance and are able to identify, assess and analyze the performance of the manufacturing industry increase.
Syllabus:
Pre-requisite(s): -
Text Book(s):
2. “World Class Manufacturing Performance Measures”

ENME801163 - VEHICLE ENGINEERING AND HEAVY DUTY EQUIPMENT (4 SKS)
Learning Objective(s):
This course provides the latest technology from the four-wheeled passenger vehicle, especially with covering all aspects of engineering in a vehicle. Lectures given vehicle engineering with the aim that students have basic competence to do the engineering on the four-wheeled passenger vehicle in particular.
Syllabus:
Vehicle Kinematics & Dynamics; mover and transmission system; Breaking Systems, Wheel and Suspension; Security System: Active and passive at the time experiencing issues.
Pre-requisite(s): -
Text Book(s):

ENME801164 - PRIME MOVER AND POWERTRAIN SYSTEM (4 SKS)

Learning Objective(s):
Students have the competency and skill in the principles and theory of prime mover including internal combustion motor, electric motor, hybrid motor which are connected to the powertrain system; understand and are able to calculate the construction and design.

Syllabus:
Combustion motor technology; reciprocating/rotary piston engine; electric motor technology (AC/DC motor); hybrid motor system; serial/parallel hybrid; transmission system: MT, AT, DCT, CVT; battery technology

Pre-requisite(s):

Text Book(s):

ENME802165 - VEHICLE FRAME AND BODY ENGINEERING (4 SKS)

Learning Objective(s):
Provides the understanding of several concepts related to design and analysis of vehicle frame such as:
- A brief understanding in the history of vehicle design development
- Understanding the different possible scenarios for vehicle design and interactivity of the process in the design and manufacture of vehicles, as well as various types of vehicle structure and its use.
- Understand how the load can be analyzed simply and with the use of computers as well as a simple structural analysis that highlights the processes involved in vehicle structures.
- Understanding the basic concepts related to the aerodynamic vehicle body and the basic calculations required in the form of an aerodynamic vehicle design

Syllabus:
Introduction to Innovation and breakthrough discoveries in the field of automotive and industrial development of the automotive world today. Understanding the concept of loading on the vehicle structure, various types of chassis, structural analysis with a simple method of surface structure (Simple Structural Surface method) and method of computing the skeletal structure. Aerodynamic force, reducing the lift force (drag force reduction), stability and concept of calculation of the vehicle body dynamics computation

Pre-requisite(s):

Text Book(s):

ENME803166 - VEHICLE CONTROL SYSTEM (4 SKS)

Learning Objective(s):
Students understand the basic features of the vehicle control system that has the ability to:
• Describes a simple method for the analysis of vehicle suspension systems and components;
• Describes the vehicle suspension system design requirements and how to achieve it;
• Analyze the various factors and issues that affect the design of suspension of driving;
• Understand the mechanics of the vehicle wheel;
• Describes recent developments in control of the braking system and braking system design and material needs an efficient;
• Analyze the influence of the steering system characteristics to the vehicle motion

Syllabus:
Introduction of the role of vehicle suspension systems, factors that affect the design, definitions and terminology in vehicle suspension systems, suspension mobility mechanisms, different types of suspension, kinematics analysis, the analysis center of rotation (roll center analysis), geometric style as well as lateral, suspension components. The basis of the braking system. Regulation, function and terms of use brake system, brake system components and configurations as well as the kinematics of the braking system. Consideration of adhesion force proportional to the brake system and braking efficiency. Deformation, lateral force and slip angle on the tire when the vehicle is running. Penikungan characteristics (cornering characteristics) according to Fiala theoretical approach to the mathematical model and the effect is due to air pressure in tires.

Pre-requisite(s):

Text Book(s):

ENME803167 - MODERN VEHICLE TECHNOLOGY (4 SKS)

Learning Objective(s):
Students understand the concept of manufacturing technology and control systems on the vehicle so as to: • Analyze the condition of current technological advances to make fundamental changes in vehicle design a sustainable future.
• Design process to create an automatic control system that helps in controlling the vehicle.
• Designing vehicles with electronic control systems that can improve vehicle performance.
• Describes the integration of vehicle control systems and mechanicalelectrical interaction
possibilities for the design of future vehicles.

Syllabus:
Knock control, Linear solenoid idle speed control, Sequential fuel injection, Distributorless ignition, Self-diagnosis for fail-safe operation, Crankshaft angular position measurement for ignition timing, Direct mass air flow sensor, Variable valve phasing, teknologi kendaraan Hybrid Electric Vehicles and Electric Vehicle.

Pre-requisite(s):

Text Book(s):

ENME803195 - OIL AND GAS DRILLING EQUIPMENT (4 SKS)

Learning Objective(s):
Provides additional insights regarding the implementation of basic knowledge of engineering competence that is at the core of oil and gas drilling techniques. Competencies expected of graduates capable of developing the engine with value added technical knowledge of oil and gas drilling equipment that is ready to be trained and shaped to be easily and immediately adapt to work without the awkwardness of the world’s E / P oil and gas fields in general and in particular oil and gas drilling. Thus it has the advantages of graduates and a wider choice in the real world of work later. Objectives and learning outcomes to be achieved:

1. Enabled students to know the basic tools and their functions and how each is needed in an oil and gas drilling operations.
2. Students capable of explaining the technique of oil and gas drilling operations and its other related aspects such as equipment used, safety issues, safety equipment, emergency and environmental issues.
3. Student s have a pretty good understanding of the knowledge of drilling equipment and its operation so as to participate in an oil and gas drilling operations with confidence and readiness to increase knowledge and skills later on after graduation.

Syllabus:
Intro to oil / gas well, oil / gas Exploration, exploitation and production, drilling rig, the terminology, the problem of drilling, drilling fluid, drilling oil and gas in the system, hoisting
system equipments, equipments rotating system, circulating system equipments, power system equipments, blowout prevention system equipments, well design, equipments and operations for safety and efficiency, process and equipments for cementing, drilling preparation, drilling operations, drilling and process problems (drill string vibration and whirling, collar failure, etc.) artificial lift methods and equipments, visit to the field of oil and gas drilling.

Pre-requisite(s): -

Text Book(s):

ENME804168 - RAILWAY VEHICLE ENGINEERING (4 SKS)

Learning Objective(s):
Provides the knowledge and design of rail vehicle.

Syllabus:
Engineering and economic analysis of rail vehicles; body structures and rail vehicles; structural analysis of flat car; coupler analysis; electrical and pressurized water; analysis and modeling of the bogie; axle; wheel; brake and pivot; suspension system and driving quality; dynamic load analysis; fatigue and cracks in rail vehicles; models of rail vehicles and track geometry; modeling components of rolling stock; response rail vehicle on the track tangent; lateral stability of the rail vehicle on the track tangent; response rail vehicle on a curved trajectory; wheel wear; rail vehicle dynamics.

Pre-requisite(s): -

Text Book(s):

ENME804197 - MATERIAL HANDLING EQUIPMENT (4 SKS)

Learning Objective(s):
Provides expertise and competence to students in the field of design and development of lifting equipment and construction equipment

Syllabus:
Introduction and Scope of Construction Equipment; Tractor, Bulldozer, Dump Truck and shovel; Construction Equipment Mechanical Concept; Heavy equipment system: Pneumatic and Hydraulic; Basic Machine-lifting machinery and materials transporter; Cranes, hoist and conveyor; forklift: Moving Walks, Escalators, and Elevators

Pre-requisite(s): -

Text Book(s):
1. ASME. Handbook of Materials Handling.

ENME804198 - AIRCRAFT STABILITY AND CONTROL (4 SKS)

Learning Objective(s):
Provides the students with the knowledge and ability in analyzing the aircraft (A/C) stability and control.

Syllabus:
Systems of Aircraft Axes and Notation, Aircraft Static Equilibrium and Trim, The Equations of Aircraft Motion, Aircraft Longitudinal Dynamics, Aircraft Lateral-Directional Dynamics, Aircraft Maneuverability, Aircraft Stability, Aircraft Flying and Handling Qualities, Aircraft Stability
Augmentation, Aircraft Aerodynamic Modelling, Aircraft Aerodynamic Stability and Control
Derivatives
Pre-requisite(s) -
Text Book(s):

ENME801179 – ADVANCED THERMOFLUIDS (4 SKS)
Learning Objective(s):
Students are expected to understand the concepts of mass, momentum, heat, work, energy, and
entropy in the mechanics of thermofluid. Understanding the basic principle of hydrostatics,
flow measurement, identification of thermofluids system or controlled volume and flow from
mass, momentum, heat, and work which are related to the given problems. Understanding of lift
force and drag force. Using the 1st and 2nd Laws of Thermodynamics in the thermofluids system.
Syllabus:
Introduction to thermofluids, hydrostatic, control volume approach, Bernoulli equation, stream-
lined curves, the basic concepts of thermodynamics, the relationship properties and ideal
gases, application of the fist and
second law of thermodynamics, temperature, entropy, entropy of use, fuel, control volume
analysis, steady flow, gas turbines and jet engines.
Pre-requisite(s) -
Text Book(s):
1. Cengel, Y.A. & Boles, M.A. Thermodynamics: An Engineering Approach
2. Homsy, G.M.(Ed.) Mechanics of Fluids
5. Rogers, G.F.C. & Mayhew, Y.R. Engineering Thermodynamics
6. Samimy, M., Et Al. A Gallery of Fluid Motion
7. Sonntag, R.E., Borgnakke, C., & Van Wylen, G.J. Fundamentals of Thermodynamics
8. Van Dyke, M. An Album of Fluid Motion

ENME801180 – MARITIME RESOURCES AND TECHNOLOGIES (4 SKS)
Learning Objective(s):
This course provides an understanding of maritime resources and opportunities, as well as risks
related to the exploited potentials. Students will learn knowledges of formation, exploration
and production of maritime resources: not only oil and gas, but also other minerals, and ocean
flora and fauna, including its impact on environmental sustainability.
Syllabus:
Oil and gas from the ocean, seabed mining, energy from the melting of ice, ocean energy,
ocean flora and fauna, marine environmental sustainability.
Pre-requisite(s) -
Text Book(s):
1. Research Council National Research Council, NEW Mining in the Outer Continental
Shelf and in the Deep Ocean, University Press of the Pacific, 2005
Conversion Systems, CRC Pr I Llc, 2009

ENME802181 – MARITIME ENGINEERING AND MANAGEMENT (4 SKS)
Learning Objective(s):
This course provides knowledge about technologies for ocean transportation and the application
of ocean-based energy sources. This course also aims to equip students with understanding of maritime opportunities that can be developed with the use of technology.

Syllabus:
Classification of ship based on its function, aspects to consider in ship designing, history of development of off-shore structure, ocean environment, types of off-shore structure: fixed design and floating design, mooring and anchoring system, force calculation of off-shore structure, FPSO

Pre-requisite(s): -

Text Book(s):
1. International Energy Authority Renewable Energy Technology Deployment (IEA-RETD),

ENME803182 – OCEAN ENERGY (4 SKS)

Learning Objective(s):
This course provides knowledge about technologies and principles related to the design of renewable ocean energy system

Syllabus:
Introduction to renewable ocean energy, introduction to wind turbine, tidal system and tidal energy system, OTEC, ocean flows, methods of economic/financial assessment for off-shore renewable energy system, wind energy, momentum theory and the limit of wind power output, tidal flow and its conversion to mechanical energy, description of wave energy sources, instruments of wave energy and instruments for simulation.

Pre-requisite: -

Text Book(s):

ENME803183 - MARINE AND OFFSHORE STRUCTURE (4 SKS)

Course Objective:
Provides the knowledge, understanding of the theory and principles of building offshore include the type, function, and offshore construction technology and techniques in performing design structure.

Syllabus:
Types of Offshore; Construction and Offshore Structures; Calculation of Style and Power Offshore: Safety Requirements; Construction Semi-submersible; Single Buoy Mooring; FPSO; Offshore Maintenance and Repair.

Pre-requisite: -

References:
2. Subrata Chakrabarti, Handbook of Offshore Engineering, Elsevier Science, 2005
ENME803184 - SEA TRANSPORT AND PORT MANAGEMENT (4 sks)

Course Objective:
Provides the knowledge and understanding of various management approaches, maritime transport and port activities which also include risk factors, safety, and economy.

Syllabus:

Pre-requisite:
-

References:
1. P. Lorange, Shipping Management, Institution for shipping Research.

ENME803185 - MARITIME LAW AND REGULATION (4 sks)

Course Objective:
Provides knowledge and understanding of the laws and regulations on maritime activities both nationally and internationally.

Syllabus:
Introduction of maritime law; Regulation of Marine Pollution Prevention and Control; SOLAS; Prevention of Collisions Regulations; ISM Code; Statutory Rules; Passenger Ship Regulations; Tanker Regulations; Offshore Regulations; Accident Rescue Regulations; Other IMO rules. Accident prevention regulations; Risk assessment and analysis.

Pre-requisite:
-

References:
1. International Convention for the Prevention of Pollution From Ships (MARPOL), International Maritime Organisation Publications
2. International Regulations for Preventing Collisions at Sea (COLREG), International Maritime Organisation Publications

ENME804186 - SPECIAL SHIP PROJECT (4 sks)

Course Objective:
Provides the knowledge, understanding of ship design for special purposes.

Syllabus:
Typology and special ship purposes; Material to special Ship, Design Considerations; Calculation of loading; Calculation of Ship Quantities; Computation Structures: Propulsion Systems; Motion System; Safety and Navigation System; Stability Calculation.

Pre-requisite:
-
References:

ENME804187 - SHIP PRODUCTION MANAGEMENT (4 sks)
Course Objective:
Provides knowledge and understanding of the various shipyard management and technique.
Syllabus:
Shipyard Layout; Ship Process Production; Steel Stock Yard Planning; Crane Calculation: Jamo-rang Calculation At Each Stage Production: Make Work Schedule: Work Break Down Structure; Integrated Hull Outfitting and Painting; Advanced Outfitting; Group Technology Methods for Ship Production; Ship launching; Ship trials.
Pre-requisite:
References:
2. R. Shenoi, Ship Production Technology, Univ. Of Southampton.

ENME804188 - MARITIME ENERGY MANAGEMENT (4 SKS)
Learning Objective(s):
This course provides an understanding about energy optimization analysis with minimum fuel consumption. Additionally, it also provides optimization analysis with minimum initial energy
Syllabus:
Principle and regulation of maritime energy, planning and operation of an efficient ship, energy management for off-shore structure, energy management for port, renewable energy, huma resources aspect of energy management.
Pre-requisite(s):
Text Book(s):

ENME804189 - MARITIME SAFETY (4 SKS)
Learning Objective(s):
Provides knowledge and understanding related to the safety via regulations, management, and development of any forms of maritime transportation technology.
Syllabus:
SOLAS: Provisi Umum, konstruksi, alat keselamatan, radio komunikasi, navigasi keselamatan, pengangkutan barang, manajemen untuk keselamatan operasi kapal, MARPOL Annnex I-V per- aturan untuk pencegahan polusi, keamanan maritim; ancaman perdangangan maritim, anca-
man terhadap pengapalan, evolusi keamanan maritim, implementasi ISPS Code, perencanaan keamanan.

Pre-requisite(s): -

Text Book(s):

ENME804190 - ADVANCED WELDING ENGINEERING (4 SKS)

Learning Objective(s):
Provide knowledge, understanding of the theories, principles and design as well as the assessment of the quality of welding and welding applications.

Syllabus:
Introduction, review of welding term and definition, welding process type, standard power source, Oxy-gas welding, Shield Metal Arc Welding (SMAW), Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Submerged Arc Welding (SAW), Flux Cored Arc Welding (FCAW), Resistance welding, Friction Stir Welding, Other welding process: laser, electron beam, plasma, Cutting and other edge preparation processes, surfacing and spraying, Brazing and soldering, Joining processes for plastics, ceramics and composites, Welding metal: Ferrous-based metal, non-ferrous-based metal, Material behavior during welding process, Testing materials and the weld joint, Non Destructive Examination (NDE), DT (Destructive Test), Heat treatment of base materials and welded joints, Basic of welding design, Residual stresses and distortion, Welding Symbol, Behavior of welded structures under different types of loading, Design of welded structures under static and dynamic loading, welding defects, Design of welded pressure equipment, Welding Performance Qualification Record (WPQR), Welding Procedure Specification (WPS), Welding automation.

Pre-requisite(s): -

Text Book(s):
2. ASME Section IX, Welding and Brazing Qualifications
3. AWS D1.1., Structural Welding (Steel)
MASTER PROGRAM IN MECHANICAL ENGINEERING – FAST TRACK PROGRAM

For capable students who wish to continue their undergraduate study to Master Program in Mechanical Engineering via the Fast Track program, a credit transfer is allowed up to 22 sks. From the 22 sks, it is broken down into: 14 sks from the core subjects and another 8 sks from the elective subjects.

Transferrable core subjects and elective subjects are those admitted and are listed as options in the study program of Master in Mechanical Engineering.

Listed below are the requirements for students undertaking the Fast Track Program:

1. He/she must declare his/her intention in undertaking the Fast Track Program by writing an application letter to the head of the Department of Mechanical Engineering by also attaching a study plan in the form of subjects planning in the 6th-8th Semester (during the undergraduate degree) and in the 1st-4th Semester (during the Master Program) based on his/her specialization. This letter must be submitted by the end of the 5th Semester of his/her undergraduate degree course in Mechanical Engineering or Naval Architecture and Marine Engineering.

2. He/she must have an excellent academic performance, shown by the cumulative GPA (Grade Point Average, Bahasa Indonesia: IPK) of at least 3.2 in the 5th Semester and have passed all basic subjects.

3. He/she must have a guarantor and or a confirmed scholarship scheme to finish his/her undergraduate degree and master degree with the Fast Track Program.

4. He/she must declare his/her intention of undertaking the academic program under the Fast Track scheme in full-time.

5. If his/her application is accepted by the head of the Department/study program, then he/she must discuss with his/her academic advisor to finalize the study plan in the undergraduate degree and master degree program.

The student of undergraduate degree program who have been accepted to enroll in the Fast Track program by the head of the Department needs to adjust his/her plan of taking which subjects in the 7th and 8th semester, especially by considering the available core and elective subjects available in the Master Degree Program according to his/her specialization.
6.4 MASTER PROGRAM IN ELECTRICAL ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td>Master Program in Electrical Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Magister Teknik (M.T.)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>BAN-PT: A - accredited</td>
</tr>
<tr>
<td>7</td>
<td>Language(s) of Instruction</td>
<td>Bahasa Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Entry Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pass the entrance exam, and pass s1/d iv from electrical engineering study program, mechanical engineering, computer science, informatic engineering, mathematic, physics, and equivalent program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study Duration</th>
<th>Designed for 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type of Semester</td>
<td>Number of semester</td>
</tr>
<tr>
<td>Regular</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Graduate Profiles:
Magister of engineering who is able to formulate solution to complex problems in the field of electrical engineering through advancement technology based research using inter and multidiscipline approach in accordance with professional ethics.

Expected learning outcomes:

General outcomes:
1. Able to model electrical engineering system into mathematical equations
2. Able to formulate the problem solving in electrical engineering with the proper research methods
3. Able to produce innovative independent scientific work
4. Able to apply concepts of professional management in the field of electrical engineering

Majoring in Electronics and Photonics:
- Able to design advanced electronics and photonics devices
- Able to design photonics system
- Able to study state of the art of technology in the field of electronics and photonics.

Majoring in Telecommunication and Radar Engineering
- Able to evaluate the performance of system and telecommunication network
- Able to design communication system and radar system
- Able to design communication system and radar system equipments
- Able to recommend the latest technology in the field of telecommunications and radar

Majoring in Control Engineering
- Able to evaluate control system performance
- Able to recommend the latest control method based on the system need
- Able to design the latest control in the real systems
- Able to study the latest research in field of control engineering

Majoring in Electrical Power Engineering and Energy:
- Able to specify technical and non-technical aspects in electric power industrial utilization
- Able to recommend strategy to improve efficiency, quality, and power quality in electrical engineering system
- Able to combine new and renewable generator to electrical network system
- Able to evaluate strategy and risk mitigation in the development of electric power system who are reliable, secure, environmentally friendly

Faculty of Engineering

651
Majoring in Computer Engineering and Network:
• Able to design advanced information network
• Able to design advanced computer system
• Able to develop the latest technology based system in the field of information technology and multimedia

Majoring in Information Network Security:
• Able to design physical infrastructure in a comprehensive manner that meets high security rules
• Able to analyse information security management in new technological concept for national indonesia development
• Able to evaluate the information network security based on the rule of technology, legislation, and regulations that apply

Majoring in Telecommunication Management:
• Able to evaluate the technical and non-technical aspects of a telecommunication system
• Able to recommend strategies and technology for the improvement of the service quality system
• Able to develop insight of technology which oriented to national interests and indonesia development
• Able to evaluate strategic and regulative policies that are applied to the telecommunication system

Majoring in Electrical Power Management and Energy:
• Able to formulate the technical and non-technical aspects, management, and business development and utilization on electrical power industrial economics including energy issues
• Able to recommend strategies for increased efficiency, quality, and the quality of the electrical power system
• Able to integrate new energy power generation and renewable electric network system
• Able to recommend risk mitigation strategies and on the development of electric power system which are reliable, secure, and environmentally friendly

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours (SKS)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Core Subjects</td>
<td>19</td>
<td>45.23%</td>
</tr>
<tr>
<td>ii</td>
<td>Majoring Courses</td>
<td>23</td>
<td>54.77%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>14</td>
<td>Total Credit Hours to Graduate</td>
<td>42 SKS</td>
<td></td>
</tr>
</tbody>
</table>

Career Prospects

The graduates of this program have been employed in various industrial companies such as power engineering, IT, electronic, oil & gas, telecommunication and other related industries. Some of graduates were even employed before the graduation. Some occupation or job titles that are suitable for this program are electrical engineer, process engineer, control engineer, instrumentation engineer, program manager, project manager, technical manager and professional lecturers.
Learning Outcome

Magister teknik yang mampu memformulasikan pemecahan masalah kompleks di bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.

- Mampu membuat hasil karya ilmiah mandiri dan karya inovatif.
- Mampu memodelkan sistem teknik elektro ke dalam persamaan matematis.
- Mampu memformulasikan pemecahan masalah di bidang teknik elektro dengan metode penelitian yang tepat.
- Mampu menerapkan konsep manajemen yang profesional untuk bidang teknik elektro.

Teknik Elektronika dan Fotonnaika
- Mampu memecahkan masalah dalam bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.
- Mampu merancang divais elektronika dan fotonnaika lanjut.
- Mampu merancang sistem teknologi terkini di bidang teknologi fotonnaika.
- Mampu menggali pengetahuan dan ilmu dalam bidang teknologi fotonnaika.

Teknik Telekomunikasi dan Radar
- Mampu memecahkan masalah dalam bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.
- Mampu merancang sistem komputer lanjut.
- Mampu menggali pengetahuan dan ilmu dalam bidang teknologi elektronika.

Teknik Kendali
- Mampu memecahkan masalah dalam bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.
- Mampu mengevaluasi kinerja sistem kendali.
- Mampu merancang perangkat sistem kendali yang efisien dan ramah lingkungan.

Teknik Tenaga Listrik dan Energi
- Mampu memecahkan masalah dalam bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.
- Mampu memecahkan masalah dalam bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.
- Mampu memodelkan sistem teknik elektro ke dalam persamaan matematis.
- Mampu memformulasikan pemecahan masalah di bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.
- Mampu memodelkan sistem teknik elektro ke dalam persamaan matematis.
- Mampu memformulasikan pemecahan masalah di bidang teknik elektro melalui riset berbasis teknologi terkini dengan pendekatan inter atau multidisiplin sesuai etika profesi.
- Mampu mengevaluasi aspek teknis dan non-teknis dari sebuah sistem.
- Mampu mengembangkan wawasan teknologi berorientasi kepentingan nasional dan pembangunan negara Indonesia.
- Mampu mengevaluasi kebijakan strategis dan regulatif yang diterapkan pada sistem telekomunikasi.
- Mampu merekomendasikan strategi dan teknologi untuk pengingkatan kualitas layanan sistem.
- Mampu merekomendasikan strategi dan metode pengendali terkini berdasarkan kebutuhan sistem.
- Mampu merekomendasikan pengembangan manajemen pada industri, energi dan ketenagalistrikan nasional dan global.
- Mampu merekomendasikan strategi dan metode pengendali terkini berdasarkan kebutuhan sistem.
- Mampu merekomendasikan strategi dan metode pengendali terkini berdasarkan kebutuhan sistem.
- Mampu merekomendasikan strategi dan metode pengendali terkini berdasarkan kebutuhan sistem.
FLEW DIAGRAM OF SUBJECTS

Diagram Alir Mata Kuliah Peminatan Teknik Elektronika dan Fotonika

- Semester 1
 - Matematika Terapan
 - Disain Rangkaian Terpadu
 - Nanoelektronika
 - Divais Fotonika Lanjut

- Semester 2
 - Metodologi Penelitian
 - Disain MEMS
 - Divais Solid State
 - Divais Heterostruktur

- Semester 3
 - Manajemen dan Keekonomian Proyek Teknik
 - Sistem Optik Koheren
 - Sistem Pengukuran dengan Metode Optik

- Semester 4
 - Tesis
 - Publikasi Ilmiah

Diagram Alir Mata Kuliah Peminatan Teknik Telekomunikasi dan Radar

- Semester 1
 - Matematika Terapan
 - Jaringan Komunikasi Broadband
 - Sistem Radar dan Disain
 - Pengolahan Sinyal dan Aplikasi

- Semester 2
 - Metodologi Penelitian
 - Teknik Sistem Medis Nirkabel
 - Disain Rangkaian RF
 - Disain Antena Modern

- Semester 3
 - Manajemen dan Keekonomian Proyek Teknik
 - Teknologi Komunikasi Gelombang Cahaya
 - Topik Khusus Telekomunikasi

- Semester 4
 - Tesis
 - Publikasi Ilmiah
Diagram Alir Mata Kuliah Peminatan Teknik Komputer dan Jaringan

Semester 1
- Matematika Terapan
- Manajemen dan Keekonomian Proyek Teknik
- Arsitektur Komputer Lanjut
- Jaringan Informasi Lanjut

Semester 2
- Metodologi Penelitian
- Simulasi Jaringan Berbasis Komputer
- Komputasi Multimedia
- Penginderaan Jauh

Semester 3
- Keamanan dan Kehandalan pada Jaringan
- Rekayasa Perangkat Lunak Berorientasi Objek
- Sistem Embedded Lanjut

Semester 4
- Tesis
- Publikasi Ilmiah

Diagram Alir Mata Kuliah Peminatan Manajemen dan Keamanan Jaringan Informasi

Semester 1
- Matematika Terapan
- Manajemen dan Keekonomian Proyek Teknik
- Keamanan Jaringan Informasi
- Infrastruktur Jaringan Informasi

Semester 2
- Metodologi Penelitian
- Simulasi Jaringan Berbasis Komputer
- Manajemen dan Regulasi Keamanan Informasi
- Manajemen Resiko Keamanan dan Penanganan Bencana

Semester 3
- Keamanan Aplikasi dan Jaringan Bergerak
- Forensik Dijital dan Jaringan

Semester 4
- Tesis
- Publikasi Ilmiah

Panduan
- Mata Kuliah Departemen
- Mata Kuliah Peminatan
POST-GRADUATE CURRICULUM COURSES
DEPARTMENT OF ELECTRICAL ENGINEERING

ELECTRONICS AND PHOTONICS ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801101</td>
<td>Integrated Circuit Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801102</td>
<td>Nanoelectronics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801103</td>
<td>Advanced Photonic Devices</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802104</td>
<td>MEMS Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802105</td>
<td>Solid State Device</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802106</td>
<td>Hetero-structure Devices</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803107</td>
<td>Optical Coherent System</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803108</td>
<td>Optical Method for Measurement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>8</td>
</tr>
<tr>
<td>4rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>

TELECOMMUNICATIONS AND RADAR ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801201</td>
<td>Mobile Broadband System Networks</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801202</td>
<td>Radar Systems and Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801203</td>
<td>Digital Signal Processing & Apps</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802204</td>
<td>Wireless Medical System Eng.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802205</td>
<td>Advanced RF Design</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802206</td>
<td>Modern Antenna Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
</tbody>
</table>
3rd Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803207</td>
<td>Lightwave Communication Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803208</td>
<td>Special Topic in Telecommunication</td>
<td>2</td>
</tr>
</tbody>
</table>

Subtotal 8

4th Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
</tbody>
</table>

Subtotal 10

TOTAL 42

CONTROL ENGINEERING

1st Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801301</td>
<td>Analog and Digital Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801302</td>
<td>Special Topics on Advanced Research</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801303</td>
<td>Modeling and System Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal 12

2nd Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802304</td>
<td>Multivariable Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802305</td>
<td>Intelligent Robotics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802306</td>
<td>Adaptive and Optimal Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal 12

3rd Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803307</td>
<td>Advanced Control on Electric Drive System</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803308</td>
<td>Intelligent System and Control</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal 8

4th Semester

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
</tbody>
</table>

Subtotal 10

TOTAL 42
MASTER PROGRAM

ELECTRICAL POWER AND ENERGY ENGINEERING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801401</td>
<td>Power Generation Ops and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801402</td>
<td>Electrical Power System Quality</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801403</td>
<td>Energy and Environment</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802404</td>
<td>Dynamic System and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802405</td>
<td>Economics Energy and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802406</td>
<td>Industrial Power Electronics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803407</td>
<td>Topics in Power System and Energy</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803408</td>
<td>Power System Planning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL 42</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTER ENGINEERING & NETWORKING

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801501</td>
<td>Object Oriented based Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801502</td>
<td>Advanced Computer Architectures</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801503</td>
<td>Advanced Information Networks</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802504</td>
<td>Computer Based Network Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802505</td>
<td>Multimedia Computing</td>
<td>2</td>
</tr>
<tr>
<td>ENEE802506</td>
<td>Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803507</td>
<td>Network Security and Reliability</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803508</td>
<td>Advanced Embedded Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal 9</td>
<td></td>
</tr>
</tbody>
</table>
CURRICULUM OF ELECTRICAL ENGINEERING DEPARTMENT
SPECIAL CLASS IN SALEMBIA

INFORMATION NETWORK SECURITY MANAGEMENT

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801601</td>
<td>Information Network Security</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801602</td>
<td>Information Network Infrastructure</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802504</td>
<td>Computer Based Network Simulation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802604</td>
<td>Information Security Manag. & Regulation</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802605</td>
<td>Security Risk Manag. & Disaster Recovery</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE803606</td>
<td>Application & Mobile Network Security</td>
<td>4</td>
</tr>
<tr>
<td>ENEE803607</td>
<td>Network and Digital Forensic</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>8</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>

TELECOMMUNICATIONS MANAGEMENT

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801701</td>
<td>Modern Telecommunications Eng.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801702</td>
<td>Manag. of Telecommunications System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
</tbody>
</table>
MASTER PROGRAM

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE802703</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802704</td>
<td>Telecommunications Policy & Regulation</td>
<td>2</td>
</tr>
<tr>
<td>ENEE802705</td>
<td>Special Topic in ICT</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803707</td>
<td>Multimedia Wireless Communications</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>ENEE802706</td>
<td>Capita Selecta</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803708</td>
<td>Tech. Innovation & Competitiveness</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803709</td>
<td>Future Network Technology</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

ELECTRIAL POWER AND ENERGY MANAGEMENT

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENEE801001</td>
<td>Applied Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>ENEE803003</td>
<td>Engineering Economy & Project Manag.</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801401</td>
<td>Power Generation Ops and Control</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801802</td>
<td>Electric Utility Power Generation Economic</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>ENEE802002</td>
<td>Research Method</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802404</td>
<td>Dynamic System and Modeling</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802405</td>
<td>Economics Energy and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENEE802805</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>ENEE803806</td>
<td>Electrical Power System Quality</td>
<td>2</td>
</tr>
<tr>
<td>ENEE803408</td>
<td>Power System Planning</td>
<td>3</td>
</tr>
<tr>
<td>ENEE801403</td>
<td>Energy and Environment</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>ENEE804004</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>ENEE804005</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

Resume

<p>| Basic Electrical Engineering Subjects | 19 |</p>
<table>
<thead>
<tr>
<th>Subject</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRONICS & PHOTONICS ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>TELECOMMUNICATION & RADAR ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>CONTROL ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>ELECTRICAL POWER AND ENERGY ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>COMPUTER ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>INFORMATION NETWORK SECURITY ENGINEERING SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>MANAGEMENT OF TELECOMMUNICATION SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
<tr>
<td>Subject</td>
<td>Hours</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Basic Electrical Engineering Subjects</td>
<td>19</td>
</tr>
<tr>
<td>MANAGEMENT OF POWER SYSTEM AND ENERGY SUBJECTS</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours to Graduate</td>
<td>42</td>
</tr>
</tbody>
</table>
ENEE802002
RESEARCH METHOD
3 CREDITS
Learning Outcomes: Capable to write research proposal
Syllabus: Research: a way of thinking & process; Formulating a research problem; Research design; Data collecting; Writing research proposal; Collecting data & processing; Writing research report
Prerequisite: -
References:
1. Technical guidelines on the writing of Thesis students of University of Indonesia

ENEE804005
SCIENTIFIC PUBLICATION
2 CREDITS
Learning Outcomes: Syllabus:-
Prerequisite: -
Reference:

ENEE804004
THESIS
8 CREDITS
Learning Outcomes: In this course, students will be directed to develop independent research guided by a supervising professor or competent lecturer. After following this course the student is expected to be able to make a concept of research associated with existing theories. Under the guidance of a lecturer, students are expected to be able to design, integrate, implement, and analyze the concept, as well as write the results of his research into systematic paper in the form of thesis book. Students are also expected to be able to present and defend the concept and results of his research in front of the examiners in the thesis examination.
Syllabus:-
Prerequisite: Have taken at least 24 CREDITS
Reference:
1. Technical guidelines on the writing of Thesis students of University of Indonesia
2. IEEE Citation Reference

ENEE801001
APPLIED MATHEMATICS
3 CREDITS
Learning Outcomes: After completing the coursework, the student is expected to be able to apply the mathematical equations to solve engineering problems. In the application in the field of technology management, the purpose of this course is also to introduce the students to the statistical methods that can be used to formulate solutions to technical and business problems in a system and technology application.
Syllabus: Series, Differential Equations And Partial Differential, As Well As Some Of The Transformation; Probability and optimization, statistics, statistical methods; Mathematical Modeling For Business; Decision Analysis; Forecasting; Business Research For Managers; Optimization in the business and engineering; Theory Survey.

Prerequisite: None

Textbook:

ENEE803003
ENGINEERING ECONOMY AND PROJECT MANAGEMENT
3 CREDITS

Learning Outcomes: this course aims to build the competency in evaluating economics and management aspects of the projects, so that students are expected to understand the basic theories to support investment and developing feasibility analysis of service/application technology.

Syllabus: Basics of project and project management; Organizational structure; Management function; Leadership in environmental projects; Conflict Management; Analysis of investment; Analysis of control for infrastructure development; Costs and allocation of wealth; Risk management and control.

Prerequisite: None

Textbook:

ENEF801001
INTEGRATED CIRCUIT DESIGN
3 CREDITS

Learning Outcomes: Capable of designing and analyzing a series of simple integrated electronics.

Syllabus: Technology component of integrated circuit; CMOS Technology; CMOS analog circuit modelling; Properties of device; Operational amplifier sub circuit with CMOS analog; CMOS amplifiers; Analog to Digital converter; Digital to Analog Converter; Computer-based electronic circuit design.

Prerequisite: None

Textbook:

ENEF803007
OPTICAL COHERENT SYSTEMS
3 CREDITS

Learning Outcomes: Able to design and simulate an optical coherent system

Syllabus: Narrowing Linewidth light source; Injection-locked for light source; Heterodyne receiver system; Integrated Devices for Optical Communication Systems; Direct Detection Optical Communication Systems; Coherent System Structure for high speed optical fiber
communication; Performance Degradation Sources in Coherent Optical Systems; Multilevel Coherent Optical Systems; Multichannel Optical Systems.

Prerequisite: None

Textbook:

ENEF803008

OPTICAL METHOD FOR MEASUREMENT SYSTEM

3 CREDITS

Learning Outcomes: after seriously following this course student are expected to be able to design using laser, optical fiber and for application in various types of measurement systems.

Syllabus: basic concepts of laser and its properties; Optical phenomena: diffraction and interference; Basic concepts of fiber optics and its properties; Fiber optic sensors which include intensity, polarization and interference; Examples of some applications to measure various types of measurement: temperature, pressure and displacement.

Prerequisite: None

Textbook:

ENEF801003

ADVANCED PHOTONIC DEVICES

3 CREDITS

Learning Outcomes: This course aims to provide a systematic introduction on modern photonics and its subsystem devices for applications in the field of optical communications, optical sensing and imaging, optical data storage and computing as well as solid state illumination.

Syllabus: Guided wave optics; Fiber optics; Optical resonator; Optical photons; photons and atom; Photons in semiconductor; Laser amplifiers; Photon Source semi-Conductor; Photonic modulators: electro-optics, nonlinear optics and acousto optic.

Prerequisite: None

Textbook:

ENEF802006

HETERO-STRUCTURE DEVICES

3 SKS

Learning Outcomes: Students are able to analyze the physical calculations regarding a hetero-structured device and principles of operations in a comprehensive manner.

Syllabus: Introduction to physical and the properties of the semi-conductor: direct and indirect bandgap; Heterojunctions; The design of the device of hetero-structure; Solar cells; Photo detectors; LEDs.

Prerequisite: None

Textbook:

ENEF802005
SOLID STATE DEVICES
3 CREDITS
Learning Outcomes: After completing the coursework, the students are able to design a simple solid state devices such as: MIS Diode, Charge Couple Devices, Tunnel devices, IMPATT and Related Transit - Time Devices, Transferred Electron Devices
Syllabus: MIS Diode; Charge Couple Devices; Tunnel devices; IMPATT and Related Transit - Time Devices; Transferred Electron Devices
Prerequisite: None
Textbook:

ENEF802004
MICRO ELECTRO MECHANICAL SYSTEM, MEMS DESIGN
3 CREDITS
Learning Outcomes: After completing the coursework, students are able to design and analyze simple MEMS-based device. In addition, students will become acquainted with the process of fabrication of MEMS and micro-sensor and its application in the industry.
Syllabus: Introduction to MEMS; Materials for MEMS; Micromachining Process; The structure and system of MEMS on industrial and automotive applications; Structure and application of Photonic MEMS System; MEMS application in the life sciences; The structure and application of MEMS Structures on the application of RF; Packaging and reliability considerations for MEMS.
Prerequisite: None
Textbook:

ENEF801002
NANOELECTRONICS
3 CREDITS
Learning Outcomes: After completing the coursework, the student is able to evaluate nanoelectronic devices using quantum mechanics principle
Syllabus: Physical limit of IC and expectation of semiconductor nanostructures; basic quantum theory of nanoelectronics; solid state and low dimensional physics; numerical simulation for nanoelectronics; quantum well, wires, dots; nano structure and semiconductor device; tunneling effect and its application; resonance tunneling diodes and superlattice; quantum well laser; nano-photonics; organic electronics; single electron devices
Prerequisite: None
Textbook:
G.W. Hanson, “Fundamental of Nanoelectornics” CRC Press, 2005

ENET801001
BROADBAND COMMUNICATION NETWORK
3 CREDITS
Learning Outcomes: Able to analyze the performance of the latest generation of communication
systems.

Syllabus: High Data rates in Mobile Communication, LTE and SAE; OFDM Transmission; Single Carrier Transmission; Scheduling and Link Adaptation, LTE radio access; The LTE radio interface architecture; The downlink and uplink transmission schemes; LTE access procedure; Multipoint Coordination and transmission; Broadband Multimedia and Multicast Services, Spectrum and RF Last; Performance Evaluation

Prerequisite: None

Textbook:

ENET803007

LIGHTWAVE COMMUNICATION TECHNOLOGY

3 CREDITS

Learning Outcomes: After following this course, students are expected to analyze components of Optical network communications and to design optical communication network

Syllabus: Introduction: computer networks and telecommunication; Types of fiber; Physical impairment, DWDM System; Overview of optical communication technology; SONET/SDH: multiplexing, framing, control and management, protection, packet-over-SONET, generic framing procedure; Optical transport network: WDM network elements, optical protection layer and restoration G. 709, GMPLS optical control plane; Design of WDM networks: topology design of light path, routing and wavelength assignment, model dimensions maximum load; Optical access network: a network of hybrid fiber-coaxial, optical passive network; Recent Advances: Western Digital my packet switching.

Prerequisite: None

Textbook:

ENET801002

RADAR SYSTEMS AND DESIGN

3 CREDITS

Learning Outcomes: Able to evaluate the performance of the radar system.

Syllabus: Radar Equation; Influence of propagation; Radar-cross section target; Detection of signals in noise and pulse compression; Radar antenna; Short-range radar & cluster; Signal processing techniques of MTI & Pulse Doppler; Tracking & parameter estimation; The transmitter and receiver.

Prerequisite: None

Textbook:

ENET801003

SIGNAL PROCESSING AND APPLICATIONS
Learning Outcomes: Students are able to evaluate algorithms of signal processing by using FFT and transformation of signals.

Syllabus: Signal Analysis; Transient and frequency response; FT-Discrete FFT; Z transformation and its application in signal processing; Correlation and convolution; Digital filters: FIR and IIR; Multi-rate Signal Processing; Advanced Transformation (WHT, DCT, Wavelet transform) and its application; Project.

Prerequisite: None

Textbook:

ENET802006
MODERN ANTENNA DESIGN
3 CREDITS

Learning Outcomes: Able to design antennas for variety wireless technologies in particular the use of the micro strip antenna.

Syllabus: Basic theory of electromagnetic interference: Maxwell’s equations, boundary conditions, equations of wave vector, Image theory; The antenna loop and wire; The ideal dipole; Synthesis Of Antennas; Antenna Aperture: the principle of equivalent; The basic parameters of the antenna measurement techniques. Micro-strip antenna includes slot patch antennas, Fractals antennas, bias technique, broadband technique, multiband technique, stacking antenna, miniaturization, EBG (Electromagnetic Bandgap) and Metamaterial. Mikrostrip antenna applications such as on GPS, wireless telecommunications, RFID antenna research and trend nowadays.

Prerequisite: None

Textbook:

ENET802004
WIRELESS MEDICAL SYSTEMS ENGINEERING
3 CREDITS

Learning Outcomes: Able to evaluate the influence of body tissue against wireless communication systems from within and around the human body; Able to identify wearable devices; Able to analyze Body-centric UWB communications; Able to analyze Body-sensor networks; Able to analyze Medical implant communication systems; Able to analyze wireless medical diagnosis.

Syllabus: The introduction of the rankings; Communication Wireless Body-Centric; Electromagnetic properties and modeling of the human body; Wearable device; UWB Communication Body-Centric; Body sensor Network; Medical implant communication system; Diagnosis : Wireless medical Magnetic Resonance Imaging (MRI), MRI safety; Wireless medical diagnosis: computed tomography microwave (CT), Ultrasound, imaging techniques further (PET, SPECT, Hybrid Method); Treatment technology of wireless; Interference Electromagnetic interference (EMI) on medical devices; Technology wireless power for medical
implant devices.

Prerequisite: None

Textbook:

ENET802005

ADVANCED RADIO FREQUENCY DESIGN

3 CREDITS

Learning Outcomes: Able to design RF components, able to evaluate the performance of RF devices.

Syllabus: RF radio access networks design and essential: modulation, demodulation and multiple access techniques; LNA and Mixer design; Oscillator; Frequency Synthesizers; Design of Filter; Design of PA; Design of the wireless communication systems; Wireless LAN technology.

Prerequisite: None

Textbook:

ENET803008

SPECIAL TOPIC IN TELECOMMUNICATION

2 SKS

Learning Outcomes: Able to evaluate recent advancements in telecommunications technology

Syllabus:

Prerequisite:

Textbook:

ENEC801001

ANALOG AND DIGITAL CONTROL

3 CREDITS

Learning Outcomes: This course is an introduction to basic modeling, analysis, and feedback control systems design. This will give students insights into the problems of control and intuition about the methods available for resolving a problem. Both the frequency response and the state space method for analysis and design of the system of continuous time and discrete time are considered.

Syllabus: Open-loop control systems and closed loop; Basic concepts and definitions; Block diagrams; Nyquist diagram; Bode diagram design and analysis; Error analysis of steady-state; Root locus analysis and design; State space equations; Observabilities and controllability; The solution of equation of State; Design of controller using the pole placement method; Design observer full orders; The Transformation Of Z; The mapping between the s-plane and z-plane; Discrete-time state space; Design of controller using pole assignment; Design observer State; Deadbeat controller.

Prerequisite: None

Textbook:
ENEC801002
CURRENT RESEARCH ON SPECIAL TOPICS IN ENGINEERING
3 CREDITS

Learning Outcomes:

Syllabus:

Prerequisite:

Textbook:

ENEC802004
MULTIVARIABLE CONTROL SYSTEM
3 CREDITS

Learning Outcomes: Able to understand the concept of interacting loops in Multivariable system, analyze the stability of multivariable systems and designing a multivariable controller and domain defined and time domain.

Syllabus: Domain is defined: Multivariable system representation, input-output model, the interaction loop, relative gain array, the method of decoupling Baksenbom-Hood, stability; Time domain: model state space, form a diagonal, form handler, form observable, the stability of multivariable systems, controllability and observabilities, Poles and zeros, pole placement, method a method of decoupling Falb-design of Luenberger observer, Wolovich.

Prerequisite: None

Textbook:

ENEC801003
MODELING AND SYSTEMS ENGINEERING
3 CREDITS

Learning Outcomes: Able to simulate, identify and realize some of the physical model on certain software; In the application in the field of management of technology, this lecture also aims to model problems and cases that occur on the system technology so that it can support the ideal strategy design.

Prerequisite: None

Textbook:

Learning Outcomes: Provide the knowledge and expertise to students to design robots moving in closed loop controller with sensor fusion. When realized, the simulation model OpenGL followed implementation real-word runs.

Syllabus: The introduction and implementation of sensors and actuators; Introduction to control systems; C programming for ATMEL AVR Microcontroller; Simulation modeling with OpenGL; Modeling of moving robot with sensors and its simulation with openGL; Live recocking, concepts of real-time systems; Advanced control system and communication; Navigation system; Monitoring Command-control; Localization; The concept of a knowledge-based system with the realization on the robot move.

Prerequisite: None

Textbook:

ENEC802006

ADAPTIVE AND OPTIMAL CONTROL
3 CREDITS

Learning Outcomes: Able to design controllers for slow time variation, process uncertainty and is not linear (local description depends on the operating point). This task can be realized with different types of Adaptive controller or controller-optimal where the control stick was replaced by off-line optimization made through limited worldview.

Syllabus: The Adaptive control structure; Online identification for process variation is slow as an extension method of least squares; Self-tuning controller-based estimates of the parameters and the combination of such different pole assignment controller and its variations to a minimum; Realization of adaptive control on Matlab; The realization of the practice: the time of sampling, modeling and supervision order online from loop control; Random processes; The function of the criteria; Robustness; quadratic linear controller; Kalman Filter; quadratic Gaussian linear controller; Reduced order controller.

Prerequisite: None

Textbook:

ENEC803007

CONTROL AND INTELLIGENT SYSTEMS
3 CREDITS

Learning Outcomes: Study of intelligent computing method to build intelligent control system modelled on systems biology and human cognitive ability, adaptability and classification. Real applications on a single input single output systems (ANTENNA) carried out experimentally.

Syllabus: An introduction to pattern recognition; Artificial neural network; Backpropagation; Self-organized map; Vector quantization; Identification system; System control; Experiment Of ANTENNA.

Prerequisite: None

Textbook:
1. Ham and F. M. i. Kostanic, “Principal of neuroconputing for science and engineering”, McGraw-

ENEC803008
ADVANCED ELECTRIC DRIVE SYSTEM CONTROL
2 SKS
Learning Outcomes:
Prerequisite:
Textbook:

ENEP801001
THE OPERATION AND CONTROL OF ELECTRIC POWER GENERATION
3 CREDITS
Learning Outcomes: After completing the coursework, the student is able to operate the power plants geothermal and hydro power, distribution and power control systems and building electric power production cost models.
Syllabus: the properties of the power generation units; Economic Dispatch of Thermal Units; The influence of the transmission system; Unit Commitment; Generation with energy supply is limited; Hydrothermal Coordination; The model of production costs; Control generation; The exchange of power and energy.
Prerequisite: None

ENEP802004
DYNAMICAL SYSTEMS AND MODELING
3 CREDITS
Learning Outcomes: The student is able to design a dynamic model based on variable and determine parameters-owned model and compare the model obtained with various other models.
Syllabus: Introduction to dynamical systems, cycle feedback, model Multivariable complex and multiobyektif, modeling and simulation, design models, dynamic urban changes, developments
Prerequisite: None

ENEP801002
QUALITY AND QUALITY POWER ELECTRIC POWER SYSTEMS
3 CREDITS
Learning Outcomes: Able to analyze power system operating conditions, steady state on the condition and disrupt due to voltage swell/sag voltage and harmonic distortion.
Syllabus: Transient; Overvoltage; Undervoltage; Interruptions; Sags; Swells; Voltage Unbalance; Voltage fluctuations; Distortion of the wave form; Power frequency variation; Harmonic distortion; Current vs. Voltage distortion; Harmonic vs. Transient; Harmonic
Control; The Design Of The Filter; Benchmarking the quality of power; Power generation distribution and quality; Wiring and grounding; Checking the quality of the resources.

Prerequisite: None

Textbook:

ENME803006

ELECTRICAL POWER SYSTEM QUALITY

2 SKS

Learning Outcomes: Able to analyze power system operating conditions, steady state on the condition and disrupt due to voltage swell/sag voltage and harmonic distortion.

Syllabus: Transient; Overvoltage; Undervoltage; Interruptions; Sags; Swells; Voltage Unbalance; Voltage fluctuations; Distortion of the wave form; Power frequency variation; Harmonic distortion; Current vs. Voltage distortion; Harmonic vs. Transient; Harmonic Control; The Design Of The Filter; Benchmarking the quality of power; Power generation distribution and quality; Wiring and grounding; Checking the quality of the resources.

Prerequisite: None

Textbook:

ENEP803008

POWER SYSTEM PLANNING

3 CREDITS

Learning Outcomes: Able to analyze the identity request estimates of changes in economic variables and are able to estimate the reliability of the system on the changing economic conditions.

Syllabus: an estimate of the increase in demand for electric power; Electric power supply for the long term; The planning of electric power generation (production); Plant maintenance scheduling of power systems; The factors electricity development strategic Indonesia; The prospect of the development of electricity in Indonesia; The model construction of electric power systems; Methods of optimization.

Prerequisite: None

Textbook:

ENEP802005

ECONOMICS ENERGY AND MANAGEMENT

3 CREDITS

Learning Outcomes: Able to design the energy management system by applying the supply/demand side management-related sources, both fossil and non-fossil.

Syllabus: Fossil and Non-Fossil sources; Power systems management: including generation, transmission and distribution of electric power; Supply management supply management and is known as the Integrated Resource Planning.

Prerequisite: None

Textbook:

ENEP802006
INDUSTRIAL POWER ELECTRONICS
3 CREDITS
Learning Outcomes: Able to design applications in the field of high power semiconductor devices in the field of industry and the military.
Syllabus: Introduction to electric power systems and Power Semiconductor Switches; Diode Rectifier; Controlled Rectifier; Inverters; Resonant Converters and Switching power supply for D.C.; Power Conditioners and Uninterruptible Power Supplies; Introduction To Motor Drives; D.c. Motor Drives; Synchronous Motor Drives; Residential; Industrial and electric utility applications; Optimization system of utility interface with electric power systems.
Prerequisite: None
Text Book:

ENEP801003
ENERGY AND ENVIRONMENT
3 CREDITS
Learning Outcomes: Able to analyze the effects of the use of energy that is friendly to the environment.
Syllabus: global warming caused by the use of fossil and non-fossil energy; Problem solving environment nationally and globally; The implementation of the Kyoto Protocol in the form of a Clean Development Mechanism; CO2 trading.
Prerequisite: None
Textbook:

ENEP803007
TOPIC IN POWER SYSTEM AND ENERGY
2 SKS
Learning Outcomes: Able to evaluate the latest technological developments in the field of electric power and energy as well as provide mitigation over problems that arise.
Syllabus: Fossil and non-fossil energy, renewable energy generation, the reliability of electric power systems, renewable energy penetration into the electricity network, planning the development of the electric power system, the factors that affect the growth of the load, the effect of conventional power generation on the environment, factors that affect the development of the system
Prerequisite: None
ENCN801001
ADVANCED COMPUTER ARCHITECTURES
3 CREDITS

Learning Outcomes: Able to describe the architecture of the computer system; capable of analyzing sequences of instruction set. Students are also able to explain the detailed architecture of pipelining, superscalar and parallel systems and be able to analyze the parallel algorithm in computer systems.

Syllabus: Review instruction set architecture and its influence on performance: execution of the instruction, the influence of micro bus and system clock, system memory, system cache; Pipelining architecture: advantages, data, address and control conflicts, re-ordering instruction; Superscalar architecture: execution of dual stream; CISC and RISC; RISC architecture and its features: the rules of the register, the register of windows engineering and its effect on performance; Parallel architecture: shared memory, distributed memory, loosely coupled and tightly coupled; Cache consistency issues: examples of load balancing algorithms, parallel, message passing, the idea on the performance of a parallel algorithm.

Prerequisite: None

Textbook:

ENCN801002
ADVANCED INFORMATION NETWORKS
3 CREDITS

Learning Outcomes: Able to elaborate on the concept of advanced information networks, the IP Protocol and its relationship with the Quality of Services (QoS). Students are also able to describe wireless network protocols, and explains the characteristics of traffic in real-time and non-real time, analyze the needs of QoS for video, audio and data traffic. Students are also able to analyze the future of the network towards the Next Generation Networks, and being able to analyze the network merger of telecommunications technology now.

Syllabus: The idea of modern information networks, QoS-based networks that rely on IP and IP-like protocols; Wireless and wired backbone network, wireless and wired access network; The characteristics of the traffic, real time traffic, traffic, traffic non realtime class of service; Traffic reservation protocols: SIP, ATM, RSVP, etc.; The idea of Quality of Service (QoS), QoS parameters, implementation of QoS. End to end QoS on the network of the future; Traditional ATM network: class of services, label swapping, traffic congestion and the issue of reservation; MPLS network: Implementation Class of Services; Wireless networks: WiFi and WiMAX, QoS in WiMAX; Fiber-optic-based networks: IP issues at the top of the DWM; Next Generation Networks (NGN): incorporation of all types of telecommunications technology.

Prerequisite: None

Textbook:

ENCN802003
COMPUTER BASED NETWORK SIMULATION
3 CREDITS

Learning Outcomes: After completing this course, the student is able to describe the role of network simulation research on a new Protocol in the internet and are able to implement and analyze network simulation using NS (Network Simulator) to conduct research in the network.

Syllabus: Introduction; Basic network simulation; NS basic: OTCL, an example of a simple simulation (topology, events, marking flows, monitoring a queue), architecture (nodes, links, applications, protocols, packets, loss modules, math support); Event Scheduler; Network Components; Packet; Post Simulation: analyze the tracefile, the queue monitor (examples); Best Practice in Network Performance Evaluation Techniques; NS topology generation, OTCL and C++, routing (unicast, multicast, network dynamics), multicast transport; NAM network animator; Further features (abstraction, multicast, RTP/RTCP, SRM, QoS, Scenario generation, test suites); Developing the NS: Ns structure, OTCL linkage, adding new application and agent, queue; A new Protocol to NS: Header files, C++ code, the necessary changes, the TCL code; The introduction of the NS-3.

Prerequisite: None

Textbook:

ENCN802004

MULTIMEDIA COMPUTING

2 CREDITS

Learning Outcomes: After following this course the students are able to describe and implement the technology in the field of multimedia and forwarded through the network. Students are able to analyze the components of the multimedia files, file compression techniques of multimedia, real time delivery of multimedia files, multimedia QoS in a network of computers, and also capable of analyzing the characteristics of the network to support distribution of multimedia files over the Internet.

Syllabus: The Concept Of Multimedia Computing; Digital representation of Audio: pictures and videos; The characteristics and requirements of multimedia data; Techniques and digital audio compression standards; Techniques and image and video compression standards; End to end QoS for digital audio and video communication; Multimedia communication network; Transport protocols; Support system for distributed multimedia applications; The terms and mechanisms of synchronization of multimedia network; Information indexing and acceptance of multimedia.

Prerequisite: None

Textbook:

ENCN802005

REMOTE SENSING

3 CREDITS

Learning Outcomes: After completing this course, students are able to describe and analyze the satellite remote sensing data processing using specific algorithms.
Syllabus: Introduction; Acquisition of images; Satellite observations of the land; Active and passive sensors (optical, Radar); Microwave; Analysis of Data: GIS (geographic information systems); The science buildings and land; Land use & land cover; Global remote Sensing.

Prerequisite: None

Textbook:

ENCN803006
NETWORK SECURITY AND RELIABILITY
3 CREDITS

Learning Outcomes: After completing this course, the student is able to describe the protocol and model of a system of security in communications. Students are also able to analyze network vulnerabilities and implement security systems on the network and the web.

Syllabus: Introduction to the issues of security and privacy related information systems; the basics on confidentiality, availability, integrities; Identity and authentication credentials; Protocols and data integrities; control access; The security model; Cryptographic systems and protocols for privacy; Network security & web; Intrusion detection and prevention; Vulnerabilities and attacks; Security risk analysis; Planning for recovery from disasters; Security rules; Audit security and ISO17799.

Prerequisite: None

Textbook:

ENCN803007
OBJECT ORIENTED BASED SOFTWARE ENGINEERING
3 CREDITS

Learning Outcomes: After completing this course, the student is able to describe the concept of software engineering and model used in development of a software. Students are also able to analyze the problem, apply the critical stages of the life cycle of software, create documentation in software development, describes the specifications of the software based on software requirements and implement a verification method, implement the design in the form of programs, test program made, perform maintenance on the system, and generating complete documentation development system to create user instructions for a relatively complex system in the real world.

Syllabus: The concept of object-oriented software engineering; Problems in the development of software; Waterfall model; Approach to prototyping; Evolutionary developmental model; Estimation of costs; Configuration management; Software metrics; Requirements engineering; Project management and risk; TSP, PSP: analysis, definitions, specifications, documentation of the draft specification of the software; Functional requirements and non-functional; Mastery Of The Unified Modeling Language (UML); Designing for reusability; Adaptability and care; The quality of architectural design software; Implementation of software; Designing and testing its implementation; Data modeling; Software maintenance; Documentation of the system.

Prerequisite: None

Textbook:
2000.

ENCN803008
ADVANCED EMBEDDED SYSTEMS
3 CREDITS
Learning Outcomes: At the end of the course students will have the ability to analyze, design and develop an embedded systems.
Syllabus: Introduction to embedded systems; Introduction to the software; Real-time model and scheduling; Recurring tasks/aperciodic; Share resources; Real-time OS; Case study: Mars Pathfinder, system components, communication, low power design, FPGA synthesis architecture, introduction, sample project embedded FPGA-based systems, the design and manufacture of FPGA-based embedded systems.
Prerequisite: None
Textbook:

ENMS801001
INFORMATION NETWORK SECURITY
3 CREDITS
Learning Outcomes: After completing this course, the student is able to describe the protocols and model of a system of security in communications. Students are also able to analyze network vulnerabilities and implement security systems on the network and the web. In addition, students will be able to do the authentication techniques in Cryptography.
Syllabus: introduction to the issues of security and privacy Related information systems; The basics of the confidentiality, integrity, availability, Authentication and Identity; Protocols and Data integrity; Access Control; The Security Model; Cryptographic systems and protocols for privacy; Network Security & Web; Intrusion detection and prevention; Vulnerabilities And Attacks; Security Risk Analysis; Planning for recovery from Disasters; Security Rules; Audit Security And ISO17799;Introduction To Cryptography; Encryption; Classic Encryption Technique; Standard Data encryption and password block; The Advanced Encryption Standard; Pseudo-Random Generation; Digital Signatures; Two-Party Protocols and Zero-Knowledge.
Prerequisite: None
Textbook:

ENMS801002
INFORMATION NETWORK INFRASTRUCTURE
3 CREDITS
Learning Outcomes: After completing this course, students will be able to design, implement and analyze the design of the server farm. Students will also be able to manage the server farm.
Syllabus: Introduction To Server Farms; Server Farm Protocols; Infrastructure Protocols; Security and Server Load Balancing; Data Center Design: Designing The Data Center Infrastructure; Integrating Security Into The Infrastructure; Performance Metrics of Data Center Devices; Data Center Administration and Management; State Of The Art Data Center, Procurement.
Prerequisite: None
Textbook:

ENMS802004
INFORMATION SECURITY MANAGEMENT AND REGULATION
3 credits
Learning Outcomes: At the end of this course the student is expected to understand the principles of information security and is able to apply those principles to design solutions for managing information security risk effectively. Students are expected to understand how to apply the principles of network security management of information in the context of the breadth and immediacy. Finally, the student is able to manage according to information network with the standard of the profession, ethics, regulation and legislation in force.
Syllabus: Management and security policy information; Threat management and weak information networks; Incident management and risk; Crisis management and Business Continuity; Cultural awareness and Security of information and information networks; Implementation Aspects Of Network Security Information; Legal aspects and regulations of information security; Certification of information security and information networks; SNI standard ISO/IEC 27001:2009.
Prerequisite: None
Textbook:

ENMS802005
SECURITY RISK MANAGEMENT AND DISASTER RECOVERY
3 CREDITS
Learning Outcomes: After completing this course, students are able to provide a standardized approach to regulating risk on network security through a proper framework to accommodate security strategies and their related costs. Students are also able to perform the recovery steps after the occurrence of the problem of network security information.
Syllabus: Introduction To The Security Risk Management; Risk Analysis; Approach To Risk Management; System Security Engineering; Regulation Of Security; The Issue Of Legality; Organizational Readiness Plan; Responding To The Incident; Plan a Strategy for the
continuation of business; Disaster Recovery; Business continuation and crisis management.

Prerequisite: None

Textbook:

ENMS803006

APPLICATION AND MOBILE NETWORK SECURITY

4 CREDITS

Learning Outcomes: After completing this course, the student is able to describe the forms of security attack on the application and the network computer, capable of analyzing the security issues on the application of either desktop based applications as well as web-based, as well as being able to implement the concept of security applications and computer networks.

Syllabus: Introduction to application security and computer networks; Detection Penetration Network; Detection Of The Penetration Of Web-Based Applications; The penetration detection in Wireless network; Secure coding in Java; Secure coding in PHP; Build a secure Database.

Prerequisite: None

Textbook:

ENMS803007

NETWORK AND DIGITAL FORENSIC

4 CREDITS

Learning Outcomes: After following this course, the student is able to identify digital traces on the computer or on the network; being able to recognize forms of attack from the digital traces; able to analyze digital traces as well as being able to gather legal evidence.

Syllabus: Introduction to Digital Forensics and network; A Windows-Based Computer Forensics; The Linux-Based Computer Forensics; Forensics in computer network; Forensics on the mobile device.

Prerequisite: None

Textbook:

ENMT801001

MODERN TELECOMMUNICATIONS ENGINEERING

3 CREDITS

Learning Outcomes: This lecture aims to evaluate the basic principles of telecommunication system that is focused on environmental aspects of the application of modern telecommunications. By following this course, the student is expected to analyze a telecommunication system and calculate its technical aspects.

Syllabus: Digital communication systems; Elements of the technology in the channel transmission; Backbone network and backhaul; Fiber Optic Technology; Wireless Communication.
Technology; Analysis of the spectrum; Modulation and coding techniques; Multiple Access Techniques; Evolution of 2 g-3 g-4 g Mobile Cellular Technology; Fading power control Countermeasures; Capacity of Cellular Network; The technology of Broadband Wireless Access more; IP based interconnection; The evolution of mobile moving towards 5 g; Wireless broadband access; Technology platform for the future: Digital TV, Satellite, Cloud Computing, Green IT; Next Generation Network; Content Governance; Technology for Ubiquitous Network.

Prerequisite: None

Textbook:

ENMT801002
MANAGEMENT OF TELECOMMUNICATIONS SYSTEM
3 CREDITS

Learning Outcomes: The material in this lecture will evaluate the basic concept of telecommunication management system including the concepts of the regulation for the implementation of the national telecommunication system.

Syllabus: Long-range planning; Business Feasibility Analysis; Wide Area Network; Telecommunications Operations - from fraud and disaster prevention to project management; Quality control and Security; Telecommunications Regulation; The Emerging Economics of Telecommunications; Economic Tools for the Telecommunications Strategies; Network and Marketing Plan; Analysis of Indonesian Telecommunications Act; Universal Service Obligation.

Prerequisite: None

Textbook:

ENMT802003
STRATEGIC MANAGEMENT
3 CREDITS

Learning Outcomes: After following this course, the participants of the lecture are expected to recommend the concept of strategic management to generate business excellence and competitiveness of the industry. Students are expected to understand the applied theories and develop relevant strategies on industrial technology.

Syllabus: The nature of management strategy; Strategy in Practice; External factors evaluation; Internal factors analysis; Strategy Analysis and Choices; Strategy Control Review and Evaluation; Quality Management; Strategy Management Of Global Problems; Risk Management; Business Ethics; Corporate Level Strategy; Strategic Leadership.

Prerequisite: None

Textbook:
ENMT802004
TELECOMMUNICATIONS POLICY AND REGULATION
2 SKS
Learning Outcomes: Able to evaluate aspects of national and international law, as well as the process of standardization in the telecommunications industry.
Syllabus: The International Telecommunication Organization; Indonesia’s telecommunication laws and regulations; The making of public policy; Standardization process in it; International standardization body for the telecommunications industry; Universal Service Obligation; Case studies on policy and regulation of telecommunications in Indonesia and the world.
Prerequisite: None
Textbook:

ENMT802005
SPECIAL TOPICS OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
2 SKS
Learning Outcomes: Able to evaluate the various advancements in the field of ICT (information and communication technology).
Syllabus: The topics will focus on the recent technological platform such as 5G mobile communications, engineering multimedia, Wireless Sensor Networks, and other aspects of the technology and innovation. The topic will also cover technological understanding covering from “physical layer” to “application layer”.
Prerequisite: None
Textbook: -

ENMT802006
CAPITA SELECTA
2 SKS
Learning Outcomes: The courses aims to build leadership supporting the telecommunications-related strategic planning. Syllabus: It includes strategic planning and holistic insights through a process of sharing knowledge with the stakeholders of telecommunications industry (vendors, operators, government). The topic may also include the areas of innovation, convergence, macroeconomic, and another related issue.
Prerequisite: None
Textbook: Handout

ENMT803007
MULTIMEDIA WIRELESS COMMUNICATIONS
3 CREDITS
Learning Outcomes: At the end of the lecture, students are able to design the design aspects of wireless multimedia technologies, including mobile and broadband network capable of calculating technical parameters.
Syllabus: Quality of Service; Compression techniques; Qualitative and Mathematical treatment of existing systems; Traffic Engineering for Wireless Communications; Mobility Management; Multimedia computing; Network Support for Multimedia communications; Interactive Multimedia System; Intersystem operation.

Prerequisite: None

Textbook:

ENMT803008
TECHNOLOGICAL INNOVATION AND COMPETITIVENESS
3 CREDITS

Learning Outcomes: At the end of this lecture, the student will be able to develop a holistic strategy of technological development for policy makers of the country or industry by considering the factors supporting system of innovation. In addition, students will also have insight into the leadership in using information and communication technologies so as to enhance the competitiveness of institutions and countries.

Syllabus: National and Sectoral Innovation System; Macroeconomic Theory and technological change; Evolutionary Theory; Innovation in the telecommunications industry; The management of R & D in telecommunications companies; Diffusion Of Technology; Innovation in ICT Services; Globalization, national competitiveness and economic growth; Science technology is preferred and Innovation Policy; Technological forecasting; Techno economy paradigm; Intellectual Property and Standardization; The Knowledge Economy and ICT paradigm; The Internet and economic policy; Policy and market in the era of the New Knowledge Economy

Prerequisite: None

Textbook:

ENMT803009
FUTURE NETWORK TECHNOLOGY
3 SKS

Learning Outcomes The lecture aims to form a competency evaluation and design of technically related to telecommunication network System the latest technology both wireless and wireline, and telecommunications network management, management function

Syllabus: The function and role of the important telecommunications networks, modeling telecommunication networks, optical networking technologies, wireless network technology, the convergence of future network covering NGN and IMS, role and function of telecommunications network management.

Prerequisites: None

Textbook:

ENME801002
ELECTRIC UTILITY POWER GENERATION ECONOMICS
3 CREDITS

Learning Outcomes: At the end of the lecture, a student is able to describe the method of operation of hydroelectric utilities efficiently without compromising with the development of the business.

Syllabus: Introduction; The utility of the organization; The principle of accounting accomplished; The value of time and money; Income requirements: fixed charge rate; Economic analysis methods; Electric utility system load; Operating system; The stability of the system: reserves, economic characteristics of generating units; Problems on the analysis of the total system; Renewable energy analysis and storage; A comparison of the unit directly; The development of the future.

Prerequisite: None

Textbook:

ENME802005
STRATEGIC MANAGEMENT AND RISK
3 CREDITS

Learning Outcomes: This lecture aims to instill the concept of strategic management to generate business excellence and competitiveness of the industry. Students are expected to understand the applied theories and develop relevant strategies on industrial technology.

Syllabus: The nature of management strategy; Strategies in practice; Evaluation of external factors; Analysis of internal factors; Analysis of the strategies and options; Evaluation and control strategy; Quality management; Management strategy of global problems; Risk management; Business ethics; Corporate level strategy; Leadership strategies.

Prerequisite: None

Textbook:
6.5 MASTER PROGRAM IN BIOMEDICAL TECHNOLOGY

Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Program Title</td>
<td>Master Program in Biomedical Technology</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Magister Teknik (M.T.)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>BAN-PT: Accreditation B</td>
</tr>
<tr>
<td>7</td>
<td>Language of Instruction</td>
<td>Bahasa Indonesia / English</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirements</td>
<td>Pass the entrance exam, graduate from Bachelor/Diploma 4 in Biomedical Engineering, Medical, Engineering, Science, Computer, Pharmacy, and other subjects of equal.</td>
</tr>
<tr>
<td>10</td>
<td>Study Duration</td>
<td>Designed for 2 years</td>
</tr>
<tr>
<td></td>
<td>Type of Semester</td>
<td>Number of Semester</td>
</tr>
<tr>
<td>Regular</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Graduate Profile:</td>
<td>Master in Engineering that has the ability to formulate and solve a complex problem in biomedical engineering field through research based on innovative technology with inter or multi discipline approach in accordance to professional ethics.</td>
</tr>
<tr>
<td>12</td>
<td>Expected Graduate Competence List:</td>
<td>Master in Biomedical Technology graduates are expected to have the following competence:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Able to evaluate the model of biomedical system into biomedical engineering.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Able to compile independent scientific work in the form of innovative work.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Able to analyse a professional management concept for biomedical engineering field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Able to analyse the safety and security in accordance to the standard and regulation of medical equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beside the above competence, a Master in Biomedical Engineering should also have the following specialized competence:</td>
</tr>
<tr>
<td></td>
<td>Specialization in Biomedical Instrumentation:</td>
<td>1. Able to design biomedical instrumentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Able to integrate biomedical sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Able to design biomedical automation system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Able to design medical imaging technique</td>
</tr>
<tr>
<td></td>
<td>Specialization in Medical Information:</td>
<td>1. Able to develop hospital and medical record information system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Able to design telemedicine network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Able to design medical automation information system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Able to develop decision help system and artificial intelligence</td>
</tr>
<tr>
<td></td>
<td>Specialization in Clinical Engineering:</td>
<td>1. Able to evaluate medical equipment technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Able to design medical instrument technology management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Able to formulate the standard and regulation for medical equipment technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Able to design clinical facility in hospital</td>
</tr>
<tr>
<td>13</td>
<td>Classification of Subjects</td>
<td></td>
</tr>
</tbody>
</table>
Carrier Prospects

Graduates from Biomedical Engineering Study Program can work in various types of companies and health industries, information technology, education, government or regulator, and other industries related to health facilities, such as hospitals and health clinics.
Profil Lulusan:
Magister teknik yang mampu merumuskan pemecahan masalah kompleks di bidang teknik biomedis melalui riset berbasis teknologi inovatif dengan pendekatan inter atau multidisiplin sesuai dengan etika profesi.

Mampu mengevaluasi model sistem biomedis ke dalam teknik biomedis
Mampu menyusun karya ilmiah mandiri berupa karya inovatif
Mampu menganalisis konsep manajemen yang professional untuk bidang teknik biomedis
Mampu menganalisis keselamatan dan keamanan sesuai standar dan regulasi peralatan medis

Mampu merancang sistem otomasi biomedis
Mampu merancang teknik pencitraan medis
Mampu merancang fasilitas klinis di rumah sakit
Mampu merancang sistem informasi otomasi medis

Mampu merancang instrumentasi biomedis
Mampu mengintegrasikan sensor biomedis
Mampu mengembangkan sistem bantu keputusan dan kecerdasan buatan
Mampu merancang sistem informasi rumah sakit dan rekam medis

Mampu merancang sistem otomasi medis
Mampu mengembangkan jaringan telemedis
Mampu merancang manajemen teknologi peralatan medis
Mampu merancang fasilitas klinis di rumah sakit

Mampu mengevaluasi teknologi peralatan medis
Mampu merancang manajemen teknologi peralatan medis
Mampu merancang sistem informasi rumah sakit dan rekam medis
Mampu mengembangkan sistem informasi otomasi medis

Mampu merancang sistem otomasi biomedis
Mampu mengintegrasikan sensor biomedis
Mampu merancang manajemen teknologi peralatan medis
Mampu merancang fasilitas klinis di rumah sakit

Picture 1 Biomedical Technology Competence Network
Table 1. Matrix 0 Biomedical Technology Study Program Learning Outcomes

<table>
<thead>
<tr>
<th>KKNI Level 8</th>
<th>General Competence</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to develop knowledge, technology, and/or art in their respective field or professional practice through research to produce innovative and tested work.</td>
<td>• Able to analyse professional management concept for biomedical engineering field. • Able to compile independent scientific work in the form of innovative work. • Able to design medical imaging technique • Able to design telemedicine network</td>
<td>Thesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summary Paper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific Publication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Report</td>
</tr>
<tr>
<td>Able to solve problems in science, technology, and/or art in their field of expertise through inter or multi discipline approach.</td>
<td>• Able to evaluate the biomedical system model into biomedical engineering. • Able to analyse safety and security in accordance to the standard and regulation of medical equipment. • Able to evaluate medical instrument technology • Able to design clinical facility in hospital</td>
<td>Thesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summary Paper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific Publication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Report</td>
</tr>
<tr>
<td>Able to manage research and development that is useful for society and scientific society, and able to get acknowledgement nationally and internationally.</td>
<td>• Able to design biomedical instrumentation • Able to design biomedical automation system • Able to develop information system for hospital and medical record • Able to develop help system for decision making and artificial intelligence</td>
<td>Thesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summary Paper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific Publication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Study Report</td>
</tr>
<tr>
<td>Cluster Level</td>
<td>Main Competence</td>
<td>Supporting Competence</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| Scientific Field | 1. Able to evaluate the biomedical system model to biomedical engineering
2. Able to analyse the safety and security in accordance to the standard and regulation of medical equipment | |
| Biomedical Instrumentation | 1. Able to design biomedical instrumentation
2. Able to design biomedical automation system | 1. Able to design medical imaging technique
2. Able to integrate biomedical sensor |
| Clinical Technique | 1. Able to design medical equipment technology management
2. Able to formulate technological standard and regulation for medical equipment | 1. Able to design clinical facility in hospital |
| Medical Information | 1. Able to develop information system for hospital and medical record
2. Able to develop help system for decision making and artificial intelligence | 1. Able to design telemedicine network
2. Able to design medical automation information system |
| Expertise Work | 1. Able to compile independent scientific work in the form of innovative work
2. Able to evaluate medical equipment technology | |
| Expertise Behavior | | |
| Society Life | Able to analyse a professional management concept in biomedical engineering field | |
Course Flowchart for Master Program in Biomedical Technology Study Program

Semester 1
- Body Function System Modelling
- Research Methodology
- Patient Safety Standard and Regulation
- Biomedical System Design and Prototype

Semester 2
- Biomedical Instrumentation 1
- Biomedical Sensor
- Biomedical Imaging

Semester 3
- Biomedical Instrumentation 2
- Biomedical Automation System
- Special Topic: Biomedical Instrumentation

Semester 4
- Scientific Publication
- Thesis

Biomedical Instrumentation Specialization

Semester 1
- Body Function System Modelling
- Research Methodology
- Patient Safety Standard and Regulation
- Biomedical System Design and Prototype

Semester 2
- Biomedical Engineering Project Management
- Biomedical Instrumentation 1
- Biomedical Sensor
- Biomedical Imaging

Semester 3
- Biomedical Instrumentation 2
- Biomedical Automation System
- Special Topic: Biomedical Instrumentation

Semester 4
- Scientific Publication
- Thesis

Biomedical Engineering Project Management

Note:
- Study Program Obligatory Subject
- Specialization Subject
- Special Subject

Picture 1 Course Flowchart for Master Program in Biomedical Technology Study Program
List of Subject

Study Program Obligatory Subject (14 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE801001</td>
<td>Human Body Physiological System Modelling</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801002</td>
<td>Research Methodology</td>
<td>2</td>
</tr>
<tr>
<td>ENBE801003</td>
<td>Patient Safety Standard and Regulations</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801004</td>
<td>Design and Prototyping Biomedical System</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802005</td>
<td>Project Management of Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Specialization Subject (18 credits)

Biomedical Instrumentation Specialization

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE802006</td>
<td>Biomedical Instrumentation 1</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802007</td>
<td>Biomedical Sensors</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802008</td>
<td>Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803009</td>
<td>Biomedical Instrumentation 2</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803010</td>
<td>Biomedical System Automation</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803011</td>
<td>Special Topic on Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Medical Information Specialization

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE802014</td>
<td>Hospital Information System and Medical Record</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802015</td>
<td>Decision Making System and Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802016</td>
<td>Medical Automation</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803017</td>
<td>Telemedicine</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803018</td>
<td>Information Systems Based Management Skill</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803019</td>
<td>Medical Informatics Consultancy</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
MASTER PROGRAM

Specialization Subject (18 credits)

Clinical Technique Specialization

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE802020</td>
<td>Hospital Medical Equipment I</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802021</td>
<td>Regulation and Policy of Clinical Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802022</td>
<td>Planning and Design of Health Service Building</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803023</td>
<td>Hospital Medical Equipment II</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803024</td>
<td>Clinical Engineering Management System</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803025</td>
<td>Planning and Design of Health Service Utility</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit 18

Special Subjects (Scientific Publication, Thesis) (10 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE804012</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>ENBE804013</td>
<td>Thesis</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Credit 10
CURRICULUM STRUCTURE

Curriculum structure for each semester can be found below:

A. Biomedical Instrumentation Specialization

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE801001</td>
<td>Human Body Physiological System Modelling</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801002</td>
<td>Research Methodology</td>
<td>2</td>
</tr>
<tr>
<td>ENBE801003</td>
<td>Patient Safety Standards and Regulations</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801004</td>
<td>Design and Prototyping Biomedical System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE802005</td>
<td>Project Management of Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802006</td>
<td>Biomedical Instrumentation 1</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802007</td>
<td>Biomedical Sensors</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802008</td>
<td>Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE803009</td>
<td>Biomedical Instrumentation 2</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803010</td>
<td>Biomedical System Automation</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803011</td>
<td>Special Topic on Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE804012</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>ENBE804013</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>

B. Medical Information Specialization

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE801001</td>
<td>Human Body Physiological System Modelling</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801002</td>
<td>Research Methodology</td>
<td>2</td>
</tr>
<tr>
<td>ENBE801003</td>
<td>Patient Safety Standard and Regulations</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801004</td>
<td>Prototype Biomedical System Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENBE802005</td>
<td>Project Management of Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802201</td>
<td>Hospital Information System and Medical Record</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802202</td>
<td>Decision Making System and Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>3</td>
</tr>
</tbody>
</table>
MASTER PROGRAM

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE802203</td>
<td>Medical Automation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>ENBE803017</td>
<td>Telemedicine</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803018</td>
<td>Information Systems-Based Management Skill</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803019</td>
<td>Medical Informatics Consultancy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>9</td>
</tr>
<tr>
<td>ENBE804012</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>ENBE804013</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>

C. Clinical Technique Specialization

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENBE801001</td>
<td>Human Body Physiological System Modelling</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801002</td>
<td>Research Methodology</td>
<td>2</td>
</tr>
<tr>
<td>ENBE801003</td>
<td>Patient Safety Standards and Regulations</td>
<td>3</td>
</tr>
<tr>
<td>ENBE801004</td>
<td>Design and Prototyping Biomedical System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>11</td>
</tr>
<tr>
<td>ENBE802005</td>
<td>Project Management of Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802020</td>
<td>Hospital Medical Equipment I</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802021</td>
<td>Regulation and Policy of Clinical Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENBE802022</td>
<td>Planning and Design of Health Service Building</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>12</td>
</tr>
<tr>
<td>ENBE803023</td>
<td>Hospital Medical Equipment II</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803024</td>
<td>Clinical Engineering Management System</td>
<td>3</td>
</tr>
<tr>
<td>ENBE803025</td>
<td>Planning and Design of Health Service Utility</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>9</td>
</tr>
<tr>
<td>ENBE804012</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td>ENBE804013</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>42</td>
</tr>
</tbody>
</table>
SUBJECT SYLLABUS
STUDY PROGRAM OBLIGATORY SUBJECT

ENBE801001
HUMAN BODY PHYSIOLOGICAL SYSTEM MODELLING
3 credits
Learning Outcome: After finishing this subject, students are able to analyse physiology system modelling based on human body anatomy and physiology system.
Syllabus: Anatomy and physiology from internal organs, various body function system, human body physics; Modelling principal, mathematic system model and biomedical signal, parameter estimation method; modelling strategy, physiology system compartment model, cardiovascular system model and control, respiratory system model and control, movement control, artificial nerve network for physiology control, physiology method and identification system and fast eye movement control system based on the physiology system
Prerequisite: None
Reference Book:

ENBE801002
RESEARCH METHODOLOGY
2 credits
Learning Outcome:
Syllabus: -
Prerequisite: -
Reference Book:
1. Pedoman Teknis Penulisan Tugas Akhir Mahasiswa Universitas Indonesia
2. IEEE Citation Reference

ENBE801003
PATIENT SAFETY STANDARDS DAN REGULATIONS
3 credit
Learning Outcome: This subject aim to analyse the patient’s safety of medical device in hospital to guarantee a safer environment for the patient. The system’s subsystems includes the safety of the patient, safety for personal and visitor, utilisation, optimization, regulation fulfilment, reduces harm, harm and risk control, preventing accident and injuries and safe condition maintenance.
Syllabus: In term of focusing the discussion on patient’s safety in term of the implementation of clinical technology in health care service and the discussion of the role and function of clinical engineers in hospital’s patient’s safety, this subject will present the following topics of discussion: Patient safety and the biomedical engineer; Risk management; Patient safety best practices model; Hospital safety program; System approach to medical device safety; Electromagnetic interference in the hospital; Electrical safety in the hospital; Accident investigation; Medical devices Failure modes, accidents and liability.
Prerequisite: None
Reference Book:

ENBE801004
DESIGN AND PROTOTYPING BIOMEDICAL SYSTEM
3 credits
Learning Outcome: Upon completion of this subject, students are expected to have the ability to design system or product/prototype of biomedical system by using knowledge and skill acquired. It is also expected that by taking this subject, students are able to work as a team, communicate, report, defend and present their final project.
Syllabus: Fundamental of Problems and Prototype Design Process; Working as a Team in Design; Design Process Planning; Understanding the Problem and Engineering Specifications Development; Concept Generation, Evaluation and Selection; Product Design Phase; Engineering Economic, Product/Prototype Design for manual assembly and automatic assembly design.
Prerequisite: None
Reference Book:

ENBE802005
PROJECT MANAGEMENT OF BIOMEDICAL ENGINEERING
3 credits
Learning Outcome: This subject aim to be able to design a professional management for biomedical engineering field, management evaluation and project economic aspects design. Thus students are expected to understand the basic theories to support feasibility analysis for investment and service development/application for biomedical technology.
Syllabus: Comprehension of project and project management; organizational structure; function management; Leadership in project environment; Conflict Management; Investment Analysis; Control Analysis for Infrastructure Development; Expense and the allocation of wealth; Risk Management and Quality Management, Work Breakdown Structure; Scheduling (Gantt Chart), Resource Budgeting, Controlling (S-curve).
Prerequisite: None
Reference Book:
SPECIALIZATION SUBJECT
BIOMEDICAL INSTRUMENTATION SPECIALIZATION

ENBE802006
BIOMEDICAL INSTRUMENTATION 1
3 credits
Learning Outcome: Upon completion of this subject, students are able to explain the low and middle technology biomedical instrumentation in patient’s diagnostic service in health care service facilities.
Syllabus: Introduction for major equipment used in health care facilities such as hospitals. The working principles for each instruments, operating steps, main features, method to test and evaluate equipment’s performance and safety. Biomedical Instrumentation which will be discussed are: Fundamental of medical instrumentation system; Vital sign monitoring; External defibrillator; Cardiac Defibrillator; Ventilator system; Anaesthesia machine; Clinical laboratory equipment.
Prerequisite: None
Reference Book:

ENBE802007
BIOMEDICAL SENSOR
3 credits
Learning Outcome: Upon completion of this subject, students are expected to:
• Determine the type of sensor and transducer for certain application.
• Understanding the requirement for special sensor that will be used in biomedical application.
• Able to explain how transducer can be connected and operated in several medical diagnostic equipment.
• Choosing the correct interface between transducer and the human body when making contact.
• Predicting the expected level of reliability for several types of sensor structure and application.
Prerequisite: None
Reference Book:
ENBE802008
MEDICAL IMAGING
3 credits
Learning Outcome: Upon completion of this subject, students are expected to:
• Able to identify the available medical imaging technology;
• Able to analyse the medical imaging processing method in reconstruction, improve
 image quality, create image segmentation, image analysis, image visualization, and
 management of medical imaging;
• Able to design medical imaging technique for certain application in health field.
Syllabus: Introduction to Medical Imaging Technologies (X-Ray and CT, MRI, Ultrasound,
 PET and SPECT, Electrical Impedance Tomography), Image formation and Reconstruction
 (Acquisition, Digitization, Image Reconstruction Methods), Image Enhancement (Fundamentals
 of enhancement techniques, Image enhancement with linear, nonlinear, fixed,
 adaptive, and pixel-based methods), Image Segmentation and Analysis (Fundamentals of
 Medical Image Segmentation, Image pre-processing and acquisition artefacts, Thresholding,
 Edge-based techniques, Region-based segmentation, Classification, Morphologi-
 cal Methods for Biomedical Image Analysis), Image Visualization (2-dimensional visu-
 alization, 3-dimensional visualization methods: surface rendering, volume rendering,
 Algorithm for 3-D visualization), Image Management (Fundamentals of Standards Com-
 pression Storage and Communication, Image archive and retrieval, three-dimensional
 compression), visual imaging and digital, image transformation, colour representation,
 image enhancement (domain spatial), image enhancement (frequency domain), convo-
 lution and correlation, image segmentation, object feature characteristics, image com-
 pression, pattern recognition, image restoration, image morphology.
Prerequisite: None
Reference Book:
1. Handbook of Medical Imaging: Processing and Analysis Management, Isaac Bankman,
 Academic Press 2000, CA, USA.

ENBE803009
BIOMEDICAL INSTRUMENTATION 2
3 credits
Learning Outcome: Upon completion of this subject, students are able to explain the
mid-level and high level biomedical technology instrumentation in patient’s diagnostic
service in the health care service facility.
Syllabus: Introduction to high technology in health care service facility like hospital.
Working principles for each instruments, operating steps, main features, method to test
and evaluate equipment’s performance and safety. Biomedical Instrumentation that will
be discussed: X-ray fundamental; Radiographic system; Fluoroscopic system; Computed
tomography (CT Scanner); Magnetic resonance imaging (MRI); Positron-emission tomog-
raphy (PET); Linear accelerator (LINAC); Nuclear Medicine Equipment System.
Prerequisite: None
Reference Book:
1. John G. Webster (ed.), Encyclopaedia of Medical Devices and Instrumentation, John
2. Joseph Bronzino (ed.), The Biomedical Engineering Handbook: Medical Devices and

ENBE803010
BIOMEDICAL SYSTEM AUTOMATION
3 credits
Learning Outcome: Upon completion of this subject, students are expected to be able to understand the concept of biomedical automation system and modelling, able to develop mathematical model for biomedical system, able to analyse biomedical system model, able to define the problem and automation need for biomedical system, able to applied automation method in biomedical system, able to design biomedical automation system.

Syllabus: Basic concept for system-model-simulation for biomedical system, State Space Equation and biomedical system transfer function, model analysis via simulation, parameter identification biomedical system model, parameter estimation method, biomedical system model simulation, biomedical system optimizing model, PID control and optimal, biomedical automation system design, biomedical automation system simulation and analysis.

Prerequisite: None
Reference Book:

ENBE803011
SPECIAL TOPIC ON BIOMEDICAL INSTRUMENTATION
3 credits
Learning Outcome: Upon completion of this subject, students are expected to be able to explain the biomedical instrumentation technology used in diagnostic or the latest therapy in support of health care service.

Syllabus: Follow the previously set special topic
Prerequisite: None
Reference Books:

SPECIALIZATION SUBJECT
MEDICAL INFORMATION SPECIALIZATION

ENBE802014
HOSPITAL INFORMATION SYSTEM AND MEDICAL RECORD
3 credits
Learning Outcome: Upon completion of this subject, students are expected to be
able to develop Hospital information system and able to develop Medical Record Information System.

Syllabus: Hospital Law, Regulation from the Ministry of Health regarding Hospital, Regulation from the World Health Organization, Hospital Clinical Information System, Hospital Management Information System, Regulation from the Ministry of Health regarding Medical Record, ICD 10, Coding, In-CBGs.

Prerequisite: None

Reference Books:

ENBE802015
DECISION MAKING SYSTEM AND ARTIFICIAL INTELLIGENCE
3 credits

Learning Outcome: Upon completion of this subject, students are expected to be able to develop Medical Information System, able to develop Decision Making Help System, able to develop Expert System, able to develop Artificial Intelligence.

Prerequisite: Hospital Information System and Medical Record

Reference Book:
1. Sabarguna, B.S., Atlas of Managing Information In Hospital, Sagung Seto, 2009

ENBE802016
MEDICAL AUTOMATION
3 credits

Learning Outcome: Upon completion of this subject, students are expected to develop automation system in Medical Information and able to develop Medical Robot.

Prerequisite: None

Reference Books:

ENBE803017
TELEMEDICINE
3 credits

Learning Outcome: Upon completion of the subject, students are expected to:
- Able to develop telemedicine concept, able to develop telemedicine infrastructure;
- Able to develop and implement telemedicine practice;
- Able to develop Telemedicine Management Service

Syllabus: Telemedicine concept and service; Infrastructure, including tools, system, network, guidance, building, electricity; Operational, including Preparation, imple-
mentation, report, and evaluation; Management, including planning, budgeting, evaluation, and follow up.
Prerequisite: None
Reference Books:
1. Sabarguna, B.S., Telemedisin, UI Press, 2017,

ENBE803018
INFORMATION SYSTEMS BASED MANAGEMENT SKILL
3 credits
Learning Outcome: Upon completion of this subject, students are able to implement systematic and innovative thinking skill in supporting professional conduct, able to implement personal management skill in supporting professional conduct, able to implement management skill with others in supporting professional conduct, able to implement management skill based on information system in supporting professional conduct.
Prerequisite: None
Reference Books:

ENBE803019
MEDICAL INFORMATICS CONSULTANCY
3 credits
Learning Outcome: Upon completion of this subject, students are expected to:
- Posses the ability as a consultant,
- Able to create consultancy tools,
- Able to market medical information consultancy service.
- Possess the skill as a consultant,
- Able to create consultancy equipment,
- Able to market medical information consultancy service
Prerequisite: Management Skill based on Information System
Reference Books:
SPECIALIZATION SUBJECT
CLINICAL TECHNIQUE SPECIALIZATION

ENBE802020
HOSPITAL MEDICAL EQUIPMENT I
3 credits
Learning Outcome: This subject is aimed to provide knowledge to students on Hospital Instrumentation Technology in patient diagnostic service.

Syllabus: Major equipment used by health professional in Hospital. This study includes physiology principles for each clinical technology equipment, operation principles, main features, method for testing and evaluation for work display and equipment security, a review on the equipment population currently available in market.
The clinical technology equipment that will be discussed in this session are as follow:
• Fundamental of medical instrumentation system;
• Vital sign monitoring;
• External defibrillator;
• Cardiac Defibrillator;
• Ventilator system;
• Anaesthesia machine;
• Clinical laboratory equipment
Prerequisite: None
Reference Books:

ENBE802021
REGULATION AND POLICY OF CLINICAL TECHNOLOGY
3 credits
Learning Outcome: the aim of this subject is to study and analyse the standard and regulation for clinical technology both globally and nationally that are used to support the conformity of clinical technology management quality in health service in hospital.

Syllabus: This subject will study the following topics: Primer on Standards and Regulations; Medical Device Regulatory and Technology Assessment Agency; Healthcare Quality and ISO 9001: 2016; Hospital Facilities Safety Standards; JCI Accreditation; KARS Accreditation (Hospital Accreditation Committee/ Komite Akreditasi Rumah Sakit); Indonesia National Standard for Clinical Technology; KARS 2012 Facility Management Standard; Regulation and Law for Clinical Technology in Indonesia; Indonesia’s Health Law, Indonesia’s Hospital Kaw; Public Policy in Clinical Technology; Rules and Regulation on Medical Equipment in Indonesia; Case Study on Policy and Regulation of Clinical Technology in Indonesia.
Prerequisite: None
Reference Books:
1. WHO (2003), Medical device regulations: Global overview and guiding principle, Geneva.
ENBE802022
PLANNING AND DESIGN OF HEALTH SERVICE BUILDING
3 credits
Learning Outcome: This subject is aimed to study the Planning and Design for Hospital Building in relation to technical requirements for patient, staff and visitor safety.
Syllabus: Patient’s safety in health care facility is the main goal for planning program and building planning in clinical environment. In this study, a proactive management program is very important to ensure a safe environment for the patient, visitor and hospital staff. The topics that will be discussed in this subject includes:
• Planning and designing of a new hospital;
• General requirement of healthcare facilities;
• Requirements of operating theatre;
• Requirements of radiology department;
• Requirements of intensive care unit;
• Requirements of medical laboratory
Prerequisite: None
Reference Books:

ENBE803023
HOSPITAL MEDICAL EQUIPMENT II
3 credits
Learning Outcome: This subject focuses in giving students the knowledge on Hospital instrumentation technology in patient’s diagnostic service.
Syllabus: Study on high technology equipment used by health professionals in Hospital. This study includes the physiology principles in each clinical technology equipment, operation principles, main features, method for testing and evaluating work display and equipment safety, a review on equipment currently available. The clinical equipment discussed in this subject includes:
• X-ray fundamental;
• Radiographic system;
• Fluoroscopic system;
• Computed tomography (CT Scanner);
• Magnetic resonance imaging (MRI);
• Positron-emission tomography (PET) y;
• Linear accelerator (LiNAC);
• Nuclear Medicine Equipment System
Prerequisite: None
Reference Books:

ENBE803024
CLINICAL ENGINEERING MANAGEMENT SYSTEM
3 credits
Learning Outcome: To study and understand the development and implementation of comprehensive technology management program with systematic approach, since technology management program must also includes not only the engineering and maintenance aspect of health equipment, but also the development of the institution’s policy in regulating the procurement, usage, replacement and placement of equipment.
Prerequisite: None
Reference Books:

ENBE803025
PLANNING AND DESIGN OF HEALTH SERVICE UTILITY
3 credits
Learning Outcome: Analyse planning and designing Hospital Building Utility in regard to patient’s safety issues, design requirements, suitable specification and criteria, the operation and usage requirement of medical facilities.
Syllabus: Patient’s safety in health care facilities is the main topic of the planning and designing building utility program in clinical environment. In this perspective, a proactive management program is very important to ensure a safe environment for the patient, visitor and hospital staff. The topic that will be discussed includes: Physical Plant; Heating, Ventilation and Air Conditioning; Electrical Power in Health-
care Facilities; Medical Gas System; Radiation Safety; Sanitation; Water System in Healthcare facilities; Fire System in Healthcare Facilities; Disaster Planning.
Prerequisite: None
Reference Books:

SPECIAL SUBJECT
ENBE804012
SCIENTIFIC PUBLICATION
2 credits
Learning Outcome: Students are expected to write scientific paper, present it in a national or international seminar and publish said paper in a publicize edition of proceeding or journal.
Syllabus: Scientific writing systematics, the use of good and proper language in scientific writing, proofread, paper submission system, review process and scientific paper publishing.
Prerequisite: None
Reference Books:
2. Technical Guidance for Universitas Indonesia Students’ Final Project
3. IEEE - Publish a Paper with IEEE (www.ieee.org)

ENBE804013
THESIS
8 credits
Learning Outcome: In this subject, students are directed to develop an independent research under the guidance of a supervisor. Upon completion of this subject, students are expected to be able to create a research concept by involving existing theory. Under the guidance of a supervisor, students are expected to be able to design, integrate, implement and analyse that concept and compile the research in a systematic scientific work in the form of thesis book. Students should also present and defend the concept and their research result in front of a panel of examiners in a Thesis examination.
Syllabus: None
Prerequisite: Have taken and passed a minimum of 24 credits
Reference:
1. Pedoman Teknis Penulisan Tugas Akhir Mahasiswa Universitas Indonesia
2. IEEE Citation Reference
6.6 MASTER PROGRAM IN METALLURGY AND MATERIALS ENGINEERING

Program Specification

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | Degree Awarding Institution | Universitas Indonesia
Double degree: Universitas Indonesia
& partner universities |
| 2 | Organizing Institution | Universitas Indonesia
Double degree: Universitas Indonesia
& partner universities |
| 3 | Name of Study Program | Graduate Program in Metallurgy and
Materials Engineering |
| 4 | Type of class | Regular, Special |
| 5 | Awarding Degree | Magister Teknik (M.T.)
Double Degree: Magister Teknik (M.T.)
& Master of Engineering (M.Eng.) |
| 6 | Grade of Accreditation | BAN-PT: “A” Grade
AUN-QA: Accredited |
| 7 | Literate Language | Bahasa (Indonesia) and English | |
| 8 | Scheme of Learning (Full-time / Part-time) | Full-time |
| 9 | Study requirements | Bachelor Graduate (S1) / equivalent |
| 10 | Term of Study | Programmed for 2 years |
| | Type of Semester | Number of semester | Number of weeks /semester |
| | Regular | 4 | 17 |
| | Short (optional) | 1 | 8 |
| 11 | Specialization: | |
| | Materials Specialization | |
| | Corrosion Specialization | |
| 12 | Graduate profile: | |
| | Master graduate is able to integrate and manage the research and science, also providing
problem solving in the field of metallurgy and materials engineering according the profesional
ethic. |

13 List of Competence Graduates:
1. Able to develop advance knowledge and engineering principles in the field of metallurgy
and materials engineering.
2. Able to implement the knowledge in the profesional practice.
3. Able to integrate the knowledge and providing alternative solution to the recent problem
in the field of metallurgy and materials through interdisplinary and multidisplinary ap-
proach.
4. Able to manage the research and development in the field of metallurgy and materials
which recognized in national and international level.
5. Able to analyze mechanical material in engineering design which prevent the material
failure.
6. Able to integrate the knowledge and providing alternative solution in the field of manu-
facture, welding and composite.
7. Able to analyze corrosion principle for the pevention of material degradation in different
environment.
8. Able to integrate the knowledge and providing alternative solution in the field of corro-
sion, coating, inhibition and cathodic protection.

14 Course Composition

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Compulsory Courses</td>
<td>33</td>
</tr>
<tr>
<td>ii</td>
<td>Elective Courses</td>
<td>3</td>
</tr>
<tr>
<td>iii</td>
<td>Seminar and Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>14</td>
<td>Total Credits to Graduate</td>
<td>44 SKS</td>
</tr>
</tbody>
</table>
With the increasing development of technology-based industrial materials, the Department of Metallurgical Engineering & Material continuously seek to improve the curriculum in accordance with technological developments. Metallurgical and Materials engineering is a discipline that studies the production, characterization, materials selection and engineering design (engineering materials). Functionally, the roles of a master engineering are in designing new materials / modification, developing new manufacturing processes / modifications, material selection, structural characterization (nano, micro and macro) and properties of the material and analyzing the event of a failure in its use. Master’s program curriculum in the field of metallurgical engineering and materials is designed to provide opportunities for learners are able to design, select and develop metallurgical processes and material technology, new materials characterization / modifications and be able to control the damage / degradation of material due to media and the environment through corrosion protection techniques and material selection. Currently, the curriculum syllabus 2016 master program is designed for 2 (two) types of specialization is:
1. Specialisation of Materials (Materials)
2. Specialisation Corrosion (Corrosion)
Master graduate is able to integrate and manage the research and science, also providing problem solving in the field of metallurgy and materials engineering according the professional ethic.

Able to integrate the knowledge and providing alternative solution to the recent problem in the field of metallurgy and materials through interdisciplinary and multidisciplinary approach.

Able to develop advance knowledge and engineering principles in the field of metallurgy and materials engineering.

Able to manage the research and development in the field of metallurgy and materials which recognized in national and international level.

Able to integrate the knowledge and providing alternative solution in the field of manufacture, welding and composite.

Able to analyze mechanical material in engineering design which prevent the material failure.

Able to integrate the knowledge and providing alternative solution in the field of corrosion, coating, inhibition and cathodic protection.

Able to analyze corrosion principle for the prevention of material degradation in different environment.

Able to implement the knowledge in the professional practice.
Master Program in Metallurgy and Materials Engineering

Rekayasa Material

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMT 8 0 1 001</td>
<td>Kinetics & Phase Transformation</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 1 002</td>
<td>Engineering Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 8 0 1 003</td>
<td>Research & Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 1 104</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total 11</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMT 8 0 2 006</td>
<td>Design & Selection of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 2 007</td>
<td>Material Characterization</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 2 008</td>
<td>Material Characterization Lab.</td>
<td>1</td>
</tr>
<tr>
<td>ENMT 8 0 2 109</td>
<td>Advanced Manufacture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electives 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total 13</td>
</tr>
<tr>
<td>3rd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMT 8 0 3 012</td>
<td>Failure Analysis & Lab.</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 8 0 3 114</td>
<td>Welding Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 3 113</td>
<td>Advanced Composites</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total 10</td>
</tr>
<tr>
<td>4th Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMT 8 0 0 016</td>
<td>Research Paper</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 8 0 0 017</td>
<td>Seminar of Thesis Proposal</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 8 0 0 018</td>
<td>Thesis</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total 10</td>
</tr>
</tbody>
</table>

Korosi & Proteksi

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMT 8 0 1 001</td>
<td>Kinetics & Phase Transformation</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 1 002</td>
<td>Engineering Materials</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 8 0 1 003</td>
<td>Research & Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 1 205</td>
<td>Principles of Corrosion</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total 11</td>
</tr>
<tr>
<td>2nd Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENMT 8 0 2 006</td>
<td>Design & Selection of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 2 007</td>
<td>Material Characterization</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 2 008</td>
<td>Material Characterization Lab.</td>
<td>1</td>
</tr>
<tr>
<td>ENMT 8 0 2 210</td>
<td>Advanced Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 2 211</td>
<td>Coating & Inhibition of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total 13</td>
</tr>
</tbody>
</table>
Resume

<table>
<thead>
<tr>
<th>Wajib Program Studi</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peminatan Korosi & Proteksi</td>
<td>12</td>
</tr>
<tr>
<td>Jumlah</td>
<td>41</td>
</tr>
<tr>
<td>Pilihan</td>
<td>3</td>
</tr>
<tr>
<td>Total Beban Studi</td>
<td>44</td>
</tr>
</tbody>
</table>

ELECTIVES

3rd Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 8 0 3 012</td>
<td>Failure Analysis & Lab.</td>
<td>4</td>
</tr>
<tr>
<td>ENMT 8 0 3 115</td>
<td>Cathodic Protection</td>
<td>3</td>
</tr>
<tr>
<td>Electives 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 8 0 0 016</td>
<td>Research Paper</td>
<td>2</td>
</tr>
<tr>
<td>ENMT 8 0 0 019</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>ELECTIVES ODD SEMESTER</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 8 0 3 919</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 3 920</td>
<td>Electronic Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 3 921</td>
<td>Polymer Derivatives</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 3 922</td>
<td>RBI & Integrity</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>ELECTIVES EVEN SEMESTER</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMT 8 0 4 923</td>
<td>Advanced Polymer Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 4 924</td>
<td>Advanced Extractive Metallurgy</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 4 925</td>
<td>Advanced Surface Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 4 926</td>
<td>Polymer Manufacturing Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENMT 8 0 4 927</td>
<td>Nano Technology</td>
<td>3</td>
</tr>
</tbody>
</table>
ENMT 801001 - KINETICS & PHASE TRANSFORMATION - (3 Credit Points)

ENMT 801002 - ENGINEERING MATERIALS - (2 Credit Points)
Fundamental theories of materials including theories of atom, atomic bonding, bonding system; crystal structures; material structures and properties; ferrous material selection: classification designation and specifications of steel, low alloy steel, heat treatable carbon steel, and low alloy steel; selection of tool steels, stainless steels, cast irons; non-ferrous material selection (Al, Ti, Mg, Ni, and their alloys); Shape memory alloys (smart materials); Inorganic materials: Ceramics and glasses, Mechanical behaviour of ceramics; Polymer materials, selection of plastics, polymerisation and composite materials.

ENMT 801003 - RESEARCH AND COMPUTATIONAL METHODS - (3 Credit Points)
Scientific understanding, research method, problem specification, hypothesis, literature study, data collection and processing, elaboration of research proposal and scientific work presentation; Computation, matlab basics, logical expression, vectorisation, flow controlling if and while, loop in matlab, function and m-file, test output, programming matlab, binary number, flating point numbers, device precision, linear equation, curve fitting, differential equation, statistics and analysis of process data.

ENMT 801104 - MECHANICS OF MATERIALS - (3 Credit Points)
Introduction to mechanics of materials, types of material failure, engineering and selection of materials, elastic deformation and theory of strength, inelastic deformation, metals and alloys processing, composites, ceramics and glasses, polymers, concept of stress and strain, rheological model, plastic deformation, creep deformation, anisotropic materials, theory of mechanical testing of materials, stress-strain properties, tendency of tensile behaviour, interpretation of true stress-strain, compression, hardness, impact, bending and torsion testing, plane stress, plane strain, three dimensional stress condition, stress on octahedral plane, complex strain condition, common form of failure criteria, concept of fracture mechanics, fracture toughness value, application of K value in design and analysis, fatigue based on stress, loading cycle, stress-time curve, average stress, multiaxial stress, fatigue crack growth, fatigue based on strain, strain vsage, effect of average stress, lifetime estimation of structural components and creep.

ENMT 801205 - PRINCIPLES OF CORROSION - (3 Credit Points)
Fundamental concepts of electrochemistry and its application, definition of corrosion, forms of corrosion, cost of corrosion, electrical concept relevant to corrosion, relevant concept of chemistry and electrochemistry, thermodynamic prediction of corrosion propensity, Electrolyte, Kinetics of corrosion, over-potential (polarisation), passivation, corrosion rate measurement, metallurgical aspects, forms of corrosion and joint potential theory, corrosion testing (weight loss coupon method, electrochemistry).
ENMT 802006 - DESIGN AND SELECTION OF MATERIALS - (3 Credit Points)
Classification of engineering materials, factors and systematics of design and selection of materials, material property chart and performance index, design for corrosion resistance, design of high temperature materials and design of wear and fatigue resistant materials, design of plastics and composites, design of various carbon steel, cast iron and steel alloys (tool steel, stainless steel, heat resistant steel, wear resistant steel), super alloys, and case studies of material selections.

ENMT 802007 - MATERIALS CHARACTERIZATIONS - (3 Credit Points)
ENMT 802008 - LABORATORY - (1 Credit Points)
Introduction, standards and procedure of testing, principles and methods of advanced analysis for engineering materials chemical composition (AAS, OES, EDS, XPS), identification of crystal structure (x-ray diffraction), advanced metallography (SEM, EPMA, TEM), and thermal analysis (DTA, TGA, DSC, TMA).

ENMT 802109 ADVANCED MANUFACTURE - (3 Credit Points)
Metal forming as part of design and manufacture process; general principles, phenomena and mechanism related to casting of metals; mold (sand, ceramics, metals), gating system, and simulation. Solidification process of cast iron and aluminium, liquid treatment for ferrous metals (inoculation, Mg treatment) and non-ferrous (modifir, grain refier), various methods of casting, casting defects; General principles, phenomena and mechanism of solid phase metals through forging, rolling, extrusion, drawing, sheet metal forming, and thermo mechanical treatment. The phenomenon and mechanism of powder metallurgy, fabrication of metal powder, and mechanism of powder formation, characterisation and characters of powder, mechanical alloying, pre compaction process, compaction, preform characteristics, sintering, and powder consolidation, full density processing; types of sintering devices and related aspects, application and utilization of powder metallurgy products. Case study of processing selection and evaluation of manufacturing process.

ENMT 802210 - ADVANCED CORROSION - (3 Credit Points)
Introduction, thin and aqueous solution, thermodynamics aspects of aqueous corrosion, kinetics of corrosion, application of aqueous corrosion in practice (sea water corrosion, undersoil corrosion, corrosion on soil environment), application of corrosion for non-ferrous metal, atmospheric corrosion, oxidation reaction at high temperature, thermodynamics of oxidation, growth of oxide later, characteristics and properties of oxides, pillaring-bedworth ratio, oxidation reaction rate, effect of oxygen pressure corrosion in specific environment, carburization at high temperature, decarburization, metal dusting, hot corrosion, high temperature corrosion testing, material protection at high temperature, high temperature resistant material, coating (aluminizing, chromizing, siliconizing). Case studies.

ENMT 802211 - COATING & INHIBITION OF MATERIALS - (3 Credit Points)
Coating: metallic coating, type and classification of metallic coating, protection mechanism, electroplating and electrolyte plating, anodizing, phosphating, chromating, hotdip galvanizing, Service life prediction, Organic Coating (paints), properties of organic coating, classification and formulation of paints, mechanism of protection, standard of surface preparation, application method, coating defects and painting failure. Inhibition; types, classification, and mechanism of inhibition (anodic, cathodic, and mixed inhibitor), formulation of corrosion inhibitor in general, application and limitation (in automotive, water coolant, drinking water system, petrochemical and refinery plant) VCI,layer forming corrosion resistant materials.

ENMT 803012 - FAILURE ANALYSIS + LAB - (4 Credit Points)
Definition and goals of failure analysis, general factors contributing to material failure, general procedure in failure analysis techniques, classification of failure origins, characteristics & mechanism of failure analysis, ductile fracture, brittle fracture, fatigue fracture, and failure of brittleness affected by environmental conditions (thermal/ creep, corrosion, and wear), method and tool selections on failed material, yield criteria, initiation of plastic deformation, stress concentration, residual stress, static failure, fundamental principles of fracture mechanics, failure analysis case study analysis and report making and presentation of failure analysis results.
ENMT 803113 - WELDING METALLURGY - (3 Credit Points)
Introduction to material joining, classification, basic principles and process characteristics of electric arc welding and its benefits and drawbacks, classification & characteristics of welding machines and welding electrodes, flux and gas, parameter of welding and heat input, fundamental principles of welding metallurgy, metal transfer inside electric arc welding, microstructure of weld joint, alloying effect, temperature change in welding (HAZ), factors affecting cooling rate of weld metal, weldability of ferrous metal (steel and alloys, heat resistant steel and cast iron) & non-ferrous (Al, Cu, Mg, Ni, and their alloys), welding defects and prevention, heat treatment for welding (preheating & PWHT), weld joint quality control, case studies.

ENMT 803114 - ADVANCED COMPOSITES - (3 Credit Points)
Concepts, definition and classification of composites, matrix and reinforcement, composite fabrication, rule of mixture, interfacial and wetting theory, nano composites, composite mechanics, geometric aspect in composites, lamina and laminate, elastic behaviour, fire endurance, theory of laminate, unidirectional strength of lamina, strength of laminate, strength of short fibre composites, fracture energy of composites, and case studies of composites.

ENMT 803215 - CATHODIC PROTECTION - (3 Credit Points)
Fundamental theory of cathodic protection, protection criteria, cathodic protection system using sacrificial anode, properties of sacrificial anode material and its selection, application of sacrificial anode cathodic protection, impressed current corrosion protection system (ICCP), instrument for corrosion protection, cathodic protection in sea water, soil, and internal structure of concrete (cement) environment, classification of material, specific relations of material and environment, corrosion protection design guidelines, resistant properties of stainless steel and super duplex SS, corrosion resistance of commonly used engineering materials (cast iron, carbon steel, low alloy steel, nickel, aluminium, copper, zinc, titanium, and their alloys), corrosion resistance of non-metallic material (rubber, plastic, composite, ceramic).

ENMT 800016 - RESEARCH PAPER - (2 Credit Points)
Research result written in journal paper format and published in minimum of national journal or international proceedings.

ENMT 800019 - THESIS - (8 Credit Points)
Application of various courses attended in an integral manner in a research to solve a metallurgical and materials engineering problem. Thesis proposal must be presented in a seminar, in front of a panel of lecturer. This proposal includes problem, hypothesis, methodology, & discussions. The research result is written to a scientific report and presented before a panel of lecturer.

ELECTIVES

ENMT 803919 - PROJECT MANAGEMENT - (3 Credit Points)
The concept of project management system and system approach, engineering systems and procedures, basic planning, cost estimation and budgeting, project quality management, execution and project control, project organization, and context of project management, project communication, and project risk management.

ENMT 803920 - ELECTRONIC MATERIALS - (3 Credit Points)
ENMT 803921 - POLYMER DERIVATIVES - (3 Credit Points)

ENMT 803922 - RBI & INTEGRITY - (3 Credit Points)
Definition: Asset Integrity & Risk Based Inspection, Policy including Health, Safety & Environment (HSE), Strategy /Prioritization, Program Planning, Hazard/Threat Identification, Damage Mechanism, Probability of Failure, Consequence of Failure, Asset Register, Risk Assessment, Program Implementation, Data Compilation-Evaluation-Interpretation, Corrective Actions & Recommendations, Inspection Interval, Inspection Methods, Inspection Scope, Inspection Work package.

ENMT 803923 - ADVANCED POLYMER MANUFACTURING - (3 Credit Points)
Fabrication steps of polymer production (formulation, establishment and finalization). Purpose and process of finalizing the type of polymer products (deflashing, smoothing and polishing, sawing and cutting, drilling, grinding and sanding, routing, milling & turning, tapping & threading, cleaning, annealing, assembling, and decoration). Types of assembling processes (mechanical joining, welding and adhesive bonding). This type of decorating process (painting, plating, thermal spray coating, vacuum metalizing, hotstamping, coloring). Construction machinery and mechanisms work finalization processes. The selection of the process of finalizing the fabrication of a polymer product. Case studies on the fabrication process of finalizing the product packaging (rigid and flexible), automotive, electronics and construction equipment.

ENMT 803924 - ADVANCED EXTRACTIVE METALLURGY - (3 Credit Points)
Waste characterization processes for raw materials. Innovation wet metallurgical process (hydrometallurgy) and metallurgical heat (pyrometallurgy) for low grade raw materials and energy efficiency: reaction mechanisms and applications, such as metal Extraction with plasma, microwave. Metal recycling process. Slag processing, metallurgical dust and ash particles. Processing and utilization of by-products (by-product): the use of slag, dross processing, processing of flash. Obtaining metals from waste processes (such as tailings, residue, sludges) from the mineral processing tailings, red mud from metal recovery, metal recovery from waste sludge. The new technology of metal recycling process.

ENMT 803925 - ADVANCED SURFACE ENGINEERING - (3 Credit Points)
Fundamental of surface engineering, conventional surface engineering, advanced surface engineering practices, surface coatings and surface modifications, advanced topics on characterizations for thin film

ENMT 803926 - POLYMER MANUFACTURING TECHNOLOGY - (3 Credit Points)

ENMT 803927 - NANO TECHNOLOGY - (3 Credit Point)
Scope and definition of nanotechnology, physical and chemical of solid surface, nanostructures (zero, one and two dimensional), special nanomaterials, fabrication processes (lithography, nanolithography, soft lithography, assembly), nanomaterial characterizations (physical, chemical and structural) and applications (MEMS, DNA chips, photonics, crystal)
6.5. MASTER PROGRAM IN ARCHITECTURE

Program Specification

<table>
<thead>
<tr>
<th>No</th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Program</td>
<td>Master Program in Architecture</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Degree Offered</td>
<td>Magister Arsitektur (M.Ars)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>Accredited from BAN PT; AUN-QA</td>
</tr>
<tr>
<td>7</td>
<td>Language of Instruction</td>
<td>Bahasa Indonesia and English</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full time/Part time)</td>
<td>Full time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirement</td>
<td>S1 Graduate/equivalent</td>
</tr>
<tr>
<td>10</td>
<td>Duration of Study</td>
<td>2 years-Program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Semester</th>
<th>Number of semester</th>
<th>Number of weeks /semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Short (optional)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graduates profile:
Magister Arsitektur is a graduate who achieve mastery of architectural knowledge within their fields and demonstrate the novelty and state of the art in research and innovation in research and design methods.

Graduates Competence:
1. Able to construct advanced architectural knowledge within particular fields.
2. Able to manage independent research in architecture within particular fields.
3. Able to synthesize and integrate knowledge and methods to reveal architectural phenomena and to solve architectural design problems.
4. Able to demonstrate critical attitude in individual position in relation to other people and as a part of the society, through attitudes and thinking skills that support successful contribution in the society, teamwork and responsive acts toward the surrounding environment.

Course Composition

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Courses</th>
<th>Credits</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Architecture Subjects</td>
<td>13</td>
<td>32.5%</td>
</tr>
<tr>
<td>ii</td>
<td>Fields Subjects</td>
<td>13</td>
<td>32.5%</td>
</tr>
<tr>
<td>iii</td>
<td>Electives</td>
<td>6</td>
<td>15%</td>
</tr>
<tr>
<td>iv</td>
<td>Thesis</td>
<td>8</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>40</td>
<td>100%</td>
</tr>
</tbody>
</table>

Total Credits for Graduation 40 credits

Job Opportunity
Job opportunities to the alumnus of Master of Architecture program are: architecture practitioner, academician, researcher, government consultant, businessmen, and actuator in humanities environment sector.
COURSE STRUCTURE MASTER PROGRAM ARCHITECTURE

<table>
<thead>
<tr>
<th>Semester</th>
<th>Subjects</th>
<th>Peminatan</th>
<th>AD</th>
<th>UD</th>
<th>UHS</th>
<th>P</th>
<th>ATH</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td>Advanced Design and Research Methods</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Advanced Architectural Theories</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Architectural Design Studio 1</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban Design Studio 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban Housing & Settlement Studio 1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Property Workshop 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History & Theory Workshop 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arch & Sustainability Workshop 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Semester 2</td>
<td>Architectural Design Theories</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban Design Theories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban Housing & Settlement Theories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Property Theories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architectural Theory and History</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architecture & Sustainability Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architectural Design Studio 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban Design Studio 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban Housing & Settlement Studio 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Property Workshop 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History & Theory Workshop 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arch & Sustainability Workshop 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Semester 3</td>
<td>Pre-Thesis</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Semester 4</td>
<td>Scientific Publication</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Thesis</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Bidang Peminatan - Stream:
- AD = Architectural Design (Perancangan Arsitektur)
- UD = Urban Design (Perancangan Perkotaan)
- UHS = Urban Housing and Settlement (Perumahan dan Permukiman Perkotaan)
- P = Property (Properti)
- ATH = Architectural Theory and History (Teori dan Sejarah Arsitektur)
- AS = Architecture and Sustainability (Arsitektur dan Sustainabilitas)
Resume

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wajib Program Studi</td>
<td>21</td>
</tr>
<tr>
<td>Peminatan</td>
<td>13</td>
</tr>
<tr>
<td>Jumlah</td>
<td>34</td>
</tr>
<tr>
<td>Pilihan</td>
<td>6</td>
</tr>
<tr>
<td>Total Beban Studi</td>
<td>40</td>
</tr>
</tbody>
</table>

ELECTIVES

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAR800524</td>
<td>Ethnic Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800525</td>
<td>Architecture & Cinematic Space</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800526</td>
<td>Architecture and Text</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800327</td>
<td>Coastal Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800228</td>
<td>Architecture, City, and Power</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800529</td>
<td>Heritage Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800630</td>
<td>Energy-Saving Building</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800131</td>
<td>Desain Komputasi</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800632</td>
<td>High-Rise Building Facades</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800133</td>
<td>Geometry and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800334</td>
<td>Housing Policy</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800135</td>
<td>Everyday and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800636</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800337</td>
<td>Understanding Phenomenon: Plato to Derrida</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800238</td>
<td>Perencanaan Kota</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800039</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800040</td>
<td>Capita Selecta</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800041</td>
<td>Topic on Architectural Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800042</td>
<td>Topic on Urban Design</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800043</td>
<td>Topic on Urban Housing and Settlement</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800044</td>
<td>Special Topic on Property</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800045</td>
<td>Topic on Arch History, Theory & Critics</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800046</td>
<td>Special Topic on Sustainability</td>
<td>3</td>
</tr>
<tr>
<td>ENAR800047</td>
<td>Teaching Assistantship</td>
<td>3</td>
</tr>
</tbody>
</table>
CURRICULUM STRUCTURE FOR FAST TRACK PROGRAM

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDIT</th>
<th>COURSE</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Mata Ajar Pilihan S1: Metode Perancangan Lanjut dan Penelitian</td>
<td>4</td>
<td>Mata Ajar Wajib S2: Metode Perancangan Lanjut dan Penelitian</td>
<td>4</td>
</tr>
<tr>
<td>Mata Ajar Pilihan S1: Teori Arsitektur Lanjut</td>
<td>3</td>
<td>Mata Ajar Wajib S2: Teori Arsitektur Lanjut</td>
<td>3</td>
</tr>
<tr>
<td>Mata Ajar Pilihan S1</td>
<td>3</td>
<td>Mata Ajar Pilihan S2</td>
<td>3</td>
</tr>
<tr>
<td>(diambil dari Mata Ajar Pilihan S2)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 8</td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Mata Ajar Pilihan S1: Teori Kekhususan</td>
<td>3</td>
<td>Mata Ajar Wajib S2: Teori Kekhususan</td>
<td>3</td>
</tr>
<tr>
<td>Mata Ajar Pilihan S1 (diambil dari Mata Ajar Pilihan S2)</td>
<td>3</td>
<td>Mata Ajar Pilihan S2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studio/Workshop Kekhususan 2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>11</td>
</tr>
<tr>
<td>Semester 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studio/Workshop Kekhususan 1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pra-Tesis</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesis</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publikasi Ilmiah</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sks Transfer Kredit</td>
<td>16 (40%)</td>
<td>Total sks S2</td>
<td>40</td>
</tr>
</tbody>
</table>
ENAR801001
ADVANCED DESIGN AND RESEARCH METHODS
4 CREDITS

Learning Objectives:
Student should be able to explore the theory and design method that earns many critics’ attention in architecture and design world. Student can choose appropriate design approach for good architectural research which related to architecture design research, urban design, urban housing and settlement, history and theory, property and building technology

Syllabus:
Research method: architectural thinking and research; terminology (ontological, psychological); architectural text and language style; research questions; research arguments; research logic; assumption and paradigm; research strategy and tactics; research proposal making.
Advanced design method: Design research, relation between research and design; thesis statement; architecture arguments’ form; exploration of design theory and method that are argued by professional critics in architecture and design world.

Pre-requisites:
None for Architecture Master’s Program student. By permission for Architecture Undergraduate student.

References:
2. G. Broadbent, Design in Architecture: Architecture and the Human Sciences, David Fulton Publisher, 2000;
4. T.Y. Hardjoko, Panduan Meneliti dan Menulis Ilmiah, Departemen Arsitektur, 2005

ENAR801002
ADVANCED ARCHITECTURAL THEORIES
5 CREDITS

Learning Objectives:
Students are introduced to advanced architectural theories in general and provides the basic of research for each field, which include advanced architectural design (creative process); architecture and humanities, and architecture and technology (especially sustainability). The focus remains on the architectural phenomenon - aspects of space, place and form/shape; in a scale from private spaces to urban areas.

Syllabus:
Architecture as a discipline: space, place/non-place (topia, utopia, heterotopia, dystopia); Architectural form, design thinking and process (positivism, rationalism, tame/wicked problem, IBIS,
pattern language, diagram);
Architecture and property development (real estate);
Socio-cultural aspects in architecture: historiography, evolution/ history of human settlement (human life-cycle space, culture and the politics of space);
Architecture and sustainability: building physics, construction and technology.

Pre-requisites:

References:
3. Andrew Ballantyne (ed.), *Architecture Theory, A Reader in Philosophy and Culture*, Continuum, 2005
18. Miko E Miles, Gayle Berens, and Marc A Weiss, *Real Estate Development*, Urban Land Institute, edisi terakhir
19. M Mostavi at all (eds.), *Ecological Urbanism*, Lars Muller Publisher, 2010

ENAR801106
ARCHITECTURAL DESIGN STUDIO 1
5 CREDITS

Learning Objectives:
Students should be able to explore and develop arguments for architectural design concepts based on research and design method in urban context.

Syllabus:
The development of logical argument based on design research, method and design in the studio
related to design concept, issue, keywords, design theory, and program on urban context based on specific idea. Data collection is based on specific parameters externally and internally which define certain form. Identification of issues that are related to environmental sustainability and tropical climate context, and formulation of program as spatial journey. Tectonic aspects cover form, structure, and building system. The knowledge on design based on tipology and topology. The consideration on safety and health aspects. The mastery on architectural expression includes model, sketches, architectural drawings, and digital media.

Pre-requisites: -

Buku Ajar:
5. Works and thoughts of Zaha Hadid, Frank Gehry, Rem Koolhaas, Bernard Tschumi, Stephen Holl, Bjarke Ingels, Julien De Smedt, etc.

ENAR801209
URBAN DESIGN STUDIO 1
5 CREDITS

Learning Objectives:
Students should be able to understand the basic of analysis and have the skills to apply urban design regulation gradually, from urban elements to urban guidelines until certain scale, with a strip or a mixed use environment as the object of study. Students should also be able to understand the basic of urban design application using in-depth analysis and to demonstrate critical understanding of environmental contexts and issues.

Syllabus:
The chosen site is a strip or complex environment that has variety of city elements that could give opportunity for students to do multiple analysis. To understand and apply the idea of place making in private nor public area, open space nor building, to materialize individual needs nor community/public. To critically reviewing in wider scale and context in various plans and city regulation including master plan, zoning, UDGL, etc.

Pre-requisites: -

References:

ENAR801312
URBAN HOUSING AND SETTLEMENT STUDIO 1
5 CREDITS

Learning Objectives:
Students should be able to design housing project based on market mechanism; design program including market potential research, market economy, location, and types of housing.

Syllabus:
The potential housing project covers market demand, housing economy; Design process covers
precedent literature based on overseas and local resources; design development; housing project model; design report including housing economy, technical design including model/maquette from housing project.

Prerequisites: -

References:
5. DC Corporate Documentation, Real Estate Investment Calculations

ENAR801415
PROPERTY WORKSHOP 1
5 CREDITS

Learning Objectives:
Students should be able to learn the relation between architecture and real estate activate in a small scale project. Relating to the place innovation for human activity like new building type, lifestyle, market segmentation, et cetera.

Syllabus:
The dream & the product; the products (precedence): residential property, commercial/retail property, office building/property for working; money matters/feasibility study; the products & the users/lifestyle; management aspects of a property product; The proposed products (future): residential property, commercial/retail property, office building/property for working; finance & management.

Prerequisites: -

References: -

ENAR801518
HISTORY AND THEORY WORKSHOP 1
5 CREDITS

Learning Objectives:
Students should be able to master research in history which are related to historiography and architectural artifact.

Syllabus:
Architectural Historiography: use various methodologies to create architectural historiography; Artifact: Heritage of architecture and cities; introducing city/architecture heritage as significant artifact to be documented.

Prerequisites: -

References:
1. Iain Borden and David Dunster (eds), Architecture and the Sites of History: Interpretations of Buildings and Cities, Butterworth Architecture, 1995

ENAR801621
ARCHITECTURE AND SUSTAINABILITY WORKSHOP 1
5 CREDITS

Learning Objectives:
Students should be able to develop and apply building technology theory in a small scale design project research.

Syllabus:
Thermal comfort measurement and passive cooling, design and evaluation of natural lighting, noise controlling and evaluation method, planning of using alternative energy.

Prerequisites: -

References:

ENAR802107
ARCHITECTURAL DESIGN THEORIES
3 CREDIT HOURS

Learning Objectives:
Students should be able to understand and have the ability to do critical analysis to architectural ideas in classic and contemporary architecture, and also able to find the relation between discourses of theory and practice in architectural design.

Syllabus:
The development architecture shaping mechanism since classic architecture to contemporary; recent ideas in the discourses of architecture design theory and practice discourses; ideal ideas in architecture; multi-discipline approach (art, mathematics, science, and social) in architecture theory and design.

Prerequisites:
Students have taken Advanced Architectural Theories

References:

ENAR802210

URBAN DESIGN THEORIES

3 CREDIT HOURS

Learning Objectives:
Students should be able to explain how planning built environment design have contribution in shaping better cities through urban design theory analysis, including traditional and contemporary, also analysis on how in certain situation urban design is formulated; questioning how urban design ideas could elevate physical character of built-environment and why the idea is expected to facilitate the enhancement of urban lifestyle in cities; to do social and spatial analysis from targeted environment; analysis and critic to perceptual and performative of urban design.

Syllabus:
Review to understanding of urban design. Historical research and discourses on the meaning “good city” through the view of theorists, for example: cosmological belief, formalist, funsionalists, picturesques, organics, utopians, livability, ecological. Questioning “performance dimension” in urban design theories and understanding the relation between urban design and perceptual/visual/social dimension. After the students are introduced to theorists point of view, in this section they will explore various ways of interpreting and understanding urban environment. Discussion on how urban environment has different meaning to different people, based on their cultural, economy, race, and gender background. Short review on connection between urban design activity and politic-economy context from urban development process.

Prerequisites: Students have taken Advanced Architectural Theories.

References:

ENAR802313

URBAN HOUSING AND SETTLEMENT THEORIES

3 CREDIT HOURS

Learning Objectives:
Students should be able to have critical understanding on urban housing and settlement in developing countries. Especially Indonesia; understanding on public and private policy affecting economy and housing development, especially local economy; Giving review and critic on strategy and policy to low-income or poor society in cities.

Syllabus:
Settlement and urban housing in Indonesia; group communication problem: knowledge-power-space; daily life of urban communities; urban architecture and also the habitus of various groups in society in urban; individual housing career, family in accessing housing facilities in cities; ‘slump’ urban settlement and social-economy and politic network; housing financing; housing policy: pro-
vider vs enabler, critical analysis on Indonesia as archipelago country in relation of settlement and development in coast area.

Prerequisites: Students have taken Advanced Architectural Theories.

References:

3. Rod Burgess, *Petty Commodity Housing or Dweller Control?: A Critic of John Turner View on Housing Policy*, 1978

ENAR802416
PROPERTY THEORIES 1
3 CREDIT HOURS

Learning Objectives:

This course is designed to develop students’ insight and knowledge in: understanding roles that are related to real estate development with wide-range spatial environment aspect; mastering methods and ability to apply it to various things related to wider issue and problems in real estate.

Syllabus:

First section will elaborate the basics and concept of appraisal/valuation. Second section will cover the environment development issues that are connected to urban management. In the next sections, students will learn variety of issues related to environment development, which is fundamental construction, and cost and benefit analysis, which are risk management technique, funding resources and taxation, market and marketing, asset/property management. Learning is emphasized on understanding the rules and concept in Real Estate in urban context without neglecting method and technical calculation. Through the particular approach, students are expected to understand the development of Real Estate as a concept that could be used to help variety of problems that will be faced in workplace.

Prerequisites: Students have taken Advanced Architectural Theories.

References:

ENAR802519

ARCHITECTURAL THEORY AND HISTORY

3 CREDIT HOURS

Learning Objectives:

Students will be introduced to theories related to world historiography, and historical ideas to test theoretical and historical aspects in individual research.

Syllabus:

Phenomenology, semiology (structuralism, post-structuralism, deconstruction), modern and post-modern, colonialism and post-colonialism, Gender in Architecture

Prerequisites: Students have taken Advanced Architectural Theories.

References:

1. Andrew Ballantyne (ed.), *Architecture Theory, A Reader in Philosophy and Culture*, Continuum, 2005
2. Homi K Bhabha, *The Location of Culture*, Routledge, 1994

ENAR802622

ARCHITECTURE AND SUSTAINABILITY THEORY

5 CREDIT HOURS

Learning Objectives:

Students should be able to explain building technology theory, especially in the field of material, structure, building/environment safety.

Syllabus:

Structural material characteristics, building structure and robustness, sustainable development, ecology, building economy, advanced engineering, management aspect in building design and maintenance, energy conservation, law and regulation on built environment.

Prerequisites: Students have taken Advanced Architectural Theories.

References:

ENAR802108
ARCHITECTURAL DESIGN STUDIO 2
5 CREDIT HOURS

Learning Objectives:
Students should be able to develop the ability in creating space as architectural design concept that is defined individually in a specific design theme, which includes the consideration environment and sustainability.

Syllabus:
Exploration on design concept based on typology. Exploration on sustainable idea in various contexts. Urban space typology, building typology, program and site analysis. Theme and spatial ideas in ecological concept. Architectural research: translating program in conceptual diagram, layout, circulation, space integration by sketches, architectural drawings, and models. Tectonic exploration: relation between tectonic theme and architectural typology which relates to design concept. Verbal and visual communication aspects.

Prerequisites: -

References:

ENAR802211
URBAN DESIGN STUDIO 2
5 CREDIT HOURS

Learning Objectives:
By taking the benefit of UI Depok campus location that is close to capital city, the main goal in the studio is to expand students’ insight, understanding, knowledge, mastery to sustainable urban design principals, by taking case study in Jakarta and also Bodetabek. Students are encouraged to explore the complexity of city problems which are faced by Jakarta as megacity, in example density, urbanization, flood, energy, and climate change. In expectation, those issues will be able to spark students’ creativity to provide innovative urban design that’s also responsible scientifically, from
the social aspects and also environment.

Syllabus:
As the continuity in Urban Design Studio 1, in this studio students are asked to do connectivity exploration on various aspects in urban design through re-design project in mixed-use area (commercial housing). Students are encouraged to re-design environment that are in the process of transition because of radical changes. Studio is organized with early premises that public space plays a significant role to create a comfortable city and life, but the design platform should also rely on user aspiration. The challenge in this studio is the position of urban design that has to give rewards and attention to other aspects in architectural way and also physical reality of a city. Other than that, in finishing urban design project, the students are challenged to make ‘local character’ as keyword.

Prerequisites: Students have taken Urban Design Studio 1

References:
3. Ricky Burdett (Editor), Deyan Sudjic (Editor), 2010, *Living in the Endless City: The Urban Age Project by the London School of Economics and Deutsche Bank’s*, Alfred Herrhausen Society, Phaidon Press
4. Ricky Burdett (Editor), Deyan Sudjic (Editor) 2008. *the Endless City*, Phaidon Press
ENAR802417
PROPERTY WORKSHOP 2
5 CREDIT HOURS

Learning Objectives:
Students should be able to learn the connection between urban architecture and real estate activity in a big-scale project that connected to urban management, role and also public and private sector in the urban area development, reposition, and revitalization, etc.

Syllabus:
(1) Private sector/commercial development project, development of area around 50 ha. Property product (enacted physical regulations). Project funding and buying scheme: e.g. mortgage. Developers' and region government's rights and obligations (developer: on site, off site, cash payment, etc. Region government: holiday tax, incentive, public facilities, etc.). Implementation plan (rights and obligations + development's time schedule) (2) The development of urban facilities that are related to property development (public-private development): investigation/exploration on a public project through recovery chances by putting in unsure property development as the development of educational area/science center, MRT/busway/tollway, which connected to property development along the path. The creation of public facilities.

Prerequisites: Students have taken Property Workshop 1

References: -

ENAR802520
HISTORY AND THEORY WORKSHOP 2
5 CREDIT HOURS

Learning Objectives:
Students should be able to master history research that related to representation and application/practice in architectural history.

Syllabus:
The representation of architecture: architecture as text; architecture as profession; architecture as film; architecture as identity (race and gender); architecture as memory; architecture and disaster; application of architectural history: teaching architectural history; exhibiting architecture; architecture on television/ radio; architectural journalism.

Prerequisites: Students have taken Advanced Architectural Theories.

References:
2. J. Bloomer, Architecture and the Text: the (s)crypts of Joyce and Piranesi (Theoretical Perspectives in Architecture), Yale University Press, 1995
10. Michael Keith and Steve Pile, Place and the Politics of, Routledge, 1993

ENAR802623
ARCHITECTURE AND SUSTAINABILITY WORKSHOP 2
5 CREDIT HOURS

Learning Objectives:
Students should be able to develop and apply building technology theory in a small-scale research project.

Syllabus:
Ecological aspect in technology utilization, material utilization affects to building safety, economy aspect in technology utilization, resources engineering, resources technology management in building/design, the effects of technology utilization in design to project management, energy efficiency measurement in design, the effects of law and regulation in technology utilization.

Prerequisites: Students have taken Architecture and Sustainability Workshop 1

References:

ENAR800003
PRE-THESIS
3 CREDIT HOURS

Learning Objectives:
Students should be able to produce a research proposal (for research thesis) or design proposal (for design thesis) which comprises of minimum 4,000 words. Students who choose research thesis should provide a research proposal which contains findings from theoretical analysis which shows the mastery level in the investigation of issues, formulates preposition and develops research methods. Students who choose design thesis should produce a design proposal that con-
tains theoretical analysis that shows mastery level in designing, and proposes a design statement that is ready to be followed-up and developed through design process.

Syllabus:
Formulation of research question and issues; theoretical analysis through relevant literature research; development of method to respond to design issues or to respond to research questions.

Pre-requisites:
Students have passed Advanced Design and Research Methods with minimum score B.

References:
2. T. Y. Hardjoko, *Panduan Meneliti dan Menulis Ilmiah*, Departemen Arsitektur Universitas Indonesia, 2005

ENAR800004
SCIENTIFIC PUBLICATIONS
2 CREDIT HOURS

Learning Objectives:
Students should be able to produce scientific papers or research with decent quality for being published at dissemination forum in the national or international level.

Syllabus:
The principles of scientific writing; various modes of scientific writing; strategy for formulating the argument in the scientific literature that explicitly indicates the position of the existing knowledge; procedure of publication in national/international seminars/conferences; procedures of publications in international journals; review of articles in internationally reputable journals that are related to the fields of architecture

Pre-requisites:
Students have taken Advanced Design and Research Methods.

References:
2. T. Y. Hardjoko, *Panduan Meneliti dan Menulis Ilmiah*, Departemen Arsitektur Universitas Indonesia, 2005

ENAR800005
THESIS
8 CREDIT HOURS

Learning Objectives:
Students should be able identify, study, and communicate issues in a specific research area which relates to architecture. Able to develop advanced mastery in reading, research, and write a thesis. For thesis research section: provide a thesis not more than 20,000 words. For design thesis section: provide the design as well as thesis not more than 10,000 words and design portfolio that gives the whole picture on design research process.

Syllabus:
Defining issue to respond, research questions which are clearly formulated, and the objectives of the research. Theoretical based, strategy for choosing methods, investigation of facts and synthesis of materials which lead to the responses to research questions and the conclusion.

Pre-requisites: Students have passed Pre-Thesis.
References:
2. T. Y. Hardjoko, *Panduan Meneliti dan Menulis Ilmiah*, Departemen Arsitektur Universitas Indonesia, 2005
COURSE DESCRIPTION (ELECTIVES)

ENAR800524
ETHNIC ARCHITECTURE
3 CREDITS

Learning Objectives:
Student should be able to understand various aspects of architecture which arise from ethnic groups’ traditions in order to explain and analyse elements and principles of architecture from particular ethnic group; able to comprehend the phenomena of ethnic architecture in general and to analyze architecture tradition of particular ethnic group.

Syllabus:
Understanding of principles and elements of ethnic architecture, forming factors, symbolic classification, cosmological view and worldview, space, place, time, meaning, anthropomorphic, building process.

Prerequisites: -

References:

ENAR800525
ARCHITECTURE AND CINEMATIC SPACE
3 CREDITS

Learning Objectives:
Students should be able to demonstrate knowledge of modernity and post modernity urban history through the cinematic lens. Based on Indonesian context, this course also reviewing how student read and understand cities, focused on culture, society, and urban space represented on Indonesian cinema today and on 1965-1998. By considering how the real and reel city confess to each other on mutual representation practice, this course discuss about history and cinematic space interpretation through space and time, by the way of movies that represented different modernity.

Syllabus:
Modernity, Post Modernity, Globalization: The traditional small town; the industrial modern city; modernist dystopias, cynical modernity; postmodern city themes; postmodern dystopia; the voyeuristic city; the city through different eyes; social class ; the contested city/alternative modernity (race, ethnicity and urban experience); the anti city: nostalgic imaginaries; culture, passion and piety.

Prasyarat: -

References:
6. Alan Marcus, Dietrich Neumann (eds), Visualizing the City (Architext), Routledge, 2008
22. Philip Kitley, Television, Nation and Culture in Indonesia, Athens, OG: Ohio University Center for International Studies, 2000
23. Intan Paramadina, “City and Desire in Indonesian Cinema,” Inter-Asia Cultural Studies: Runaway Cities/Leftover Spaces, Volume 12, Number 4, 2011
27. Films selection (among others): Cinema Paradiso; It’s a Wonderful Life; Berlin: Symphony of a City; Modern Times; Metropolis; Brazil; End of Violence; Rear Window; Manhattan; Taxi Driver; Blade Runner; Do the Right Thing; My Beautiful Laundrette; The Truman Show; Los Angeles Plays Itself; Drakula Mantu (1974); Jakarta Jakarta (1978); Pengemis dan Tukang Becak (1978); Matahari-Matahari (1985); Daun di Atas Bantal (1998); Cul-de-Sac (1998); Eliana, Eliana (2002); Arisan! (2003); Mengejar Matahari (2004); Rindu Kami Padamu (2004); Berbagi Suami (2006); Naga Bonar Jadi Dua (2007); Ayat-Ayat Cinta (2008); Perempuan Berkalung Sorban (2009); and related films as needed.

ENAR800526
ARCHITECTURE AND TEXT
3 CREDITS

Learning Objectives:
Students should be able to understand architecture as a text based on the connection between text and its context.

737
Syllabus:
“Il n’y a pas de hors-texte” (there is nothing outside the text) - Jacques Derrida. Text are often be understood as a written communication, but in this course, text are is not limited to the written words. For example face expressions, traffic signs and paintings are also text. “Text”, the word which has connection with the word “Texture” and “Context” coming from the latin word texere, which means knit. As an introduction to the architecture as a text, this course gives us knowledge, how to read architectural work as text, how to read architecture as knitting between architectural work and its architect experience, society condition, etc.

Prerequisites: -

References:
1. Roland Barthes, Mythologies, Vintage Classics, 2000
4. Joel Gilberthorpe, What is a Text?: on the Limits of a Text as an Object of Knowledge (http://www.arts.mq.edu.au/documents/NEO_Article_5_2009_Joel_Gilberthorpe.pdf)

ENAR800327
COASTAL ARCHITECTURE
3 CREDITS

Learning Objectives:
Student should be able to understand the relationship between spatial temporal, cultural, and eco-athropomorphic systems changes in coastal areas. Such understanding would contribute to awareness to integrate eco-anthroposystem ideas into architectural design in coastal areas; Student should be able to systematically express their own understanding and awarenees of design issues in coastal context.

Syllabus:
Water and architecture, basic understanding and knowledge of coastal area, continental area, sea, archipelago, spatial-temporal-cultural aspects, coastal eco-anthrosystem, the effect of island-sea interactions to coastal living-livelihood, spatial planning, facilities and architecture of coastal areas, the dynamics of dwelling and dwelling form in Indonesian coastal areas, climate change and disaster risk in Indonesian coastal area, spatial-temporal-cultural changes and eco-anthroposystem in certain Indonesian coastal area, the role of architects in coastal spatial planning and the future of coastal architecture.

Prerequisites: Students have taken Design Theories & Methods in Architecture

References:
4. Subandono Diposaptono and Budiman, Tsunami, Penerbit Buku Ilmiah Populer, 2006
5. Charles Moore and Jane Lidz, Water + Architecture, Thames and Hudson Ltd, 1994

2. Koen Olthuis and David Keuning, Float!. Building on Water to Combat Urban Congestion and Climate Change, Frame Publishers, 2010
3. Djoko Pramono, Budaya Bahari, Gramedia Pustaka Utama, 2005
Learning Objectives:
Student should be able to understand the role of architecture, planning and design within and between urban contexts; should be able to improve their understanding on the relationship between built environmental design and power; should be able to increase awareness of the intertwining relationship between architecture, social aspects, political aspects, economy, and culture; should be able to understand that built environment is conceived out of, and would yield particular power relation amongst the users in a specific context.

Syllabus:
The role of architecture and planning in the broader context. The relationship between design and power. Syllabus is prepared according to the themes related to the aforementioned relationship, which includes the following themes: Architecture and consumption, poverty and inequality; informality, disasters, theme parks/leisure, space of colonial/post-colonial/nation/globalization/neoliberalism; spatial enclaves/zone/segregation based on gender, race and ethnicity, social class, religion, spatial justice; housing and infrastructure.

Prerequisites:
-

References:
3. Kim Dovey, Framing Spaces: Mediating Power in Built Form, New York: Routledge, 1999
5. Abidin Kusno, Behind the Postcolonial: Architecture, Urban Space and Political Culture in Indonesia, Routledge, 2000
10. David Harvey, Spaces of Hope, University of California Press, 2000
15. Nezar AlSayyad & Ananya Roy, Urban Informality: Transnational Perspectives from the Middle East, Latin America and South Asia, New York: Lexington Book, 2004
17. Teresa Caldeira, City of Wall, University
of California Press, 2000

27. Faranak Mirahtab & Neema Kudva (eds), *Cities of the Global South Reader*, Routledge, 2015

30. and various movies related to themes and learning objectives

ENAR800529
HERITAGE ARCHITECTURE
3 CREDITS

Learning Objectives:
Student should be able to understand the definition and issues in heritage and conservation of architecture from the past, in particular heritage building and heritage site.

Syllabus:
Introduction to heritage architecture, including tangible and intangible aspects, Outstanding Universal Value from heritage building and heritage site. Discussion on critical issues related to heritage in architecture and city. Introduction to conservation strategies including data collection, documentation, planning, protection, development and reuse of heritage building and heritage site. Discussion on precedents of conservation in Indonesia.

Prerequisites:
-

References:
3. Undang-undang Republik Indonesia Nomor 11 Tahun 2010 tentang Cagar Budaya
ENERGY-SAVING BUILDING
3 CREDITS

Learning Objectives:
Students should be understand the principle of energy-saving building technology and apply it on design.

Syllabus:
Renewable energy, site and climate, sun geometry, passive cooling, shading, natural & artificial lighting and solar cell.

Prerequisites: -

References:
2. Klaus Daniels, The Technology of Ecological Building, English translation by Elizabeth Schweiger, Birkshauser Verlag, Berlin 1994

ENAR800131
COMPUTATIONAL DESIGN AND PARAMETRIC MODELLING
3 CREDITS

Learning Objectives:
Students should be able to use computation media as part of design process, using parametric and computer programing approach.

Syllabus:
Introduction to computation design tools, parametric approach, algorithmic architectura, and scripting software.

Prerequisites: Students have basic knowledge of NURBS and CAD modelling

References:

ENAR800632
HIGH RISE BUILDING FACADE
3 CREDITS

Learning Objectives:
Student should be able to master the principles of high rise building façade including aesthetics, technical, and environmental aspects.

Syllabus:
The essence of building façade of high rise building (resistance to earth quakes, lateral force/wind and water resistance); Façade design; Material and technology for façade detailing; Green façade.

Prerequisites: -

References:
1. Wolfgang Schueller, Struktur Bangunan Bertingkat Tinggi, PT Eresco, 1989
4. Details in Architecture
5. The Images Publishing Group, Creative Detailing by Some of The World’s Leading Archi-
ENAR800133
GEOMETRY AND ARCHITECTURE
3 CREDITS

Learning Objectives:
Student should be able to understand the role of geometry as a basis of architectural form; should be able to explore various possible uses of geometry as the critical tools of analysis of existing architectural works and in the process of generating architectural design works.

Syllabus:
Development of knowledge on geometry and its implication for the development of architectural ideas and creativity; geometry and classical aesthetics of architecture; Euclidean and non Euclidean geometry in architecture; geometry and the concept of ideal city; geometry, music, and architecture; geometry and perception; topology in architecture; geometry in nature; exploration of the mechanism of geometry in shaping a design work and its potential for further development.

Prerequisites: -

References:
2. Colin Rowe, Mathematics of an Ideal Villa, MIT Press, 1976

ENAR800334
HOUSING POLICY
3 CREDITS

Learning Objectives:
Students should be able to understand that housing policy is a concept to manage housing sector in a country. Scope of housing policy: understanding, purpose, characteristic, motive, scope and implementation. Also, the relation to politic, social, economy, culture and environment and its impact to housings management.

Syllabus:
Indonesia as an archipelagic country: developing country, economic disparity and urban formation; Urbanization, migration: Indonesia demographic characteristic; constitution of society; Housing demand & supply (formal & informal sectors); Politics of the state and housing policy: Typology of housing provision in Indonesia (legal aspect; mode of consumption; mode of production); Housing economy and finance; Land policy; Housing technology; Housing policy in Asian countries

Prerequisites: -

References:

ENAR800135

EVERYDAY AND ARCHITECTURE

3 CREDITS

Learning Objectives:
Student should be able to understand the existence of everyday phenomena as an approach to architecture; should be able to define the position of architecture discipline in responding to various phenomena of everyday living space.

Syllabus:
Understanding and historical background of the concept of the ‘everyday’ in architecture; domestic space; aesthetic in architecture and the ‘everyday’, the concept of an ideal city and its relation to the ‘everyday’; cyber space and virtual space; the phenomenon of the ‘everyday’ in urban space: a participatory approach in architecture.

Prerequisites: -

References:
ENAR800636
PROJECT MANAGEMENT
3 CREDITS

Learning Objectives:
Student should be able to develop knowledge about project management and process in design and built environment, particularly administration of technical aspects and building economy from early stage of the project, design, construction, to the the end of the project; should be able to analyze the content of project management documents, building regulation and standard; should be able to create proposal, TOR, auction document, design administration, construction administration, or Project Manual of construction service in small scale project, including working with real client.

Syllabus:
As a product, project management is record of series of project activities as a holistic process, including as a working guide, coordination tools, and as a control for a project. As a process, project management is series of activities that produce responsibilities toward the quantity of records of the whole stages of project management, in one multidiscipline function. This subject introduces the skills required to manage project along its stages through chronological model.

Prerequisites: -

References:
1. PMI, A Guide to Project Management Body of Knowledge (PMBOK Guides) 3 ed, Project Management Institute, 2004

ENAR800337
UNDERSTANDING PHENOMENON: PLATO TO DERRIDA
3 CREDITS

Learning Objectives:
Students should have knowledge about architecture philosophy, especially the differences of knowledge and empirical verification, and metaphysics explanation to understand architecture. Students also should be able to demonstrate critical thinking of each architectural phenomenon observation.

Syllabus:
Shapes and forms of physic and metaphysic, ontological understanding about ‘what’ and ‘what-ness’ of architectural shape from empiric and metaphysic, Plato and Khora. Husserl phenomenon and phenomenology (essentialism) and Heidegger (existentialism), semiotic sign, myth, simulacra and deconstruction, Knowledge-Power

Prerequisites: -

References:
1. R Barthes tr by Annette Lavers, Mythologies, Hill and Wang, 1972

ENAR800238
CITY PLANNING
3 CREDITS

Learning Objectives:
Student should be able to understand history and theory of urban planning though historical survey and/or through key themes; should be able to understand (1) how urban space works (based on historical context) based on spatial planning research; (2) key paradigms in urban planning thinking. This subject is arranged around principle that history of urban planning is a theory of urban planning that is bounded by planning ethics.

Syllabus:
Syllabus is arranged following a chronological order that is divided by 5 sections: (1) reflection towards design ideas, origin and design practice; industrial city and housing question; spatial order exploration; (2) Modernist City; Colonial and Post-Colonial experiments; (3) Sub-urban dream (legacy of American city planning); from ghetto to city role model (racial and ethnic control); (4) City and citizenship in different historical moments; spatial rules and arrangements (basic rules of design); urban crisis, urban management, and business city; building a world class city in global south; (5) compatible theories in design and justice; see design over neo-liberalism: paradigm occurs in planning. As an alternative, syllabus could also interrupt this chronological order and arrange as a survey class that arrange these materials in key themes, such as: Empire; Colonial/Post-colonial; Modernity and Alternatives; Pacific Rim Capitalism Transnational Urbanism; Race/Ethnic, Planning and Real Estate; City and Village; Marginality; Re-building A City; Entrepreneur City; Dystopia Planning and Post-city.

Prerequisites:

References:
5. Friedrich Engels, *The Housing Question*, Lawrence and Wishart, Ltd, 1942

ENAR800039
INDEPENDENT STUDY
3 CREDITS

Learning Objectives:
Students should be able to demonstrate advanced architectural knowledge on particular topic and to implement the knowledge into the development of ideas of architectural intervention.

Syllabus:
Advanced studies on architectural knowledge in particular context; development of architectural intervention ideas based on thorough inquiry of contexts and theoretical inquiry on related topic.

Prerequisite: -

References: Relevant references to the topic offered.

ENAR800040
CAPITA SELECTA
3 CREDITS

Learning Objective:
Students should be able to expand their knowledge on various topics that support acquisition of architectural knowledge and design skills.

Syllabus:
Selected topics that are relevant to architectural knowledge, design skills and their recent development.

Prerequisite: -

References: Relevant references to the topic offered.

ENAR800041
SPECIAL TOPIC ON ARCHITECTURAL DESIGN
3 CREDITS

Learning Objectives:
Students should be able to demonstrate knowledge on current architectural discourse and its implementation in architectural design.

Syllabus:
Studies on the development of contemporary architectural theories; the development of architectural design methods; the development of architectural representation techniques; the development in other relevant disciplines that have impacts of the development of architectural design theories and methods.

Prerequisite: -

References: Relevant references to the topic offered.
6.7. MASTER PROGRAM IN CHEMICAL ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th>No</th>
<th>Awarding institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Organized Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Study Program Name</td>
<td>Chemical Engineering Master Program</td>
</tr>
<tr>
<td>4</td>
<td>Type of Class</td>
<td>Regular / Gas Management</td>
</tr>
<tr>
<td>5</td>
<td>Degree given</td>
<td>Magister Teknik (MT)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation status</td>
<td>BAN-PT: Akreditasi A</td>
</tr>
<tr>
<td>7</td>
<td>Medium Language</td>
<td>Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full time/Part time)</td>
<td>Full time</td>
</tr>
<tr>
<td>9</td>
<td>Entry requirement</td>
<td>Bachelor Degree</td>
</tr>
<tr>
<td>10</td>
<td>Study Duration</td>
<td>Designated for 2 years</td>
</tr>
<tr>
<td>11</td>
<td>Type of Semester</td>
<td>Number of semester</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Short (optional)</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Graduate Profile:</td>
<td>Master of Chemical Engineering, Faculty of Engineering, Universitas Indonesia who is able to do problem-solving in chemical engineering field through system process design and independent research activities based on scientific principles as well as able to develop professional performance as indicated by keenness of problem analysis, multifariousness aspects, and linearity in troubleshooting.</td>
</tr>
<tr>
<td>13</td>
<td>Expected learning outcome:</td>
<td>1. Able to analyze problems in transport phenomena in Chemical Engineering field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Able to analyze problems in thermodynamics in Chemical Engineering field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Able to analyze problems in chemical reaction engineering in Chemical Engineering field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Able to analyze problems in chemical process system in Chemical Engineering field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Able to manage research activities independently based on scientific principles in certain specific fields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Able to design process system as well as related product in chemical engineering fields by considering engineering principles, management, economy, social, health, safety, and environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Able to prepare scientific articles in chemical engineering field and published in national or international media standards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Continuously develop one-self to contribute in solving problems locally as well as globally.</td>
</tr>
<tr>
<td>14</td>
<td>Classification of Subjects</td>
<td>Total compulsory credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total elective credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar and Thesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Total Credit Hours to Graduate: 42 SKS
Profil Lulusan Magister Teknik Kimia FTUI
Lulusan Magister Teknik Kimia Fakultas Teknik Universitas Indonesia yang mampu memecahkan permasalahan di bidang teknik kimia melalui kegiatan perancangan sistem proses dan kegiatan penelitian secara mandiri berdasarkan kaidah ilmiah, serta mampu mengembangkan kinerja profesionalnya yang ditunjukkan dengan ketajaman analisis permasalahan, kesehatan, dan kebijakan pemecahan masalah.

Mengembangkan diri secara terus menerus untuk dapat berkotribusi dalam menyelesaikan masalah dalam lingkup lokal maupun global.

Mampu mengelola kegiatan penelitian secara mandiri berdasarkan kaidah ilmiah pada bidang kekhususan tertentu.

Mampu menyusun artikel ilmiah dalam bidang teknik kimia dan dipublikasikan di media berstandar nasional atau internasional.

Mampu merancang sistem proses maupun produk yang terkait profesi teknik kimia dengan mempertimbangkan aspek aspek kekhususan, manajemen, keekonomian, sosial, kesehatan, dan keselamatan.

Mampu menganalisis sistem proses kimia dengan menggunakan alat bantuan komputasi modern.

Mampu menganalisis masalah fenomena terjadi pada bidang teknik kimia.

Mampu menganalisis masalah termodinamika bidang teknik kimia.

Mampu menganalisis masalah teknik reaksi kimia bidang teknik kimia.

Legenda

Kompetensi utama
Kompetensi pendukung
Kompetensi lainnya
CURRICULUM STRUCTURE MASTER PROGRAM CHEMICAL ENGINEERING

Teknik Kimia Reguler asal S1 Teknik Kimia - Chemical Engineering (Regular) Based on Chemical Engineering Undergraduate Program

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH801001</td>
<td>Adv Chemical Eng Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Term 2

ENCH802101	Advanced Transport Phenomena	3
ENCH802102	Advanced Chemical Reaction Eng.	3
ENCH802103	Adv Chemical Eng. Modeling	3
ENCH802104	Research Methodology	3
	Total	**12**

Term 3

ENCH800002	Pra Tesis	2
	Elective 4	3
	Elective 5	3
	Total	**8**

Term 4

ENCH800003	Tesis	8
ENCH800004	Scientific Publication	2
	Total	**10**
	Sub Total	**42**

Teknik Kimia Reguler asal S1 non-Teknik Kimia - Chemical Engineering (Regular) Based on non-Chemical Engineering Undergraduate Program

<table>
<thead>
<tr>
<th>KODE</th>
<th>SUBJECT</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Matrikulasi Transport Phenomena</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrikulasi Numerical Computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matrikulasi Chemical Reaction Eng.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

Term 2

Matrikulasi	Chemical Eng Thermodynamics	3
ENCH802101	Advanced Transport Phenomena	3
ENCH802102	Advanced Chemical Reaction Eng.	3
ENCH802103	Adv Chemical Eng. Modeling	3
ENCH802104	Research Methodology	3
	Total	**12**

Term 3

ENCH801001	Adv Chemical Eng Thermodynamics	3
ENCH800002	Pra Tesis	2
	Elective 3	3
Elective Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH801101</td>
<td>Food Technology</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801102</td>
<td>Herbal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801103</td>
<td>Composite Material</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801104</td>
<td>Hydrocarbon Thermodynamic</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801105</td>
<td>Lubricants Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801106</td>
<td>Combustion Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801107</td>
<td>Heterogenous Catalyst</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803101</td>
<td>Oleochemistry Industry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803102</td>
<td>Protein Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803103</td>
<td>Applied Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal

Sub Total 42

Management Gas - Gas Management

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH801203</td>
<td>Explor & Product of Hydrocarbon</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801202</td>
<td>Natural Gas Processing</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801204</td>
<td>Natural Gas Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENCH801001</td>
<td>Adv Chemical Eng Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH802201</td>
<td>Trans & Utilization of Natural Gas</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802202</td>
<td>Natural Gas Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802203</td>
<td>Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802204</td>
<td>Management Systems Eng.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH803201</td>
<td>Renewable Energy</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803202</td>
<td>OHS in Natural Gas Industry</td>
<td>3</td>
</tr>
<tr>
<td>ENCH800002</td>
<td>Pra Tesis</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH800003</td>
<td>Tesis</td>
<td>8</td>
</tr>
<tr>
<td>ENCH800004</td>
<td>Scientific Publication</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10</td>
</tr>
</tbody>
</table>

Sub Total 42
<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course for Even Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH803104</td>
<td>Dynamics System</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803105</td>
<td>Cryogenics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803106</td>
<td>Plasma & Ozone Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803107</td>
<td>Special Topics 1</td>
<td>3</td>
</tr>
<tr>
<td>ENCH803201</td>
<td>Renewable Energy</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kode</th>
<th>Elective Course for Even Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCH802105</td>
<td>Storage & Packaging Tech</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802106</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802107</td>
<td>Cosmetics and Drugs</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802108</td>
<td>Biomaterial</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802109</td>
<td>Natural Gas Processing</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802110</td>
<td>Petrochemical Process</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802111</td>
<td>Photocatalysis Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802112</td>
<td>Polimer</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802113</td>
<td>Pollution Prevention</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802114</td>
<td>Explor & Product of Hydrocarbon</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802115</td>
<td>Plant Utility and Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802116</td>
<td>Drug Controlled Release Tech</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802117</td>
<td>Analysis & Synthesis of Process</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802118</td>
<td>Geothermal Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802119</td>
<td>Problem Solving Skills</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802120</td>
<td>Special Topics 2</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802201</td>
<td>Trans & Utilization of Natural Gas</td>
<td>3</td>
</tr>
<tr>
<td>ENCH802203</td>
<td>Risk Management</td>
<td>3</td>
</tr>
</tbody>
</table>
SYLLABUS OF MASTER PROGRAM CHEMICAL ENGINEERING DEPARTMENT
A. CHEMICAL ENGINEERING (REGULAR) BASED ON CHEMICAL ENGINEERING UNDERGRADUATE
PROGRAM

TERM 1

ENCE801001
ADVANCED CHEMICAL ENGINEERING MODELLING
3 CREDITS

Learning Objectives: Students are able to develop physicochemical model systems in chemical processes and solve it by using numerical methods with assistance of software programme

Syllabus: Empirical modelling and physicochemical system in Chemical process; linear and nonlinear algebra equation system, simple differential equation, initial problem value and limits problem value, partial differential equation.

Prerequisite: Numerical Computation

Textbook:

ENCE801002
ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS
3 CREDITS

Learning Objectives: Students are able to understand the basics of thermodynamics, fluid properties, phase equilibrium and reaction and be able to apply it to solve problems of chemical engineering.

Syllabus: Analysis the system using the several form of the first and second laws, the equation network of thermodynamic for thermodynamic properties, condition equation, fluid phase equilibrium, chemical reaction equilibrium

Prerequisite: Chemical Engineering Thermodynamics

Textbook:

TERM 2

ENCE802001
ADVANCED TRANSPORT PHENOMENA
3 CREDITS

Learning Objectives: Students are able to understand the transport phenomenon of momentum, mass and heat simultaneously and able to apply it at the unit processes that involve the flow of single phase or multiple phase

Syllabus: Review of the theory of transfer of momentum, mass and heat simultaneously; analysis and application of single-phase system: mixing and dispersion, mixer; analysis and application of
a combination system of gas-liquid phase, gas-solid, liquid-liquid, liquid-solid, gas-liquid-solid

Prerequisite: Peristiwa Perpindahan.

Textbook:

ENCE802002
ADVANCED CHEMICAL REACTION ENGINEERING
3 CREDITS

Learning objects: Students are able to analyze the phenomenon of chemical kinetics, the kinetics reaction data to determine the equation mechanistic reaction rate; able to design and analyze the performance of non ideal homogeneous and multi phase chemical reactors.

Syllabus: Thermodynamics of the reaction; definitions and basic concepts: the rate of reaction, the reaction rate equation, the Arrhenius equation: reaction modeling and data analysis for the determination of reaction rate equations; the introduction of gas-solid heterogeneous catalysts: a reduction in reaction rate equations and data of heterogeneous catalytic reactions of solid-gas; effects of diffusion and heat transfer in the catalytic reaction data interpretation. design of batch reactor and CSTR (isothermal, non-isothermal) reactor design PFR and PBR (isothermal, non-isothermal) sphere and the membrane reactor design; design-solid heterogeneous catalytic reactors with interstage gas cooler / heater; design of reactors for multiple reactions and mss (multiple steady state), design of non-ideal reactor (residence time distribution).

Prerequisite: Chemical Reaction Engineering 2

Textbook:

ENCE800001
RESEARCH METHODOLOGY
3 CREDITS

Learning Objectives: Students are able to determine the appropriate method for research activities and produce the ideas, processes, and scientific research in writing and oral.

Syllabus: Introduction, techniques to identify problems and arrange hypotheses, think logically, the techniques of scientific writing, technical writing research proposals, designing research techniques, presentation techniques, techniques to collect data, analyze it and present it.

Prerequisites: Students have to take a minimum of 12 credits (minimum value of D) with a GPA of 2.0

Textbook

1. Handout.
2. Research Proposal Format The preparation of various agencies
TERM 4

ENCE800003
THESIS
7 CREDITS

Learning Objectives: Students are able to design, conduct, and analyze research in Chemical fields; present research result in oral and writing

Syllabus: Thesis material based on research topic

Prerequisite: Based on regulation

Textbook:

ENCE800004
SCIENTIFIC PUBLICATIONS
2 CREDITS

Learning Objective:

Syllabus

Prerequisite

Textbook

B. CHEMICAL ENGINEERING (REGULAR) BASED ON NON-CHEMICAL ENGINEERING UNDERGRADUATE PROGRAM

Matriculation

TRANSPORT PHENOMENA
3 CREDITS

Learning Objective: Students can identify and describe as well as analyze momentum, mass, and heat transfer phenomenon, through the application of macroscopic and microscopic balance.

Syllabus: Viscosity and momentum transfer phenomenon, Velocity distribution of laminar flow, Thermal conductivity and energy transfer mechanism, Temperature and concentration distribution in solids and laminar flow, Diffusivity and mass transfer mechanism, Converter equation for isothermal system, Momentum transfer in turbulent flow, Mass and energy transfer in turbulent flow, Transfer between two phases, Macroscopic balance of isothermal and non-isothermal system, Macroscopic balance of multi-component system.

Prerequisite: -

Textbook:

Matriculation

CHEMICAL REACTION ENGINEERING 1
3 CREDITS

Learning Objective: Students are able to comprehend the concept of chemical kinetics and catalysis

Syllabus: Basic concepts of chemical reaction kinetics, chemical reaction thermodynamics, experiments and kinetics data, formulation of kinetic models, the estimation method of constant values of the kinetic model, the sensitivity analysis of the kinetics model, catalyst and the influence of external and internal diffusion of the chemical reaction rate, the effectiveness factor, the effect of heat displacement at the catalytic reaction.
Master Program

Prerequisite: Kimia Fisik

Textbook:

TERM 2
CHEMICAL ENGINEERING THERMODYNAMICS
4 CREDITS

Learning Objective: Students are able to explain the basic principles relating to the PVT and thermodynamic properties of pure and mixtures compounds, mass and energy balance, thermodynamic cycles, phase equilibrium and reaction, and be able to apply problem-solving strategies to resolve the thermodynamic problems in a group.

Syllabus: Skills assessment: The first law of thermodynamics: energy, enthalpy, steam tables, mass and energy balance of steady state and non-steady system; second law of thermodynamics and cyclic processes: entropy signification, Rankine cycle and refrigeration cycle; thermodynamic properties of pure and mixed compounds: the amount of residual and partial molar quantities; Equilibrium: Raoults law and liquid-vapor phase equilibrium, activity coefficients and coefficients fugacity no ideal system, the chemical reaction equilibrium and Le Chatelier's principle; Simulation process: module of thermodynamics properties, phase equilibrium module, and reaction equilibrium module.

Prerequisites: -

Textbook:
2. Donald R. Woods, Problem-based Learning: How to gain the most PBL, 1994, Mc-Master University, Hamilton, ON L8S 4L8.

NUMERICAL COMPUTATION
3 CREDITS

Tujuan pembelajaran:

Students are able to solve Mathematical problems by using numerical methods: method of calculating root of a non-linear algebra equation, method of calculating a linear algebra equation system, methods of calculating non-linear algebra equation system, regression, numerical integration, numerical differentiation.

Syllabus: The solution of single non-linear algebra equation, solution of linear algebra equation system, solution of non linear algebra equations system, regression, numerical integration, numerical differentiation.

Prerequisite: Calculus
Learning Objectives: Students are able to understand the transport phenomenon of momentum, mass and heat simultaneously and able to apply it at the unit processes that involve the flow of single phase or multiple phase.

Prerequisite: Peristiwa Perpindahan.

Textbook:

ENCE802002
ADVANCED CHEMICAL REACTION ENGINEERING
3 CREDITS

Learning objectives: Students are able to analyze the phenomenon of chemical kinetics, the kinetics reaction data to determine the equation mechanistic reaction rate; able to design and analyze the performance of non ideal homogeneous and multi phase chemical reactors.

Syllabus: Thermodynamics of the reaction; definitions and basic concepts: the rate of reaction, the reaction rate equation, the Arrhenius equation: reaction modeling and data analysis for the determination of reaction rate equations; the introduction of gas-solid heterogeneous catalysts: a reduction in reaction rate equations and data of heterogeneous catalytic reactions of solid-gas; effects of diffusion and heat transfer in the catalytic reaction data interpretation. design of batch reactor and CSTR (isothermal, non-isothermal) reactor design PFR and PBR (isothermal, non-isothermal) sphere and the membrane reactor design; design-solid heterogeneous catalytic reactors with interstage gas cooler / heater; design of reactors for multiple reactions and mss (multiple steady state). design of non-ideal reactor (residence time distribution).

Prerequisite: Chemical Reaction Engineering 2

Textbook:

ENCE801001
ADVANCED CHEMICAL ENGINEERING MODELLING
3 CREDITS

Learning Objectives: Students are able to develop physicochemical model systems in chemical processes and solve it by using numerical methods with assistance of software programme.

Syllabus: Empirical modelling and physicochemical system in Chemical process ; linear and non linear algebra equation system, simple differential equation, initial problem value and limits problem value, partial differential equation.

Prerequisite: Numerical Computation

Textbook:

ENCE801002
ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS
3 CREDITS

Learning Objectives: Students are able to understand the basics of thermodynamics, fluid properties, phase equilibrium and reaction and be able to apply it to solve problems of chemical engineering.

Syllabus: Analysis the system using the several form of the first and second laws, the equation network of thermodynamic for thermodynamic properties, condition equation, fluid phase equilibrium, chemical reaction equilibrium

Prerequisite: Chemical Engineering Thermodynamics

Textbook:

ENCE800001
RESEARCH METHODOLOGY
3 CREDITS

Learning Objectives: Students are able to determine the appropriate method for research activities and produce the ideas, processes, and scientific research in writing and oral.

Syllabus: Introduction, techniques to identify problems and arrange hypotheses, think logically, the techniques of scientific writing, technical writing research proposals, designing research techniques, presentation techniques, techniques to collect data, analyze it and present it.

Prerequisites: Students have to take a minimum of 12 credits (minimum value of D) with a GPA of 2.0

Textbook
1. Handout.
2. Research Proposal Format The preparation of various agencies

ENCE800002
SEMINARY
3 CREDITS

Learning Objectives: Students are able to produce the ideas, processes, and scientific research in writing and oral.

Syllabus: Introduction, techniques to identify problems and arrange hypotheses, think logically, the techniques of scientific writing, technical writing research proposals, designing research techniques, presentation techniques, techniques to collect data, analyze it and present it.

Prasyarat: -

Buku ajar: -

TERM 4
ENCE800003
THESIS
7 CREDITS

Learning Objectives: Students are able to design, conduct, and analyze research in Chemical fields; present research result in oral and writing
Syllabus: Thesis material based on research topic
Prerequisite: Based on regulation
Textbook:

ENCE800004
SCIENTIFIC PUBLICATIONS
2 CREDITS
Learning Objective:
Syllabus
Prerequisite
Textbook

C. GAS MANAGEMENT

TERM 1
ENGM801003
HYDROCARBON EXPLORATION AND PROCESSING
3 CREDITS
Learning Objectives: Students are able to explain the economic concept of natural gas as well as analyze the economic of exploration oil and natural gas production
Syllabus: Introduction of hydrocarbon, life cycle of field development, hydrocarbon form and hydrocarbon property and reservoir, hydrocarbon exploration: geology, geophysics, and drilling, field appraisal, reservoir development, drilling development, hydrocarbon production, HSE, hydrocarbon economy and lease, coal and hydrocarbon unconventional (CBM, Shale gas, and HYDRAT GAS)
Prerequisite: -
Textbook:

ENGM801002
NATURAL GAS PROCESSING
3 CREDITS
Learning Objectives: Students are able to synthesing natural gas processing, simulating as well as analyzing.
Syllabus: natural gas processing technology, gas-condensate separation, acid gas removal, gas dehydration, mercury removal, sulfur recovery.
Prerequisite: -
Textbook:

ENGM801004
NATURAL GAS PROJECT MANAGEMENT
3 CREDITS
Learning Objectives: Students are able to apply project management in their fields with appropriate as well as apply it in out main fields.
Prerequisite -

Textbook:
Suharto, Imam, Manajemen Proyek, 1990

ENGM801001
ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS
3 CREDITS
Learning Objectives: Students are able to understand the basics of thermodynamics, fluid properties, phase equilibrium and reaction and be able to apply it to solve problems of chemical engineering. Syllabus: Analysis the system using the several form of the first and second laws, the equation network of thermodynamic for thermodynamic properties, condition equation, fluid phase equilibrium, chemical reaction equilibrium
Prerequisite: Chemical Engineering Thermodynamics

Textbook:

TERM 2
ENGM802002
NATURAL GAS ECONOMICS
3 CREDITS
Learning Objective:
Syllabus
Prerequisite
Textbook

ENGM802001
NATURAL GAS TRANSPORTATION AND UTILIZATION
3 CREDITS
Learning Objective:
Syllabus
Prerequisite
Textbook

ENGM802003
RISK MANAGEMENT
3 CREDITS
Learning Objectives: Students can explain and apply risk management in a risk assessment.
Syllabus: Introduction to the risk, the basic principles and guidelines concerning risk, risk management standards, risk assessment, risk analysis, risk analysis and simulation, simulation of the risk with Montecarlo method, the risk of using software simulation crystal ball.
Prerequisites:

ENGM802004
ENGINEERING SYSTEM MANAGEMENT
3 CREDITS
Learning Objectives: Students are able to describe analysis system, simulation, and related processes until become an engineering product which is appropriate with consumer needs.

Syllabus: design, manufacture, and complex system operatin that is a main challenge from manager nowadays. This system have strict schedule as well as financial limitation by pressure in technological development, requires new tools for project planning, organizing, and controlling. This course gives essential knowledge for new management system development as well as modified complex system. This course also gives brief understanding about marketing strategy, determining the rela-
tion between superior value versus price. These strategies based on marketing as well as how this activity is connected to basic marketing functions such as sales and promotions.

Prerequisite -

Textbook: -

TERM 3
ENGM803001
SUSTAINABLE ENERGY
3 CREDITS

Learning Objectives: Students are able to explain the relationship of energy with social aspect, economic and environmental and sustainability concepts, and able to analyze the performance of techno-economy and the continuity especially fossil energy system, new, and renewable.

Syllabus: Concept of sustainability and sustainable energy, energy hierarchy, energy linkages with economic, environmental and social, fossil energy / fuels and Impacts, global climate change and its mitigation, conversion, transportation / distribution and storage, analysis method of energy sustainability: LCA, sustainability index, hydrogen and fuel cells and nuclear energy, solar energy (PV and thermal), wind and ocean, hydropower, bioenergy, geothermal energy, energy efficiency and conservation, carbon capture and storage.

Prerequisites: Chemical Engineering Thermodynamics or Biochemical Engineering

Textbook:

ENGM800001
RESEARCH METHODOLOGY AND SEMINAR
3 CREDITS

Learning Objectives: Students are able to determine the appropriate method for research activities and produce the ideas, processes, and scientific research in writing and oral.

Syllabus: Introduction, techniques to identify problems and arrange hypotheses, think logically, the techniques of scientific writing, technical writing research proposals, designing research techniques, presentation techniques, techniques to collect data, analyze it and present it.

Prerequisites: Students have to take a minimum of 12 credits (minimum value of D) with a GPA of 2.0

Textbook:
1. Handout.
2. Research Proposal Format The preparation of various agencies

ENGM803002
HEALTH AND SAFETY IN NATURAL GAS INDUSTRY
3 CREDITS

Learning Objectives: Students are able to identify the condition of health and safety in the geo-thermal industry and propose the ways of overcoming problems of health and safety with observe to safety laws and regulations relating to the work environment.

Syllabus: The law and regulations relating to safety, national standards and international standards related to safety analysis work, Dual-function chemicals, Hazard Identification and Risk Assessment (HIRA), Hazard Identification (HAZID) and Hazard Operability Study (HAZOPS).

Prerequisites: -

Textbook:
1. Safety Act of 1970 1
4. Chemical Process Safety Modules

TERM 4
ENGM800002
THESIS
7 CREDITS
Learning Objectives: Students are able to design, conduct, and analyze research in Chemical fields; present research result in oral and writing.

Syllabus: Thesis material based on research topic

Prerequisite: Based on regulation

Textbook:

ENCE800003
SCIENTIFIC PUBLICATIONS
2 CREDITS
Learning Objective:
Syllabus
Prerequisite
Textbook

ELECTIVE COURSES

ELECTIVE COURSE FOR ODD SEMESTER
ENCE803101
OLEOCHEMICAL INDUSTRY
3 CREDITS

Learning Objectives: Students are able to know the various processes that are commonly used in the oleochemical industry, and able to make a plan to develop the manufacture of oleochemicals from vegetable oils.

Syllabus: Fatty acids, biodiesel, paints and polymers, detergents, soaps, fatty alcohol, glycerin, oils and fats, oil and grease, the development of oleochemicals, vegetable oil processing, vegetable oil technology in the process.

Prerequisites: Organic Chemistry

ENCE801101
FOOD TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to understand the processes of making food in the food industry which includes the selection, handling and processing of raw materials, the operating unit of food production, packaging, storage and control the process from beginning stage to the end.

Syllabus: Introduction, physical properties of raw materials, the basic concepts of energy and mass transfer, reaction kinetics, process control, mixing, filtration, centrifugation, extraction and membrane processes, adsorption and ion exchange column, with the temperature settings, drying, preservation, packaging, food storage, and hygiene.

Prerequisites:

Textbook:
4. Introduction to Food Process Engineering by P. G. Smith. Springer
5. Fundamentals of Food Process Engineering by Romeo T. Toledo. Springer

ENCE803102
PROTEIN ENGINEERING
3 CREDITS

Learning Objectives: Students are able to determine protein engineering strategies for the benefit of separation, biocatalysts and medic.

Syllabus: Introduction, Protein docking methods, Protein tagging strategies, Gen synthesis design, Enzyme stabilization, Molecular exploration, Protein engineering, Case study.

Prerequisite: Organic Chemistry

Textbook:
1. Protein Engineering in Industrial Biotechnology, Lilia Alberghina, Harwood academic publishers, 2005
2. Proteins: Biotechnology and Biochemistry by Dr. Gary Walsh. Wiley
3. Protein engineering and design by Sheldon J. Park, Jennifer R. Cochran. CRC Press
4. Protein Engineering and Design by Paul R. Carey. Academic Press
5. Protein Engineering: Principles and Practice. Wiley-Liss

ENCE801102
HERBAL TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to explain the development of herbal technology, herbal separation technology, herbal formulation basis, herbal regulation, and distinguish with other pharmaceutical products.

Syllabus: Definition and basic concepts of herbs, herbal materials, herbal separation technology, herbal formulations, herbal regulation.

Prerequisites: Organic Chemistry

ENCE801103
COMPOSITE MATERIAL
3 CREDITS

Learning Objectives: Students are able to:
1. Explain the characteristics of composite materials and compare it with conventional materials.
2. Explain the manufacturing process, and research development of composite materials.

Syllabus: The position of composite materials in materials science in general, common characteristics of composite materials, the type of composite based on the composition, the types of polymer matrix and reinforcement, the role of surface treatment in the strength of composite materials, manufacturing processes, durability, the process of splicing and repair of composite materials, code and standards for application of composite materials, the development of composite materials research.

Prerequisites: Organic Chemistry

Textbook:

ENCE813103
APPLIED THERMODYNAMICS
3 CREDITS

Learning Objectives: Students are able to analyze problems of thermodynamics based on a thorough review including fundamental aspects of thermodynamics, experimental, and green chemistry, based on current information from scientific journals.

Syllabus: The case study of industrial thermodynamic, example cycle processes, phase equilibrium, and chemical reaction equilibrium to process and product engineer; friendly solvents such as supercritical CO2 and ionic liquid.

Prerequisites: Chemical Engineering Thermodynamics

Textbook:
1. Mulia, K and Wulan, PPDK, Textbook of Chemical Thermodynamics

ENCE803104
DINAMIC SYSTEM
3 CREDITS

Learning Objectives: Students are able to build dynamic models of process systems, biological, industrial, social and economic.

Syllabus: Introduction to dynamical systems, causal loops, model and validation, analysis, case study.

Prerequisites: Numerical Computation

Textbook:
4. Andersen, David, etc., Introduction to Computer Simulation - A System Dynamics: Systems Engineering Book
Learning Objectives: Students are able to predict the magnitude of thermodynamic properties of hydrocarbons and the phase condition, either manually or using software calculations.

Syllabus: Introduction to hydrocarbon thermodynamics properties, basic thermodynamic concepts, P-V-T data correlations, physical properties of hydrocarbon fluids, computing aided thermodynamics properties, the vapor-liquid behavior of two-phase systems, water-hydrocarbon system behavior, product specifications in the disposal lease of hydrocarbon

Prerequisites: Chemical Engineering Thermodynamics

Textbook:

Learning Objectives: Students are able to explain the working principles of lubrication, lubricant function and several parameter of the quality and lubricant classification, lubricant chemical, and its production technology either mineral lubricant, synthesis, and vegetable.

Syllabus: Principles of lubrication on friction and wear phenomena on the two surfaces of solid objects are moving together; mode lubrication: hydrodynamic and elastohydrodynamic; lubricants: mineral, synthetic, and vegetable; additives, formulations, degradation, contamination, and maintenance of lubricants; latest development of lubricant technology.

Prerequisites: Organic Chemistry

Textbook:
4. Handout

Learning Objectives: Students are able to explain the various processes to liquefy gas in cryogenic technology

Syllabus: History and development of cryogenic, cryogenic scope of work. Refrigeration and liquefaction of natural gas, air, oxygen, nitrogen, helium, neon and argon.

Prerequisites: Chemical engineering thermodynamics

Textbook:

Learning Objectives: Students are able to explain the phenomenon of combustion and resolve the problems that rendered correctly.

Syllabus: chemical kinetics and combustion, the flame, premix flame, diffusion flame, the combustion process applications.

Prerequisite: Transport Phenomena, Chemical Reaction Engineering 1, Chemical Engineering Thermodynamics

Textbook:
5. Combustion, T. J. Poinset and D. P. Veynante, in Encyclopedia of Computational Mechanics,

ENCE803106
PLASMA AND OZONE ENGINEERING
3 CREDITS

Learning Objectives: Students are able to explain the physics and chemistry phenomena of plasma formation and release of electromagnetic energy and the use of plasma and ozone technology.

Syllabus: basic phenomena and physical-chemical processes of gases that are given an electrical charge (corona discharge), the generation process or formation of ozone, role and use of plasma technology and ozone in chemical engineering processes, the potential of ozone technology in control technology environmental pollution, the ozone generator module manufacturing equipment.

Prerequisite: Physics Electricity Magnetism

Textbook:

ENCE801107
HETEROGENEOUS CATALYST
3 CREDITS

Learning Objectives: Students are able to explain the phenomenon of basic concepts heterogeneous catalysts and its application

Syllabus: The general property of catalyst, thermodynamic of the reaction with catalyst, the distribution of the catalyst based on the type of reaction, the core function is active, the method of selecting catalysts for certain reactions, characterization of the corresponding want to know the nature of the target, the catalyst test methods, methods of development of the catalyst, and reaction products.

Prerequisites: Chemical Reaction Engineering 1

Textbook:

ENCE801108
SUSTAINABLE ENERGY
3 CREDITS

Learning Objectives: Students are able to explain the relationship of energy with social aspect, economic and environmental and sustainability concepts, and able to analyze the performance of techno-economy and the continuity especially fossil energy system, new, and renewable.

Syllabus: Concept of sustainability and sustainable energy, energy hierarchy, energy linkages with economic, environmental and social, fossil energy / fuels and Impacts, global climate change and its mitigation, conversion, transportation / distribution and storage, analysis method of energy sustainability: LCA, sustainability index, hydrogen and fuel cells and nuclear energy, solar energy (PV and thermal), wind and ocean, hydropower, bioenergy, geothermal energy, energy efficiency and conservation, carbon capture and storage

Prerequisites: Chemical Engineering Thermodynamics or Biochemical Engineering

Textbook:
ENCE803107
RISK MANAGEMENT
3 CREDITS

Learning Objectives: Students can explain and apply risk management in a risk assessment.
Syllabus: Introduction to the risk, the basic principles and guidelines concerning risk, risk management standards, risk assessment, risk analysis, risk analysis and simulation, simulation of the risk with Montecarlo method, the risk of using software simulation crystal ball.
Prerequisites:

ENCE803108
SPECIAL TOPIC 1
3 CREDITS

ELECTIVE COURSE FOR EVEN SEMESTER

ENCE802101
PACKAGING AND STORAGE TECHNOLOGY
3 CREDITS

Learning Objective: Students are able to describe characteristics, packaging and storage food technology, the relation between storage and packaging with quality of food, describe factors affecting deviation of food qualities as well as able to choose storage methods and packaging types which is appropriate to food materials.
Syllabus: hidrata, material storage technology and food products, deviation of food material qualities, microbial contaminant, purpose and function of food packaging, interaction between food packaging and packaging material types
Prerequisite: -

ENCE802102
BIOINFORMATICS
3 CREDITS

Learning Objective: Students are able to explore database and programs to be applied in genetic engineering sectors, proteomic etc
Syllabus: Database, genomics, genetic molecular, philogeny, protein structure, metabolism and tissues
Textbook:

ENCE802103
DRUGS AND COSMETICS TECHNOLOGY
3 CREDITS

Syllabus:
Definition of drugs and cosmetics, types of skins and characteristics, cosmetic types, ethics and regulation of drugs and cosmetics, new drug development technology, process technology in drug and cosmetics industries, packaging technology of drugs and cosmetics technology.
Prerequisite: Organic Chemistry
Textbook:
1. Handbook of Cosmetic Science and Technology by Andre O. Barel, Marc Paye, Howard I. Maibach. INFRMA-HC 2009

ENCE802104
BIOMATERIAL
3 CREDITS
Learning Objective: Students are able to describe the principle and concept of material technologies through biological as well as life cycle assessment (LCA), organic and inorganic materials for biomaterial, apply and develop knowledge about biomaterial for life.

Syllabus: Introduction, solids structure, characteristics of materials, metal material for implant, bioceramic materials, structural properties of biomaterial, the responses of tissues to biomaterial implant, the replacement of soft tissues, the replacement of hard tissues, transplantation, and biological tissues engineering.

Prerequisite: -

Textbook:
1. Joon Park, R.S. Lakes. Biomaterials an Introduction, Springer

ENCE802105
PETROLEUM PROCESSING
3 CREDITS

Learning Objectives: Students are able to explain petroleum characteristics and its refine product and the stages of the process from various petroleum processing technologies.

Syllabus: Introduction terminology, oil composition, thermal properties of petroleum, chemical processing of petroleum processing, distillation, hydrogenation and dehydrogenation, cracking processes, the processes of reforming, gas processing and petroleum light products, product improvement.

Prerequisites: Fluid and Particle Mechanics, Thermodynamics, Mass Transfer.

Textbook:
3. D. S. J. Jones, Elements of Petroleum Processing, John & Sons Woley

ENCE802106
PETROCHEMICAL PROCESSING
3 CREDITS

Learning Objectives: Students are able to explain the development of petrochemical products and raw material potential, upstream / downstream petrochemical production lines (olefin center, aromatic center, and the pathways of methane) and the major production processes of several petrochemical industry through methane, olefins and aromatics; able to analyze impact of industrial processes and petrochemical products to the environment.

Syllabus: History of the general petrochemical products development and raw material potential, the scope of the petrochemical industry, petrochemical classification process, the type and processing raw materials into petrochemical products, the details of various petrochemical industry: olefins center, aromatics and the center line of methane, industrial and environmental impact of products petrochemicals.

Prerequisites: Organic Chemistry

Textbook:
2. Lewis T. Hatch, Sami Matar, “From Hydrocarbon to Petrochemical”.

ENCE802107
PHOTOCATALYSIS TECHNOLOGY
3 CREDITS

Learning Objectives: Students are able to understand the basic concepts and photocatalysis and apply it in the various the simple daily problem, especially related with environment, health, and energy.

Syllabus: The basic concept photocatalysis processes, thermodynamics and kinetics of photocatalytic process, semiconductor photocatalyst materials, the basic parameters of photocatalytic process, Photocatalyst Nanomaterial Engineering, photocatalytic applications for degradation of organic pollutants and heavy metals, photocatalysis applications for self-cleaning and anti fogging, photocatalysis applications for anti-bacterial and cancer therapy, photocatalysis applications for engineering ‘daily life tools’, photocatalysis applications in renewable energy sector, solar detoxification engineering with photocatalysis, intensification of photocatalysis process.

Prerequisites: Chemical Reaction Engineering 1

Textbook:
3. J.B. Galvez, et.al., Solar Detoxification, Natural Sciences, Basic and Engineering Sciences, UNESCO.

ENCE812108
POLYMER ENGINEERING
3 CREDITS
Learning Objectives: Students are able to explain the basic principles and characteristics of polymer manufacturing until being able to keep abreast of the latest technology.
Syllabus: The concept of polymer and polymer characteristics, synthesis / polymerization, kinetics of polymerization, the polymer solution, characterization, process of making plastics.
Prerequisites: Organic Chemistry
Textbook:
5. Donald R. Woods, Problem Based Learning: How to gain the most PBL, 1994, Mc-Master University, Hamilton, ON L8S 4L8.

ENCE802109
POLLUTION PREVENTION
3 CREDITS
Learning Objectives: Students are able to explain the concepts of pollution prevention and able to design the waste treatment system.
Syllabus: Introduction to the concept of pollution prevention, waste water treatment outline and preparation, waste water treatment in physical, biological, and chemical as well as the operating unit, bioremediation, bioseparation and biodegradation, advanced oxidation processes, the handling of waste gas, waste handling B3, solid waste handling, effluent treatment, gas, is unconventional.
Prerequisites: Chemical Reaction Engineering 1.
Textbook:
6. Journals, the Internet.

ENCE802110
EXPLORATION AND PRODUCTION OF HYDROCARBON
3 CREDITS
Learning Objectives: Students are able to explain the economic concept of natural gas and analyze the 4e economy.
Syllabus: Introduction of hydrocarbon, life cycle of field development, hydrocarbon form and hydrocarbon property and reservoir, hydrocarbon exploration: geology, geophysics, and drilling, field appraisal, reservoir development, drilling development, hydrocarbon production, HSE, hydrocarbon economy and lease, coal and hydrocarbon unconventional (CBM, Shale gas, and HYDRAT GAS)
Prerequisites:-
Textbook:
2. Babusiauz et al, 2004, Oil and Gas Exploration and Production. Reserves, Cost and Contracts, IFP-Technip,

ENCE802111
UTILITIES AND PLANT MAINTENANCE
3 CREDITS

Learning Objectives: Students are able to explain the strategy of plant and utility maintenance.

Syllabus: Plant maintenance strategy: maintenance program, maintainability, reliability, planning and scheduling

Prerequisite: Chemical Engineering Thermodynamics

Handbook:

ENCE802112
NATURAL GAS TRANSPORTATION AND UTILIZATION
3 CREDITS

ENCE812113
DRUG CONTROLLED RELEASED TECHNOLOGY
3 CREDITS

Learning objective: Students are able to describe the principle of control drug releasedor bioactive compound for medical purposes and utilize the principle to apply control drug released technology

Syllabus: polymeric biomaterial that is easily degradable, various methods to drug encapsulation and bioactive compounds in nano/microsfer, diffusion and permeasi, strategy of control released, case study

Prerequisite: Organic Chemistry

Textbook:

ENCE802114
ANALYSIS AND SYNTHESIS OF CHEMICAL PROCESSES
3 CREDITS

Learning Objectives: Students are able to analyze and synthesize the chemical processes in an integrated system of technical and economic aspects

Syllabus: The strategy of synthesis and analysis process, design concepts development and the determination of the best flow sheet, a preliminary optimization process, the retrofit process, the use of computer aided design system for simulation and analysis process.

Prerequisites: Simulation of Chemical Processes

Textbook:
2. Hartman, Klaus, and Kaplick, Klaus, Analysis and Synthesis of Chemical Process Systems

ENCE802115
GEOTHERMAL TECHNOLOGY
3 CREDITS

ENCE802116
PROBLEM-SOLVING SKILLS
3 CREDITS

ENCE802117
SPECIAL TOPIC 2
3 CREDITS
6.8. MASTER PROGRAM IN INDUSTRIAL ENGINEERING

Program Specification

<table>
<thead>
<tr>
<th>No</th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td>Master Program in Industrial Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular Depok; Special Salemba</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Magister Teknik (M.T)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td>BAN-PT: B - Accredited</td>
</tr>
<tr>
<td>7</td>
<td>Language(s) of Instruction</td>
<td>Bahasa Indonesia and English</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirements</td>
<td>Bachelor (S1) from science and engineering field AND pass the entrance exam</td>
</tr>
<tr>
<td>10</td>
<td>Study Duration</td>
<td>Designed for 2 years</td>
</tr>
<tr>
<td></td>
<td>Type of Semester</td>
<td>Number of semester</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Short (optional)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Graduate Profiles:</td>
<td>An Industrial engineer who has the capabilities of designing, improving, operating and maintaining integrated and multi-level manufacturing and service systems by analyzing and synthesizing processes within research and scientific framework in order to increase the productivity and quality.</td>
</tr>
<tr>
<td></td>
<td>Expected Learning Outcomes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Ability to design and manage researches, and analyse and interpret data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Ability to design, manage and improve a system, component, or process to fulfil the needs within realistic boundary such as economics, environment, social, politics, ethics, health and safety, feasibility, and sustainability.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Ability to analyse and synthesize engineering problems by using skills and modern tools.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Ability to work professionally with ethical responsibility.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Has a broad knowledge to understand the impact of engineering problem solving in a global, economic, environmental and social context.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Ability to learn independently and continuously (lifelong learning).</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Classification of Subjects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Classification</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>Compulsory Subjects</td>
</tr>
<tr>
<td></td>
<td>ii</td>
<td>Stream Subjects</td>
</tr>
<tr>
<td></td>
<td>iii</td>
<td>Elective Subjects</td>
</tr>
<tr>
<td></td>
<td>iv</td>
<td>Seminar, Thesis & Publication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>14</td>
<td>Total Credit Hours to Graduate</td>
<td>44 SKS</td>
</tr>
</tbody>
</table>
Flow of Expected Learning Outcomes (ELOs)

An Industrial engineer who has the capabilities of designing, improving, operating, and maintaining an integrated and multi-level manufacturing and service systems by analyzing and synthesizing processes within research and scientific framework in order to increase the productivity and quality.

1. Ability to design and manage researches, and analyze and interpret data.

2. Ability to design, manage, and improve a system, component, or process to fulfill the needs within realistic boundary such as economics, environment, social, politics, ethics, health and safety, feasibility, and sustainability.

3. Ability to analyze and synthesize engineering problems by using skills and modern tools.

4. Ability to work professionally with ethical responsibility.

5. Has a broad knowledge to understand the impact of engineering problem solving in a global, economic, environmental, and social context.

6. Ability to learn independently and continuously (lifelong learning).
Flow of Subjects

Master's

1.
- System Thinking (3)
- Research Methodology (3)
- Operation System Management (3)
- Industrial System Engineering (3)

2.
- Advance Operation Research (3)
- Advance Statistics (3)
- Specialization Compulsory (3)
- Operation System Electives (2)

3.
- Specialization Compulsory (3)
- Specialization Compulsory (3)
- Specialization Electives (2)
- Specialization Electives (2)

4.
- Thesis (8)
- Publication (2)

Matriculation (4)

Matriculation (4)
Course Structure Master Program

Industrial Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE801001</td>
<td>Systems Thinking</td>
<td>3</td>
</tr>
<tr>
<td>ENIE801002</td>
<td>Research Methodology</td>
<td>3</td>
</tr>
<tr>
<td>ENIE801003</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE801004</td>
<td>Industrial Systems Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>12</td>
</tr>
<tr>
<td>ENIE801005</td>
<td>Advanced Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ENIE801006</td>
<td>Advanced Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Specialization Compulsory 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Specialization Compulsory 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Specialization Compulsory 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Specialization Compulsory 4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Specialization Electives 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Specialization Electives 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>12</td>
</tr>
<tr>
<td>ENIE800007</td>
<td>Publication</td>
<td>2</td>
</tr>
<tr>
<td>ENIE800008</td>
<td>Thesis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>10</td>
</tr>
</tbody>
</table>

Resume

- **Wajib Program Studi**: 28
- **Wajib Peminatan**: 12
- **Jumlah**: 40
- **Pilihan**: 4
- **Total Beban Studi**: 44

Compulsory Specialization Subjects

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE802108</td>
<td>Product and Service Innovation</td>
<td>3</td>
</tr>
<tr>
<td>ENIE802109</td>
<td>Safety Engineering and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803110</td>
<td>Industrial Technology Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803111</td>
<td>Macro Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>12</td>
</tr>
<tr>
<td>CODE</td>
<td>Subject</td>
<td>Credits</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ENIE802216</td>
<td>Manufacturing System</td>
<td>3</td>
</tr>
<tr>
<td>ENIE802217</td>
<td>Inventory System</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803218</td>
<td>Logistics System</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803219</td>
<td>Transportation System</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE802324</td>
<td>Industrial Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENIE802325</td>
<td>Industrial Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803326</td>
<td>Industrial Project Development</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803327</td>
<td>Industrial Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE802432</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>ENIE802433</td>
<td>Data Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803434</td>
<td>Reliability and Quality</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803433</td>
<td>Multivariate Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE802537</td>
<td>Decision and Risk in System Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENIE802538</td>
<td>System Based Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803539</td>
<td>Systems Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>ENIE803540</td>
<td>Performance Modeling and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE803112</td>
<td>Knowledge Management</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803113</td>
<td>Cognitive Ergonomics</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803114</td>
<td>Technopreneurship</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803115</td>
<td>Human Performance Engineering</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE803220</td>
<td>Total Quality Management</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803221</td>
<td>Lean Manufacturing</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803222</td>
<td>Industrial Organization</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803223</td>
<td>Maritime Logistics</td>
<td>2</td>
</tr>
<tr>
<td>CODE</td>
<td>Subject</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ENIE803328</td>
<td>Corporate Finance</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803329</td>
<td>Enterprise Information System</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803330</td>
<td>Maintenance Management</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803331</td>
<td>Supply Chain Management</td>
<td>2</td>
</tr>
</tbody>
</table>

Data Engineering and Quality

<table>
<thead>
<tr>
<th>CODE</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE803437</td>
<td>Decision Uncertainties and Risk</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803435</td>
<td>Consumer Relationship Management</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803436</td>
<td>Advanced Optimization</td>
<td>2</td>
</tr>
</tbody>
</table>

Systems Engineering

<table>
<thead>
<tr>
<th>CODE</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENIE803541</td>
<td>Conceptual System Planning</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803542</td>
<td>Logistics & Support for Systems Engineering</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803543</td>
<td>Game Theory</td>
<td>2</td>
</tr>
<tr>
<td>ENIE803544</td>
<td>Tech. Policy Modeling w. System Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>ENIE804003</td>
<td>Policy and Decision Models</td>
<td>3</td>
</tr>
<tr>
<td>ENIE804004</td>
<td>Sustainable and Renewable Energy Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Syllabus

SYSTEM THINKING (3 SKS)
Learning Objective(s): Course participants are able to implement soft OR concept which is SSM (Soft System Methodology) as a thinking pattern to understand a systemic problem.
Text Book(s):

RESEARCH METHODOLOGY (3 SKS)
Learning Objective(s): Course participants are able to understand the basic steps necessary for a scientific research and publications and prepare themselves for the upcoming Thesis as part of the pre-requisites on receiving the master degree
Pre-requisite(s): Please Read Thesis SOP
Text Book(s):

OPERATIONS MANAGEMENT (3 SKS)
Learning Objective(s): Course participants are able to analyze, design, and operate productive systems in order to create competitive products and services.
Prerequisite(s): -
Textboks:

INDUSTRIAL SYSTEM ENGINEERING (3 SKS)
Learning Objective(s): Course participants are able to analyze implementation of NPD Process in an organization and know the approaches, tools and techniques used in each steps of the process according to the needs and characteristics of the organization in order to achieve competitive advantage.
Syllabus: Introduction to NPD Process, Models of NPD Process, Detail Design of of Stage-Gate Model dan Concurrent Engineering, Value Engineering, Spiral NPD Model, Case Studies Implementation NPD.
Textbook(s):

INDUSTRIAL TECHNOLOGY MANAGEMENT (3 SKS)
Learning Objective(s): Course participants are able to understand the steps of technology management in an organization.

Textbook(s):

ADVANCED OPERATIONS RESEARCH (3 SKS)
Learning Objective(s): Course participants are able to understand and implement mathematical model to optimize problem-solving within industrial management and technical issues, which later can be modeled quantitatively, deterministically and stochastically.

Pre-requisite(s):

Text Book(s):
1. Hamdy A. Taha, Operations Research, 7th

MACRO ERGONOMICS (3 SKS)
Learning Objective(s): Course participants are able to understand comprehensively about work system design that consists of interacting variables such as hardware and software within internal and external physical environment, organization structure and process in order to make it better. Ability to understand how to implement ergonomic science.

Syllabus: Introduction to macroergonomics, method and tools that are used in work system design and analysis, introduction to organization integration in productivity, safety, health and quality of work life context

Text Book(s):

ADVANCED STATISTICS (3 SKS)
Learning Objective(s): Course participants are able to organize the collection, process, and analysis of data using statistics and engineering principles to support decision making process, within DOE - Design of Experiment.

Pre-requisite(s):

Text Book(s):
2. Design and Analysis of Experiments, Angela Dean and Daniel Voss, Springer-Verlag, 2000
3. Experimental Design with Applications in Management, Engineering, and the Sciences, Paul D. Barger and Robert E. Maurer, Thomson Learning, 2002

SAFETY ENGINEERING AND MANAGEMENT (3 SKS)
Learning Objective(s): Course participants are expected to understand about the importance of work safety in various work fields. Students are also able to do observation, evaluation, and analysis of work safety program to enhance the benefit, in order to achieve effective and efficient work safety program and human-centered focus. Students also are able to understand about management and engineering design concept which is related to occupational safety in an industrial organization through suppression in control of hazardous materials, safety consideration in production facility and maintenance, and operation of effective safety program.
Syllabus: General introduction about work safety in various fields, performance and human error, work safety management program, human reliability assessment, risk management (for human/worker), work safety management engineering in various work fields. Basic Safety, OSHA Standards, hazard identification and elimination, accident causes and prevention, hazard communication, safe work practice and description, function, and scope of safety engineering and management that are relevant with industry, especially that are related to safe production facility design and operation.

Prerequisite(s): -

Textbook(s):

MACRO ERGONOMICS (3 CREDITS)

Learning Objective(s): Course participants are able to understand comprehensively about work system design that consists of interacting variables such as hardware and software within internal and external physical environment, organization structure and process in order to make it better. Ability to understand how to implement ergonomic science.

Syllabus: Introduction to macroergonomics, method and tools that are used in work system design and analysis, introduction to organization integration in productivity, safety, health and quality of work life context

Pre-requisite(s): -

Textbook(s):

KNOWLEDGE MANAGEMENT (3 SKS)

Learning Objective(s): Course participants are able to comprehend the concept of knowledge starting from creation, use, transfer, retention and disposal of knowledge to broaden the understanding about the importance of KM for achieving organizations objective.

Pre-requisite(s): -

Textbook(s):

COGNITIVE ERGONOMICS (2 SKS)

Learning Objective(s): Course participants are able to understand about basic principles of ergonomics and human factors in cognitive perspective. Students are expected to implement knowledge of cognitive ergonomics in workplace, and also be expected to measure, evaluate, and analyze performance and behavior of various fields and the relation to technology development and engineering. Students are also are expected to design Hierarchical Task Analysis (HTA) as a part of task design based on cognitive.

Syllabus: General introduction to ergonomics and human factors, cognitive aspect in umanmachine/
machine-environment interaction, cognitive aspect in industry, cognitive aspect in transporta-
tion, information technology and cognitive performance, behavior aspect and human cognitive
performance in designing Hierarchical Task Analysis (HTA).

Text book(s):
2. Erik Hollnagel, Handbook of Cognitive Task Design, Lawrence Erlbaum Associates
 Publisher, 2003, New Jersey London
3. Candida Castro, Human factors of visual and cognitive performance in driving, CRC
 Press, 2009

TECHNOPRENEURSHIP (2SKS)
Learning Objective(s): Course participants are able to understand concept, method and applica-
tion of technopreneurship.
Syllabus: Basic Principles of Entrepreneurship, Technology for Entrepreneur, Entrepreneurship
and Innovation
Text book(s):
1. Trott, P. Managing Technology Entrepreneurship and Innovation, Routledge, Uk, 2014

HUMAN PERFORMANCE ENGINEERING (2SKS)
Learning Objective(s): Course participants are able to understand basic concept and implement
the knowledge of human performance engineering. Participants should be able to calculate,
evaluate and analyse performance and behaviour in real cases which also includes the advance-
ment in technology and engineering.
Syllabus: Introduction to human performance engineering, tools and methods used in human
performance engineering, human performance in usability engineering and product design.
Text book(s):
2. Jurnal dan artikel terkait HPE.

MANUFACTURING SYSTEM (3 SKS)
Learning Objective(s): Course participants are able to understand manufacturing system con-
cept that converts raw material into valuable products and its implementation, including prod-
uct design activities, process and facilities, and technology used to create competitive products.
Syllabus: Introduction to Manufacturing System. Processes. Manufacturing Facility & Technol-
Introduction to Plant Simulation for Manufacturing System. JIT & Lean Production. Value Stream
Prerequisite(s): -
Textbooks:
1. Operations Management-An Asian Perspective; William J. Stevenson, and Sum Chee
 Chuong ; McGraw-Hill; 2010
2. Manufacturing Planning and Control for Supply Chain Management; F. Robert Jacobs,
3. The Fundamentals of Production Planning and Control; Stephen N. Chapman; Pearson -

TOTAL QUALITY MANAGEMENT (2 SKS)
Learning Objective(s): Course participants are able to use concepts and application of TQM as
the basis for analysis and evaluation of quality improvement system.
Syllabus: TQM Studies vs Principles. MBNQA. Statistical QC. Cost of Quality. Organizing for Qual-
ity. QFD. Capability Process. Six Sigma.
Text Book(s):
2. Quality Management; Goetsch & Davis, 2000, Prentice Hall

SUPPLY CHAIN MANAGEMENT (2SKS)
Learning Objective(s): Course participants are able to understand about concept and applica-
tion of SCM to analyze and evaluate the role of operators in a whole supply chain
Syllabus: Introduction to SCM, Strategy and Planning, Enterprise Resource Planning, Purchasing,
Transportation Method, Shortest Path, Traveling Salesman Problem, Vehicle Routing Problem, warehousing management, reverse logistics, location theory, network planning process, SCM development

Prerequisite:

Text Book(s):

DATA MINING (3SKS)

Learning Objective(s): Course participants are able to organize the extraction, process, and data analysis in a right way to make decisions.

Syllabus: Concept and Process of Data Mining, Algorithm in Data Mining, Data Mining Application in Organization.

Pre-requisite(s):

Text Book(s):

MULTIVARIATE ANALYSIS (3SKS)

Learning Objective(s): Course participants are able to organize the extraction, process & analysis of multivariate data in a right way to make decisions.

Pre-requisite(s):

Text Book(s):

DECISION UNCERTAINTIES AND RISK (2SKS)

Learning objective(s): Course participants are able to analyze risks and uncertainties based on statistical tools accurately to make decision

Syllabus: Concept and Decision Making Process, Uncertainty Theory, Risks Analysis

Prerequisite(s): Statistics and Probability, Industrial Statistics

Text books:

CUSTOMER RELATIONSHIP MANAGEMENT (2SKS)

Learning Objective(s): Course participants are able to understand the role and function of customer relationship management in improving organization’s/company's competitiveness.

Syllabus: Concept and Procedure of CRM Implementation in Organization, CRM Process Management, Managing Networks for CRM performance CRM Success Measurement, Best Practices of CRM Implementation, Managing supplier partner relationships, IT for CRM

Pre-requisite(s):

Textbooks:

ADVANCED OPTIMIZATION (2SKS)

Learning Objective(s): Course participants are able to design and implement various heuristic and meta-heuristic optimization algorithms to solve problems in industrial engineering field.

Syllabus: Introduction to Optimization. Complexity Theory. Basics of Heuristic. Hill Climbing

Pre-requisite(s):

Text Book(s):

SYSTEM ENGINEERING MANAGEMENT (3SKS)

Learning Objective(s): Course participants understand the basics of system engineering management in the industry so they would be able to manage a process of design, installation, management and termination of a system.

Text Book(s):

SYSTEM PERFORMANCE ANALYSIS AND MODELLING (3SKS)

Learning Objective(s): Course participants are able to specify, predict and evaluate the performance of the system designed by different system modeling

Text Book(s):

TECHNOLOGY POLICY MODELING USING SYSTEM DYNAMICS (2SKS)

Learning Objective(s): Course participants understand the concepts, methods and tools for systems dynamics modelling to specify, predict and evaluate the impact of a policy so a better policy decision could be formulated.

Syllabus: Introduction to Policy and Technology Policy, Technology aspects of policy, Introduction to system dynamics, basic models of policy analysis using system dynamics, policy modelling case studies.

Text Book(s):
1. Model Pengenalan Pemodelan Sistem Dinamis SEMS

CONCEPTUAL SYSTEM DESIGN (2SKS)

Learning Objective(s): Course participants understand the concepts, methods and tools to develop a complete system based on the needs of multiple stakeholders, which could be transformed into a system with complete specifications.

Syllabus: Volere User Requirements Methodology, Design for Manufacturing, Design for Six Sigma, Design for Reliability, Maintainability, and Supportability, Use Case Modelling, Systems Architecting, Systems Specification, Design Structure Matrix (DSM)

Text Book(s):

GAME THEORY (2SKS)

Learning Objective(s): Course participants are able to know how to make decisions in a condition that involves multi-actor. Course participants are able to calculate the effects of strategic decisions or policy taken in an environment and take into account the response of that decision.

Syllabus: Types of strategic games, Nash equilibrium, Continuous and Discontinuous Games, Evaluation and Learning in the game, Games with a non-perfect information, Nash bargaining action, repeated games, mechanism design, social choice and voting theory

Text Book(s):

RESOURCE AND LOGISTIC SUPPORT FOR SYSTEM ENGINEERING (2SKS)

Learning Objective(s): Course participants understand the tools and methods of planning and managing of resources and logistical support in systems engineering process.

Syllabus: Outsourcing Principles and Methods, Acquisition and Supply, Logistics Planning, Principles of Supply Chain Management System, Scheduling and Sourcing for System Engineering.

Text Book(s):

THESIS (8 SKS)

Learning Objective(s): Course participants are able to systematically present his/her problems and idea during scientific forum with concise and correct.

Pre-requisite(s): Please Read Thesis SOP

Text Book(s):
7. DOCTORAL PROGRAM

FTUI holds Doctoral Program for the seven following study programs:
1. Civil Engineering
2. Mechanical Engineering
3. Electrical Engineering
4. Metallurgy & Material Engineering
5. Chemical Engineering
6. Architecture
7. Industrial Engineering

FTUI Doctoral program was officially opened in 2000 with the opening of the Civil Engineering and Electrical Engineering Doctoral program followed by the emersion of the Opto-electrotechnique and Laser Application study program into the Postgraduate Program of FTUI. The Mechanical Engineering study program was officially opened in 2006 while the Metallurgy & Material Engineering and Chemical Engineering followed in 2007. And In 2009, respectively Department of Architecture opened the Architecture Doctoral Program. In 2001, the Opto-electrotechnique and Laser Application was closed and was emerged into the Electrical Engineering study program. Each Doctoral study program is headed by the Head of Study Program which is held ex-officio by the Head of Department in the Faculty of Engineering UI. The Doctoral study programs have one or more focus subjects to give a more specific knowledge on engineering field to all students of the program.

Currently, the Doctoral Program is held in two ways: Lecture & Research; and Research.

New Students Selection
Selection process for new students for the FTUI Doctoral Program is as follow:
1. Pre-admission stage: future student is encouraged to informally contact their prospective Promotor or the Head of Department to further discuss his/her desired dissertation topic. This is important to make sure the availability of Promotor in accordance to said research topic. Communication may be done through email or face to face. The Head of Department and future Promotor then would discuss the student’s proposal internally.
2. Future student should register online via http://penerimaan.ui.ac.id and complete the required documents and prerequisites.
3. Future student will then take the entrance examination (SIMAK UI) which consists of: (i) Academic Potential Examination and (ii) English Proficiency Test.
4. The results of the Entrance Examination will then be sent to FTUI by the UI Entrance Examination Committee. These results will then be discussed in a Department Committee Meeting headed by the Head of Department to determine which students accepted, and the proposed research topic approved, and the availability of future Promotor. An interview have to be arrange with the future student to determine the suitability of research topic, with previous study field, and the student’s commitment to participate in the Doctoral program full time. Interview may be done directly or through email or messenger application.
5. The outcome of the Department Committee Meeting will then be submitted to the UI Entrance Examination Committee to be announced.

Academic Counseling
Since the day a student is registered as student for the Doctoral program until the time that he/she passes qualification examination, the student will be under the guidance of an academic advisor who the student expected to be their Promotor or Co-Promotor. Head of Department accepts a proposal of future Promotor/Academic Advisor from a committee in the Department. Once the student pass the qualification examination, the student will earn status as Doctor Candidate and the Academic Advisor’s status will revert to Promotor/Co-Promotor.

Promotor and Co-Promotor
Promotor and Co-Promotor for Doctoral Program are lecturers or experts from related field and are assigned by Head of Department based on a Rector’s Decree to guide and advise a Doctor candidate in
conducting research and dissertation writing. Academic Advisor consist of 1 Promotor and a maximum of 2 (two) Co-Promotors. Promotor is a first chair Advisor who holds an academic degree of Professor or Doctor and a minimum of Senior Lecture academic position; has a relevant expertise in the field which the student’s dissertation topic is; and is acknowledge as a full time faculty at the Universitas Indonesia, and for the last five years has produced at the latest: one scientific paper in an accredited national journal or a reputable international journal; or one other form of scientific product which is acknowledge by a group of experts set up by the Academic Senate of Universitas Indonesia.

Co-Promotors are the Promotor’s companions who act as second and/or third chair advisor who hold academic degree of Doctor or Senior Lecturer, and has a relevant expertise in the field with the student’s dissertation topic. Co-Promotor from outside of the Faculty of Engineering UI must have the approval from the Promotor. Promotor and Co-Promotors are appointed by the Rector based on the proposal submitted by the Dean which are also based on suggestions from the Head of Department after the student has pass the qualification examination. The appointment must be done at the latest 1 (one) semester after the qualification examination. A change of Promotor/Co-Promotor must be proposed by the Dean to the Rector based on a proposal from the Head of Department.
Program Specification

<table>
<thead>
<tr>
<th></th>
<th>Awarding Institution</th>
<th>Universitas Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Teaching Institution</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Programme Title</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Metallurgy & Material Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Chemical Engineering Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Architecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doctoral Program in Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Class</td>
<td>Regular</td>
</tr>
<tr>
<td>5</td>
<td>Final Award</td>
<td>Doctor (Dr.)</td>
</tr>
<tr>
<td>6</td>
<td>Accreditation / Recognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Doctoral Program: A Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metallurgy & Material Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Engineering Doctoral Program: Accreditation A from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architecture Doctoral Program: Accreditation B from BAN-PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Engineering Doctoral Program: Accreditation B from BAN-PT</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Language(s) of Instruction</td>
<td>Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Study Scheme (Full Time / Part Time)</td>
<td>Full Time</td>
</tr>
<tr>
<td>9</td>
<td>Entry Requirements</td>
<td>Master graduate from study programs in line with study program chosen and pass the entrance examination</td>
</tr>
<tr>
<td>10</td>
<td>Study Duration</td>
<td>Designed for 3 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Semester</th>
<th>Number of semester</th>
<th>Number of weeks /semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>6</td>
<td>14 - 17</td>
</tr>
<tr>
<td>Short (optional)</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
Streams:

The Civil Engineering Doctoral Program has six streams as follow:
- Structure
- Construction Management
- Transportation
- Water Resource Management
- Project Management
- Geotechnique

The Mechanical Engineering Doctoral Program has four streams as follow:
- Energy Conversion
- Engineering Design and Product Development
- Manufacture Engineering
- Fire Safety Engineering and Management

The Electrical Engineering Doctoral Program has eight streams as follow:
- Telecommunication Engineering
- Electrical Power and Energy Engineering
- Photonic and Electronic Engineering
- Control Engineering
- Multimedia and Information Engineering
- Security of Information Network Engineering
- Telecommunication Management
- Electrical Power and Energy Management

The Metallurgy & Material Engineering Doctoral Program has two fields of specialization:
- Corrosion and Protection
- Material Engineering and Manufacture Process

The Chemical Engineering Doctoral Program has five streams as follow:
- Industry Catalist
- Gas Management
- Product Design and Chemical Process
- Environmental Protection and Work Safety
- Gas Technology

The Industrial Engineering Doctoral Program has two streams as follow:
- Manufacturing and Quality Engineering
- Service System Engineering

Graduate Profiles:

FTUI Doctoral Program Graduates have the capabilities of demonstrating expansion, novelty breakthrough in research in the engineering or architecture field in accordance to certain stream or sub-stream. The FTUI Doctoral Program prepares student to work in academic and research in accordance to their own stream; dedicate their expertise in research laboratory, industry or government institution; or create a business based on their innovation.

Graduates are able to possess the following skill:
- Be able to show expertise in the engineering or architecture discipline;
- Be able to uphold the academic and research ethics;
- Be able to work collaboratively in research;
- Be able to position themselves as leader in their community;
- Be able to communicate well in their community and build networks;
- Be able to demonstrate individual live skill in connection to human relationship;
- Be able to demonstrate attitude, behavior and way of thinking which support their success in society.
Graduates Competencies:
The aim of Doctoral Program in FTUI is in line with the Doctoral Program of Universitas Indonesia, to produce quality graduates with the following competence:

1. Able to independently update their knowledge on science and technology in engineering or architecture through research based innovation breakthrough.
2. Able to show professionalism in their field of study that can be accountable towards the development of science and technology.
3. Able to write a scientific paper in engineering or architecture and convey the result of their research to the public both orally or written in an international scientific activity.
4. Able to recommend a solution for a complex problem faced by society in the field of engineering or architecture through inter, multi and trans discipline approach.
5. Able to lead a working or research team to solve problem in the field of engineering or architecture that can be of benefit for the good of mankind.
6. Able to develop and maintain a network of cooperation with fellow researcher and research community in the field of engineering and architecture both in national and international level.

Classification of Subjects. (Course & Research)

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Course Component</td>
<td>18</td>
<td>34 %</td>
</tr>
<tr>
<td>ii</td>
<td>Research Component</td>
<td>34</td>
<td>66 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Classification of Subjects. (Research)

<table>
<thead>
<tr>
<th>No</th>
<th>Classification</th>
<th>Credit Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Course Component</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>ii</td>
<td>Research Component</td>
<td>52</td>
<td>100 %</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Total Credit Hours to Graduate 52 CP
Curriculum Structure for FTUI Doctoral Program

The curriculum structure for the Doctoral Program in all study programs are the same, they are only differentiated by their codes for the research component. The code “xx” for each study programs are as follow:
ENCV for Civil Engineering, ENME for Mechanical Engineering, ENEE for Electrical Engineering, ENMT for Metallurgy & Material Engineering, ENAR for Architecture, and ENCH for Chemical Engineering.

The FTUI Doctoral Program is held in two program: Course and Research and Research.

1.1. DOCTORAL PROGRAM (COURSE & RESEARCH)

The following is the curriculum structure for Course & Research Doctoral Program in Table 1.

<table>
<thead>
<tr>
<th>KODE/CODE</th>
<th>MATA AJARAN</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGE901001</td>
<td>Metode Penelitian Lanjut</td>
<td>Advanced Research Method</td>
<td>6</td>
</tr>
<tr>
<td>ENXX900001</td>
<td>Kekhususan I</td>
<td>Special Subject I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>10</td>
</tr>
<tr>
<td>ENGE902002</td>
<td>Analisis Kualitatif & Kuantitatif</td>
<td>Qualitative & Quantitative Analysis</td>
<td>4</td>
</tr>
<tr>
<td>ENXX900002</td>
<td>Kekhususan II</td>
<td>Special Subject II</td>
<td>4</td>
</tr>
<tr>
<td>ENXX900004</td>
<td>Proposal Riset</td>
<td>Research Proposal</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>14</td>
</tr>
<tr>
<td>ENXX900006</td>
<td>Publikasi – Konferensi Internasional</td>
<td>Publication – International Conference</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>4</td>
</tr>
<tr>
<td>ENXX900007</td>
<td>Ujian Hasil Riset</td>
<td>Research Result Examination</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>10</td>
</tr>
<tr>
<td>ENXX900008</td>
<td>Publikasi II - Jurnal Internasional</td>
<td>Publication II - International Journal</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>8</td>
</tr>
<tr>
<td>ENXX900010</td>
<td>Sidang Promosi</td>
<td>Doctoral Promotion</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>52</td>
</tr>
</tbody>
</table>

The Lecture Component includes four subjects:
- a) Advanced Research Method, 6 sks
- b) Qualitative and Quantitative Analysis, 4 sks
- c) Special Subject I, 4 SKS.
- d) Special Subject II, 4 SKS.

The Research Component includes:
- 1. Research Proposal, 6 SKS
- 2. Publication - International Conference, 4 SKS
1.2. **DOCTORAL PROGRAM (RESEARCH)**

The following is the curriculum structure for Research Doctoral Program in Table 2.

Table 2. The Curriculum Structure - Doctoral Program in Research

<table>
<thead>
<tr>
<th>KODE/CODE</th>
<th>MATA AJARAN</th>
<th>SUBJECT</th>
<th>SKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester 1</td>
<td>1st Semester</td>
<td></td>
</tr>
<tr>
<td>ENXX900003</td>
<td>Seminar Berkala Kelompok Ilmu</td>
<td>Research Group Periodic Seminar</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Semester 2</td>
<td>2nd Semester</td>
<td></td>
</tr>
<tr>
<td>ENXX900004</td>
<td>Proposal Riset</td>
<td>Research Proposal</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester 3</td>
<td>3rd Semester</td>
<td></td>
</tr>
<tr>
<td>ENXX900005</td>
<td>Publikasi I - Konferensi Internasional</td>
<td>Publication I - International Conference</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester 4</td>
<td>4th Semester</td>
<td></td>
</tr>
<tr>
<td>ENXX900007</td>
<td>Ujian Hasil Riset</td>
<td>Research Result Examination</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Semester 5</td>
<td>5th Semester</td>
<td></td>
</tr>
<tr>
<td>ENXX900008</td>
<td>Publikasi II - Jurnal Internasional</td>
<td>Publication II - International Journal</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Semester 6</td>
<td>6th Semester</td>
<td></td>
</tr>
<tr>
<td>ENXX900009</td>
<td>Publikasi III - Jurnal Internasional</td>
<td>Publication III - International Journal</td>
<td>8</td>
</tr>
<tr>
<td>ENXX900010</td>
<td>Sidang Promosi</td>
<td>Doctoral Promotion</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>
Description of Subjects

ENGE900001
ADVANCED RESEARCH METHOD
6 SKS
Learning Objective(s): Course participants are expected to: (a) master the scientific work process based on science philosophy, which is the scientific justification aspects, innovative aspects and scientific ethics aspects, (b) able to write a research proposal and or draft of scientific writing related to the student’s doctoral topic, (c) can map research result from the latest international journal in their field and understand the state-of-the-art from their research topic, and can determine the knowledge gap yet explored in the international level for further research in their Doctoral Program.
Syllabus: (1) Relationship between philosophy and engineering science; (2) Science Philosophy; (3) Epystemology in Engineering Science; (4) Research Method; (5) Problem formulation and hypothesis; (6) Research and state of the art; (7) Research Evaluation; (8) Design Evaluation and research Stages; (9) Introduction to the analysis of the data processing method; (10) Benchmark on research output and conclusion formulation; (11) Various citation method; (12) Finalization of research proposal draft and / or scientific article draft.
Prerequisite(s): None
Textbooks:
Haryono Imam R dan C. Verhaak, Filsafat Ilmu Pengetahuan, Gramedia, Jakarta, 1995

ENGE900002
QUALITATIVE AND QUANTITATIVE ANALYSIS
4 SKS
Learning Objective(s): Discuss the qualitative and quantitative in data analysis and exploring specific data analysis areas. After participating in this subject which discuss the qualitative and quantitative approach in data analysis in exploring specific areas of data analysis. Students are expected to be able to build the following learning outcome: (1) awareness to situations requiring qualitative data analysis in the inductive paradigm; (2) awareness to situations requiring quantitative data analysis in the deductive paradigm; (3) appreciation toward various approaches; (4) possessing skills in giving critical appraisal; (5) possessing skills in performing qualitative and quantitative data analysis.
Syllabus: Introduction; Qualitative Analysis; Quantitative Analysis; Non-Parametric Analysis; Uncertainty Analysis; Critical Appraisal; Design of Experiment; ANOVA revisit; Multivariate Techniques.
Prerequisite(s): None
Textbooks:

ENXX900001
Special Subject 1
4 SKS

ENXX900002
Special Subject 2
4 SKS

Special Subject 1 in the 1st first semester (4 SKS) and Special Subject 2 in the 2nd semester (4 SKS) are determined together with the student’s Academic Advisor to support the student’s research and/or to develop the student’s knowledge with information and knowledge from unrelated field. Academic Advisor is also allowed to propose a special content for the student to Head of Department.
The following are the requirements for the implementation of Special Subject 1 and 2:
For students who do not have in line Master degree educational background from the Faculty of Engineering Universitas Indonesia, they are allowed to take the similar courses of the related field of study available at the Master Program in FTUI during the running semester.

Students are also allowed to take courses from other study programs within the Faculty of Engineering Universitas Indonesia or courses from other faculties in UI as stated in the Guidance Book or the Master/Doctoral Program Catalog.

Students are allowed to take classes in other Master Program in the Faculty of Engineering Universitas Indonesia or other faculties within the Universitas Indonesia as deemed necessary by their Academic Advisor.

In the event where neither conditions is viable for the students, the Academic Advisor is allowed to conduct a class of said course.

ENXX900003
Research Group Periodic Seminar
8 SKS

Research Group Periodic Seminar is an early activity of research in the Doctoral Program in Research where students conduct literature study in relation to the materials for their research. This literature study must be done intensively by mapping out the research results from the latest international journals in related field. The final aim was so that students have a state-of-the-art understanding of their research topic, and can determine the knowledge gap previously unexplored in the international level for further research in their Doctoral Program. The result of this literature study is compiled in a literature study report presented in the Research Group Periodic Seminar to be examined by a panel comprises of future Promoter/ Academic Advisor and Examiners from related field of study. Students will passed this Research Group Periodic Seminar if they received a minimum grade of B.

ENXX900004
Research Proposal
6 SKS

Research Proposal is the continuous activity of the literature study, where after gaining a state-of-the-art knowledge of their research topic, students can formulize the scope of their Doctoral research and determine which research method will be use. The result of this activity is a comprehensive research proposal which include: goals, background and data analysis from early study or experiments done. Included in this research proposal is plan of work for each semester and its publication goals. At this level, it is expected for students to begin experiment activity or early study which can show the direction of their research is feasible and recent in his field. The early experiment or study result, the literature study and the whole research plan is then compiled in a Research Proposal Report to be presented and examined in a Research Proposal Examination. Students will passed this Research Proposal if they received a minimum grade of B.

ENXX900007
Research Output Examination
10 SKS

At this stage, students are expected to have a research output with a minimum of 75% from their research plan. Doctorate candidate are expected to have reach a research outcome which is the main part of the originally planned contribution. The outcome of this research is measured through the Research Output Examination. The examination committee is appointed through the Dean’s Decree based on the Head of Department’s proposal. These examiners consist of experts related in the field of study of the Doctorate candidate with at least one examiner from an institution outside of Universitas Indonesia. Doctor Candidate will passed this Research Output Examination if they received a minimum grade of B.

At this stage, a Doctor Candidate are allowed to design a scientific article framework to be published in an indexed International Journal and determine which International Journal they will send the article to.
At this stage, students are expected to have an experiment result or study to focused on in their research topic and clarify their research direction. The result of the experiment must also show innovation or breakthrough, mastery of knowledge on their stream in relation to their research topic, the depth of their research materials, and the mastery of the state of the art development in their field or research interest, originality, and the contribution towards science and/or its implementation. Once presented in front of their promoter and co-promoter, the whole research result at this stage will be deemed worthy for international conference publication.

The scientific publication is an integral part of research activity and a prerequisite in participating in a Promotion Examination. International Journal meant here is an English language journal which its editorial board consists of member from at least three different countries or more. A mandatory publication must have an “Accepted” status before the Promotion Examination. FTUI itself publish their own international journal, the International Journal of Technology (IJTech), which students can utilize as one of the international journal to publish their Doctoral research.

Before deemed fit to participate in a Promotion Examination. Doctor Candidate are required to conduct additional research as a follow up from the Research Output Examination. The inputs and revisions given during the Research Output Examination must be completed and revised through a series of final research. At this stage, the Doctor Candidate must prove the authenticity and originality of their research as new contribution to the scientific world. Thus, at this stage, the Doctor Candidate is required to have an “Accepted” for their international Journal, they are also required to complete their dissertation paper ready to be tested during the Promotion Examination.

Dissertation is an academic scientific paper study output and/or in depth research done independently and contained new contribution to issues that are temporary already known the answer or new questions ask on issues that are seen to have been established in the field of science and technology by the Doctor Candidate under the guidance of his Academic Advisor. A Doctor Candidate that has completed the revision of their dissertation are required to submit a completed version of their dissertation in five hard cover books and original approval form that has been signed by their advisors and submitted to PAF FTUI signifying the end of their study. The format for writing and binding the Dissertation should follow the writing and binding guidelines in the Technical Guidelines of Final Project Writing for Students of
Promotion Examination is a scheduled academic activity as a medium of evaluation for the Doctor Candidate Dissertation as a requirement to obtain the highest academic title, Doctor. The requirements and provision for Promotion Examination are as follows:

- Promotion Examination can be done if all the scientific publication requirements are completed by the Doctor Candidate: a minimum of one publication in an International Scientific Journal (in “Accepted” status) in relation to their dissertation research. The Publication is required to state Faculty of Engineering Universitas Indonesia as one of the affiliation institutions.
- Promoter and Co-Promoter gave a written approval on the dissertation as a sign that the dissertation can move forward to the Promotion Examination.
- The Promotion Examination is carried out by the Committee of Promotion Examination which is appointed with a Rector’s Decree based on a proposal from the Head of Department and the Dean of the Faculty of Engineering Universitas Indonesia.
- The Committee of the Promotion Examination comprises of: (a) Promoter and Co-Promoter, (b) The Examiners, (c) a minimum of one examiner from outside of Universitas Indonesia.
- Examiners consist of experts from related field of study. In a special circumstance, an expert that is not from the academic community can be invited as part of the examiners team.
- The Promotion Examination is led by the Head of the Examiners Committee that is also a member of the committee outside of the Promoter/Co-Promoter and outside examiner. If the Head of the Examiners Committee is unavailable, his/her position can be replaced by one of the member of the examiner team.
- The Promotion Examination is held as an open session for a period of maximum three hours divided into two stages: the dissertation presentation given by the Doctor Candidate for 15-30 minutes and a question and answer session for 120-165 minutes.
- The Doctor Candidate will pass the Promotion Examination if they received a minimum grade of B with GPA 3.00.

Facilities for Doctoral Program Students
To make sure that student of FTUI Doctoral Program are able to conduct full time research and produce excellent publications as required, FTUI provides the following facilities:

- **Doctoral Program Students’ Workstation**
 Compact cubicles in comfortable rooms are available as Doctoral program students’ workstation. The locations for these workstations are located on the 2nd and 3rd floor of the Engineering Center Building. Access to these workstations requires a swipe card to guarantee security. A round the clock wi-fi service is also available. To procure a workstation and access card, students are requested to register to the Associate Dean for General Affairs in the Dean’s building, 2nd floor, FTUI Depok.

- **International Journal Article Writing Training**
 These free of charge trainings for the FTUI Doctoral program students are held several times each year. The information regarding these trainings are communicated through an announcement in SIAK-NG, posters at each Department, Doctoral program mailing list and FTUI website (www.eng.ui.ac.id).

- **Research Proposal Writing Training**
 These free of charge trainings for the FTUI Doctoral program students are held several times each year. The information regarding these trainings are communicated through an announcement in SIAK-NG, posters at each Department, Doctoral program mailing list and FTUI website (www.eng.ui.ac.id).

- **Line Editing Draft for International Journal Article**
 FTUI provides funds for line editing drafts for International Journal Articles. Requirement for applying for this funds are: the article must include the promoter name as part of the writing team and state FTUI as the main affiliation. To be grant this facility, students only needs to send a draft of their article through email to the FTUI Associate Dean of Academic and Research (risetft@eng.ui.ac.id). The time required for line editing is 2-4 weeks.
Doctoral Program Mailing-List
The Doctoral Program mailing list is used as a communication tool between the Dean's Faculty Heads, the Faculty Center Administration staff and all Doctoral program students in FTUI. Information regarding trainings, seminars, grants or other academic matters is announced through this mailing list. Complaints and suggestions are also accommodated by this mailing list. The mailing list address is: programdoktorft@group.eng.ui.ac.id

Research and Incentive Grants for Master and Doctoral Program
Research funds including consumables and tests for research as part of the thesis and dissertation writing is the responsibility of the student. There are a number of competitive research grants, incentive research grant schemes available from which Master and Doctoral program students may propose to finance his/her research. Complete guidance and research proposal examples are available at the Associate Dean for Research and Community Development secretary at the Dean’s Building, 2nd floor or through http://research.eng.ui.ac.id.

International Journal Writing Incentive
This incentives are given to lecturer of State of Private Universities that have published an article in an international journal. Each proposer must be the first writer of the article and include an institution affiliation in Indonesia.
FACULTY OF ENGINEERING
UNIVERSITAS INDONESIA

Public Relation Office
PAF Building 1 floor
Kampus UI, Depok 16424
P : +62 21 78888430
F : +62 21 78888076
E : humas@eng.ui.ac.id